Skin exposure to soil microbiota elicits changes in cell-mediated immunity to pneumococcal vaccine
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
Grantová podpora
40333/14
Business Finland
6766/31/2017
Business Finland
346136
Strategic Research Council
346138
Strategic Research Council
874864
Horizon 2020 Framework Programme
LX22NPO5103
European union - Next generation EU
PubMed
39127736
PubMed Central
PMC11316737
DOI
10.1038/s41598-024-68235-8
PII: 10.1038/s41598-024-68235-8
Knihovny.cz E-zdroje
- MeSH
- buněčná imunita * MeSH
- cytokiny metabolismus krev MeSH
- dospělí MeSH
- kůže * imunologie mikrobiologie MeSH
- leukocyty mononukleární * imunologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiota imunologie MeSH
- pneumokokové infekce prevence a kontrola imunologie MeSH
- pneumokokové vakcíny * imunologie aplikace a dávkování MeSH
- půdní mikrobiologie MeSH
- střevní mikroflóra imunologie MeSH
- vakcinace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- cytokiny MeSH
- pneumokokové vakcíny * MeSH
A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.
Department of Medicine Karolinska Institutet Huddinge Sweden
Fimlab Laboratories Pirkanmaa Hospital District Tampere Finland
Natural Resources Institute Finland Luke Viikki and Turku Finland
Zobrazit více v PubMed
Rook, G. A. W., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol.3, 337–342 (2003). 10.1097/00130832-200310000-00003 PubMed DOI
Rook, G. A. W., Lowry, C. A. & Raison, C. L. Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Res.1617, 47–62 (2015). 10.1016/j.brainres.2014.04.004 PubMed DOI
Haahtela, T. et al. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy76, 3613–3626 (2021). 10.1111/all.14895 PubMed DOI
Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv.6, 2578 (2020).10.1126/sciadv.aba2578 PubMed DOI PMC
Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol.9, 1–13 (2018). 10.3389/fmicb.2018.00084 PubMed DOI PMC
Von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep.12, 1089–1093 (2011). 10.1038/embor.2011.195 PubMed DOI PMC
Kondrashova, A., Seiskari, T., Ilonen, J., Knip, M. & Hyöty, H. The ‘Hygiene hypothesis’ and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. Apmis121, 478–493 (2013). 10.1111/apm.12023 PubMed DOI
Targonski, P. V., Jacobson, R. M. & Poland, G. A. Immunosenescence: Role and measurement in influenza vaccine response among the elderly. Vaccine25, 3066–3069 (2007). 10.1016/j.vaccine.2007.01.025 PubMed DOI
Zimmermann, P. & Curtis, N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev.32, e00084-e118 (2019). 10.1128/CMR.00084-18 PubMed DOI PMC
Harris, V. C. et al. Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana. J. Infect. Dis.215, 34–41 (2017). 10.1093/infdis/jiw518 PubMed DOI PMC
Zimmermann, P. & Curtis, N. The influence of the intestinal microbiome on vaccine responses. Vaccine36, 4433–4439 (2018). 10.1016/j.vaccine.2018.04.066 PubMed DOI
Eloe-Fadrosh, E. A. et al. Impact of oral typhoid vaccination on the human gut microbiota and correlations with S. Typhi-specific immunological responses. PLoS ONE8, e62026 (2013). 10.1371/journal.pone.0062026 PubMed DOI PMC
Nurminen, N. et al. Land cover of early-life environment modulates the risk of type 1 diabetes. Diabetes Care44, 1506–1514 (2021). 10.2337/dc20-1719 PubMed DOI PMC
Stein, M. M. et al. Innate immunity and asthma risk in amish and hutterite farm children. N. Engl. J. Med.375, 411–421 (2016). 10.1056/NEJMoa1508749 PubMed DOI PMC
Ege, M. J. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med.9, 43–45 (2011). PubMed
Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med.25, 1089–1095 (2019). 10.1038/s41591-019-0469-4 PubMed DOI PMC
Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int.157, 106811 (2021). 10.1016/j.envint.2021.106811 PubMed DOI
Roslund, M. I. et al. A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol. Environ. Saf.242, 113900 (2022). 10.1016/j.ecoenv.2022.113900 PubMed DOI
Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int.145, 106084 (2020). 10.1016/j.envint.2020.106084 PubMed DOI
Nurminen, N. et al. Nature-derived microbiota exposure as a novel immunomodulatory approach. Future Microbiol.13, 737–744 (2018). 10.2217/fmb-2017-0286 PubMed DOI
Puhakka, R. et al. Greening of daycare yards with biodiverse materials affords well-being, play and environmental relationships. Int. J. Environ. Res. Public. Health16, 2948 (2019). 10.3390/ijerph16162948 PubMed DOI PMC
Parajuli, A. et al. Yard vegetation is associated with gut microbiota composition. Sci. Total Environ.713, 136707 (2020). 10.1016/j.scitotenv.2020.136707 PubMed DOI
Sokol, H. et al.Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA105, 16731–16736 (2008). 10.1073/pnas.0804812105 PubMed DOI PMC
West, C. E. et al. Gut microbiome and innate immune response patterns in IgE-associated eczema. Clin. Exp. Allergy45, 1419–1429 (2015). 10.1111/cea.12566 PubMed DOI
Hui, N. et al. Diverse environmental microbiota as a tool to augment biodiversity in urban landscaping materials. Front. Microbiol.10, 536 (2019). 10.3389/fmicb.2019.00536 PubMed DOI PMC
Murphy, S. L. Mortality in the United States. NCHS Data Brief2020, 8 (2021). PubMed
Institute for Health Metrics and Evaluation. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results (Institute for Health Metrics and Evaluation (IHME), 2021). https://ourworldindata.org/pneumonia#pneumonia-mortality-rates-by-age.
Van Der Poll, T. & Opal, S. M. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. The Lancet374, 1543–1556 (2009).10.1016/S0140-6736(09)61114-4 PubMed DOI
Grassly, N. C., Kang, G. & Kampmann, B. Biological challenges to effective vaccines in the developing world. Philos. Trans. R. Soc. B370, 20140138 (2015).10.1098/rstb.2014.0138 PubMed DOI PMC
Duggan, S. T. Adis drug profile: Pneumococcal polysaccharide conjugate vaccine (13-Valent, Adsorbed) [Prevenar 13Ò]. Drugs70, 14 (2010).10.2165/11205110-000000000-00000 PubMed DOI
Prygiel, M. et al. New corynebacterium species with the potential to produce diphtheria toxin. Pathogens11, 1264 (2022). 10.3390/pathogens11111264 PubMed DOI PMC
Feng, E., Balint, E., Poznanski, S. M., Ashkar, A. A. & Loeb, M. Aging and interferons: Impacts on inflammation and viral disease outcomes. Cells10, 708 (2021). 10.3390/cells10030708 PubMed DOI PMC
Kim, E. Y. & Moudgil, K. D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine98, 87–96 (2017). 10.1016/j.cyto.2017.04.012 PubMed DOI PMC
Lin, Y., Slight, S. R. & Khader, S. A. Th17 cytokines and vaccine-induced immunity. Semin. Immunopathol.32, 79–90 (2010). 10.1007/s00281-009-0191-2 PubMed DOI PMC
Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature500, 232–236 (2013). 10.1038/nature12331 PubMed DOI
Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ.777, 146063 (2021). 10.1016/j.scitotenv.2021.146063 PubMed DOI
Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ.701, 134684 (2020). 10.1016/j.scitotenv.2019.134684 PubMed DOI
Stilling, R. M. et al. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?. Neurochem. Int.99, 110–132 (2016). 10.1016/j.neuint.2016.06.011 PubMed DOI
Vo, N., Tsai, T. C., Maxwell, C. & Carbonero, F. Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe45, 31–39 (2017). 10.1016/j.anaerobe.2017.02.022 PubMed DOI
Roslund, M. I. et al. Skin, gut, and sand metagenomic data on placebo-controlled sandbox biodiversity intervention study. Data Brief47, 109003 (2023). 10.1016/j.dib.2023.109003 PubMed DOI PMC
Kummola, L. et al. Comparison of the effect of autoclaved and non-autoclaved live soil exposure on the mouse immune system: Effect of soil exposure on immune system. BMC Immunol.24, 29 (2023). 10.1186/s12865-023-00565-0 PubMed DOI PMC
González-Rodríguez, M. I. et al. Effect of inactivated nature-derived microbial composition on mouse immune system. Immun. Inflamm. Dis.10, e579 (2022). 10.1002/iid3.579 PubMed DOI PMC
United Nations. World Urbanization Prospects The 2018 Revision2018, 126 (2018).
Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol.28, 13175 (2020).10.1111/rec.13175 DOI
Roslund, M. I. et al. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ6, e4508 (2018). 10.7717/peerj.4508 PubMed DOI PMC
Cavazzoli, S. et al. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms. Microbiol. Res.270, 127343 (2023). 10.1016/j.micres.2023.127343 PubMed DOI
Robinson, J. M. et al. Ecosystem restoration is integral to humanity’s recovery from COVID-19. Lancet Planet. Health6, e769–e773 (2022). 10.1016/S2542-5196(22)00171-1 PubMed DOI PMC
Watkins, H., Robinson, J. M., Breed, M. F., Parker, B. & Weinstein, P. Microbiome-inspired green infrastructure: A toolkit for multidisciplinary landscape design. Trends Biotechnol.38, 1305–1308 (2020). 10.1016/j.tibtech.2020.04.009 PubMed DOI
Soininen, L. et al. Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: A randomized trial among urban office workers. Sci. Rep.12, 6518 (2022). 10.1038/s41598-022-10432-4 PubMed DOI PMC
Puhakka, R., Valve, R. & Sinkkonen, A. Older consumers’ perceptions of functional foods and non-edible health-enhancing innovations. Int. J. Consum. Stud.42, 111–119 (2018).10.1111/ijcs.12400 DOI
Kondrashova, A. et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann. Med.37, 67–72 (2005). 10.1080/07853890410018952 PubMed DOI
Kondrashova, A. et al. Serological evidence of thyroid autoimmunity among schoolchildren in two different socioeconomic environments. J. Clin. Endocrinol. Metab.93, 729–734 (2008). 10.1210/jc.2007-1644 PubMed DOI
Kondrashova, A. et al. Lower economic status and inferior hygienic environment may protect against celiac disease. Ann. Med.40, 223–231 (2008). 10.1080/07853890701678689 PubMed DOI
Seiskari, T. et al. Allergic sensitization and microbial load: A comparison between Finland and Russian Karelia. Clin. Exp. Immunol.148, 47–52 (2007). 10.1111/j.1365-2249.2007.03333.x PubMed DOI PMC
Grönroos, M. et al. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen8, e00645 (2019). 10.1002/mbo3.645 PubMed DOI PMC
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J.6, 1621–1624 (2012). 10.1038/ismej.2012.8 PubMed DOI PMC
Schloss, P. D. et al. Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75, 7537–7541 (2009). 10.1128/AEM.01541-09 PubMed DOI PMC
Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res.35, 7188–7196 (2007). 10.1093/nar/gkm864 PubMed DOI PMC
Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol.12, 1889–1898 (2010). 10.1111/j.1462-2920.2010.02193.x PubMed DOI PMC
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200 (2011). 10.1093/bioinformatics/btr381 PubMed DOI PMC
Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. & Al, W. E. T. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Envoron. Microbiol.73, 5261–5267 (2007).10.1128/AEM.00062-07 PubMed DOI PMC
Tedersoo, L. et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol.188, 291–301 (2010). 10.1111/j.1469-8137.2010.03373.x PubMed DOI
Brown, S. P. et al. Scraping the bottom of the barrel: Are rare high throughput sequences artifacts?. Fungal Ecol.13, 221–225 (2015).10.1016/j.funeco.2014.08.006 DOI
Palarea-albaladejo, J. & Martín-fernández, J. A. Chemometrics and Intelligent Laboratory Systems zCompositions: R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst.143, 85–96 (2015).10.1016/j.chemolab.2015.02.019 DOI
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol.8, 1–6 (2017). 10.3389/fmicb.2017.02224 PubMed DOI PMC
Racedo, S. et al. A new pipeline for structural characterization and classification of RNA-Seq microbiome data. BioData Min.14, 1–18 (2021). 10.1186/s13040-021-00266-7 PubMed DOI PMC
Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience8, 1–14 (2019).10.1093/gigascience/giz107 PubMed DOI PMC
Kondrashova, A. et al. Influenza A virus antibodies show no association with pancreatic islet autoantibodies in children genetically predisposed to type 1 diabetes. Diabetologia58, 2592–2595 (2015). 10.1007/s00125-015-3723-4 PubMed DOI
Rodrigo, M. J. et al. Characterization of specific immunoglobulin G (IgG) and its subclasses (IgG1 and IgG2) against the 23-valent pneumococcal vaccine in a healthy adult population: Proposal for response criteria. Clin. Diagn. Lab. Immunol.4, e172 (1997).10.1128/cdli.4.2.168-172.1997 PubMed DOI PMC
R. D. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1 (2015).10.18637/jss.v067.i01 DOI
Taverniti, V. Short-term daily intake of 6 billion live probiotic cells can be insufficient in healthy adults to modulate the intestinal bifidobacteria and lactobacilli. J. Funct. Foods6, 482–491 (2014).10.1016/j.jff.2013.11.014 DOI
Costelloe, C., Metclafe, C., Lovering, A., Mant, D. & Hay, A. D. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. BMJ340, 2096 (2010).10.1136/bmj.c2096 PubMed DOI
Twisk, J. et al. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun.10, 80–85 (2018). 10.1016/j.conctc.2018.03.008 PubMed DOI PMC
Kherad-Pajouh, S. & Renaud, O. A general permutation approach for analyzing repeated measures ANOVA and mixed-model designs. Stat. Pap.56, 947–967 (2015).10.1007/s00362-014-0617-3 DOI
Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA ). In Wiley StatsRef: Statistics Reference Online (eds Balakrishnan, N. et al.) 1–15 (Wiley, 2017).
Oksanen, J. et al.Package ‘Vegan’: Community Ecology Package. http://vegan.r-forge.r-project.org/ (2019).