Skin exposure to soil microbiota elicits changes in cell-mediated immunity to pneumococcal vaccine

. 2024 Aug 10 ; 14 (1) : 18573. [epub] 20240810

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39127736

Grantová podpora
40333/14 Business Finland
6766/31/2017 Business Finland
346136 Strategic Research Council
346138 Strategic Research Council
874864 Horizon 2020 Framework Programme
LX22NPO5103 European union - Next generation EU

Odkazy

PubMed 39127736
PubMed Central PMC11316737
DOI 10.1038/s41598-024-68235-8
PII: 10.1038/s41598-024-68235-8
Knihovny.cz E-zdroje

A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.

Zobrazit více v PubMed

Rook, G. A. W., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol.3, 337–342 (2003). 10.1097/00130832-200310000-00003 PubMed DOI

Rook, G. A. W., Lowry, C. A. & Raison, C. L. Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Res.1617, 47–62 (2015). 10.1016/j.brainres.2014.04.004 PubMed DOI

Haahtela, T. et al. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy76, 3613–3626 (2021). 10.1111/all.14895 PubMed DOI

Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv.6, 2578 (2020).10.1126/sciadv.aba2578 PubMed DOI PMC

Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol.9, 1–13 (2018). 10.3389/fmicb.2018.00084 PubMed DOI PMC

Von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep.12, 1089–1093 (2011). 10.1038/embor.2011.195 PubMed DOI PMC

Kondrashova, A., Seiskari, T., Ilonen, J., Knip, M. & Hyöty, H. The ‘Hygiene hypothesis’ and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. Apmis121, 478–493 (2013). 10.1111/apm.12023 PubMed DOI

Targonski, P. V., Jacobson, R. M. & Poland, G. A. Immunosenescence: Role and measurement in influenza vaccine response among the elderly. Vaccine25, 3066–3069 (2007). 10.1016/j.vaccine.2007.01.025 PubMed DOI

Zimmermann, P. & Curtis, N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev.32, e00084-e118 (2019). 10.1128/CMR.00084-18 PubMed DOI PMC

Harris, V. C. et al. Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana. J. Infect. Dis.215, 34–41 (2017). 10.1093/infdis/jiw518 PubMed DOI PMC

Zimmermann, P. & Curtis, N. The influence of the intestinal microbiome on vaccine responses. Vaccine36, 4433–4439 (2018). 10.1016/j.vaccine.2018.04.066 PubMed DOI

Eloe-Fadrosh, E. A. et al. Impact of oral typhoid vaccination on the human gut microbiota and correlations with S. Typhi-specific immunological responses. PLoS ONE8, e62026 (2013). 10.1371/journal.pone.0062026 PubMed DOI PMC

Nurminen, N. et al. Land cover of early-life environment modulates the risk of type 1 diabetes. Diabetes Care44, 1506–1514 (2021). 10.2337/dc20-1719 PubMed DOI PMC

Stein, M. M. et al. Innate immunity and asthma risk in amish and hutterite farm children. N. Engl. J. Med.375, 411–421 (2016). 10.1056/NEJMoa1508749 PubMed DOI PMC

Ege, M. J. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med.9, 43–45 (2011). PubMed

Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med.25, 1089–1095 (2019). 10.1038/s41591-019-0469-4 PubMed DOI PMC

Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int.157, 106811 (2021). 10.1016/j.envint.2021.106811 PubMed DOI

Roslund, M. I. et al. A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol. Environ. Saf.242, 113900 (2022). 10.1016/j.ecoenv.2022.113900 PubMed DOI

Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int.145, 106084 (2020). 10.1016/j.envint.2020.106084 PubMed DOI

Nurminen, N. et al. Nature-derived microbiota exposure as a novel immunomodulatory approach. Future Microbiol.13, 737–744 (2018). 10.2217/fmb-2017-0286 PubMed DOI

Puhakka, R. et al. Greening of daycare yards with biodiverse materials affords well-being, play and environmental relationships. Int. J. Environ. Res. Public. Health16, 2948 (2019). 10.3390/ijerph16162948 PubMed DOI PMC

Parajuli, A. et al. Yard vegetation is associated with gut microbiota composition. Sci. Total Environ.713, 136707 (2020). 10.1016/j.scitotenv.2020.136707 PubMed DOI

Sokol, H. et al.Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA105, 16731–16736 (2008). 10.1073/pnas.0804812105 PubMed DOI PMC

West, C. E. et al. Gut microbiome and innate immune response patterns in IgE-associated eczema. Clin. Exp. Allergy45, 1419–1429 (2015). 10.1111/cea.12566 PubMed DOI

Hui, N. et al. Diverse environmental microbiota as a tool to augment biodiversity in urban landscaping materials. Front. Microbiol.10, 536 (2019). 10.3389/fmicb.2019.00536 PubMed DOI PMC

Murphy, S. L. Mortality in the United States. NCHS Data Brief2020, 8 (2021). PubMed

Institute for Health Metrics and Evaluation. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results (Institute for Health Metrics and Evaluation (IHME), 2021). https://ourworldindata.org/pneumonia#pneumonia-mortality-rates-by-age.

Van Der Poll, T. & Opal, S. M. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. The Lancet374, 1543–1556 (2009).10.1016/S0140-6736(09)61114-4 PubMed DOI

Grassly, N. C., Kang, G. & Kampmann, B. Biological challenges to effective vaccines in the developing world. Philos. Trans. R. Soc. B370, 20140138 (2015).10.1098/rstb.2014.0138 PubMed DOI PMC

Duggan, S. T. Adis drug profile: Pneumococcal polysaccharide conjugate vaccine (13-Valent, Adsorbed) [Prevenar 13Ò]. Drugs70, 14 (2010).10.2165/11205110-000000000-00000 PubMed DOI

Prygiel, M. et al. New corynebacterium species with the potential to produce diphtheria toxin. Pathogens11, 1264 (2022). 10.3390/pathogens11111264 PubMed DOI PMC

Feng, E., Balint, E., Poznanski, S. M., Ashkar, A. A. & Loeb, M. Aging and interferons: Impacts on inflammation and viral disease outcomes. Cells10, 708 (2021). 10.3390/cells10030708 PubMed DOI PMC

Kim, E. Y. & Moudgil, K. D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine98, 87–96 (2017). 10.1016/j.cyto.2017.04.012 PubMed DOI PMC

Lin, Y., Slight, S. R. & Khader, S. A. Th17 cytokines and vaccine-induced immunity. Semin. Immunopathol.32, 79–90 (2010). 10.1007/s00281-009-0191-2 PubMed DOI PMC

Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature500, 232–236 (2013). 10.1038/nature12331 PubMed DOI

Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ.777, 146063 (2021). 10.1016/j.scitotenv.2021.146063 PubMed DOI

Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ.701, 134684 (2020). 10.1016/j.scitotenv.2019.134684 PubMed DOI

Stilling, R. M. et al. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?. Neurochem. Int.99, 110–132 (2016). 10.1016/j.neuint.2016.06.011 PubMed DOI

Vo, N., Tsai, T. C., Maxwell, C. & Carbonero, F. Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe45, 31–39 (2017). 10.1016/j.anaerobe.2017.02.022 PubMed DOI

Roslund, M. I. et al. Skin, gut, and sand metagenomic data on placebo-controlled sandbox biodiversity intervention study. Data Brief47, 109003 (2023). 10.1016/j.dib.2023.109003 PubMed DOI PMC

Kummola, L. et al. Comparison of the effect of autoclaved and non-autoclaved live soil exposure on the mouse immune system: Effect of soil exposure on immune system. BMC Immunol.24, 29 (2023). 10.1186/s12865-023-00565-0 PubMed DOI PMC

González-Rodríguez, M. I. et al. Effect of inactivated nature-derived microbial composition on mouse immune system. Immun. Inflamm. Dis.10, e579 (2022). 10.1002/iid3.579 PubMed DOI PMC

United Nations. World Urbanization Prospects The 2018 Revision2018, 126 (2018).

Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol.28, 13175 (2020).10.1111/rec.13175 DOI

Roslund, M. I. et al. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ6, e4508 (2018). 10.7717/peerj.4508 PubMed DOI PMC

Cavazzoli, S. et al. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms. Microbiol. Res.270, 127343 (2023). 10.1016/j.micres.2023.127343 PubMed DOI

Robinson, J. M. et al. Ecosystem restoration is integral to humanity’s recovery from COVID-19. Lancet Planet. Health6, e769–e773 (2022). 10.1016/S2542-5196(22)00171-1 PubMed DOI PMC

Watkins, H., Robinson, J. M., Breed, M. F., Parker, B. & Weinstein, P. Microbiome-inspired green infrastructure: A toolkit for multidisciplinary landscape design. Trends Biotechnol.38, 1305–1308 (2020). 10.1016/j.tibtech.2020.04.009 PubMed DOI

Soininen, L. et al. Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: A randomized trial among urban office workers. Sci. Rep.12, 6518 (2022). 10.1038/s41598-022-10432-4 PubMed DOI PMC

Puhakka, R., Valve, R. & Sinkkonen, A. Older consumers’ perceptions of functional foods and non-edible health-enhancing innovations. Int. J. Consum. Stud.42, 111–119 (2018).10.1111/ijcs.12400 DOI

Kondrashova, A. et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann. Med.37, 67–72 (2005). 10.1080/07853890410018952 PubMed DOI

Kondrashova, A. et al. Serological evidence of thyroid autoimmunity among schoolchildren in two different socioeconomic environments. J. Clin. Endocrinol. Metab.93, 729–734 (2008). 10.1210/jc.2007-1644 PubMed DOI

Kondrashova, A. et al. Lower economic status and inferior hygienic environment may protect against celiac disease. Ann. Med.40, 223–231 (2008). 10.1080/07853890701678689 PubMed DOI

Seiskari, T. et al. Allergic sensitization and microbial load: A comparison between Finland and Russian Karelia. Clin. Exp. Immunol.148, 47–52 (2007). 10.1111/j.1365-2249.2007.03333.x PubMed DOI PMC

Grönroos, M. et al. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen8, e00645 (2019). 10.1002/mbo3.645 PubMed DOI PMC

Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J.6, 1621–1624 (2012). 10.1038/ismej.2012.8 PubMed DOI PMC

Schloss, P. D. et al. Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75, 7537–7541 (2009). 10.1128/AEM.01541-09 PubMed DOI PMC

Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res.35, 7188–7196 (2007). 10.1093/nar/gkm864 PubMed DOI PMC

Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol.12, 1889–1898 (2010). 10.1111/j.1462-2920.2010.02193.x PubMed DOI PMC

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200 (2011). 10.1093/bioinformatics/btr381 PubMed DOI PMC

Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. & Al, W. E. T. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Envoron. Microbiol.73, 5261–5267 (2007).10.1128/AEM.00062-07 PubMed DOI PMC

Tedersoo, L. et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol.188, 291–301 (2010). 10.1111/j.1469-8137.2010.03373.x PubMed DOI

Brown, S. P. et al. Scraping the bottom of the barrel: Are rare high throughput sequences artifacts?. Fungal Ecol.13, 221–225 (2015).10.1016/j.funeco.2014.08.006 DOI

Palarea-albaladejo, J. & Martín-fernández, J. A. Chemometrics and Intelligent Laboratory Systems zCompositions: R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst.143, 85–96 (2015).10.1016/j.chemolab.2015.02.019 DOI

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol.8, 1–6 (2017). 10.3389/fmicb.2017.02224 PubMed DOI PMC

Racedo, S. et al. A new pipeline for structural characterization and classification of RNA-Seq microbiome data. BioData Min.14, 1–18 (2021). 10.1186/s13040-021-00266-7 PubMed DOI PMC

Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience8, 1–14 (2019).10.1093/gigascience/giz107 PubMed DOI PMC

Kondrashova, A. et al. Influenza A virus antibodies show no association with pancreatic islet autoantibodies in children genetically predisposed to type 1 diabetes. Diabetologia58, 2592–2595 (2015). 10.1007/s00125-015-3723-4 PubMed DOI

Rodrigo, M. J. et al. Characterization of specific immunoglobulin G (IgG) and its subclasses (IgG1 and IgG2) against the 23-valent pneumococcal vaccine in a healthy adult population: Proposal for response criteria. Clin. Diagn. Lab. Immunol.4, e172 (1997).10.1128/cdli.4.2.168-172.1997 PubMed DOI PMC

R. D. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1 (2015).10.18637/jss.v067.i01 DOI

Taverniti, V. Short-term daily intake of 6 billion live probiotic cells can be insufficient in healthy adults to modulate the intestinal bifidobacteria and lactobacilli. J. Funct. Foods6, 482–491 (2014).10.1016/j.jff.2013.11.014 DOI

Costelloe, C., Metclafe, C., Lovering, A., Mant, D. & Hay, A. D. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. BMJ340, 2096 (2010).10.1136/bmj.c2096 PubMed DOI

Twisk, J. et al. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun.10, 80–85 (2018). 10.1016/j.conctc.2018.03.008 PubMed DOI PMC

Kherad-Pajouh, S. & Renaud, O. A general permutation approach for analyzing repeated measures ANOVA and mixed-model designs. Stat. Pap.56, 947–967 (2015).10.1007/s00362-014-0617-3 DOI

Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA ). In Wiley StatsRef: Statistics Reference Online (eds Balakrishnan, N. et al.) 1–15 (Wiley, 2017).

Oksanen, J. et al.Package ‘Vegan’: Community Ecology Package. http://vegan.r-forge.r-project.org/ (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...