Phylogenetic structure of moth communities (Geometridae, Lepidoptera) along a complete rainforest elevational gradient in Papua New Guinea
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39133743
PubMed Central
PMC11318904
DOI
10.1371/journal.pone.0308698
PII: PONE-D-24-23196
Knihovny.cz E-resources
- MeSH
- Biodiversity * MeSH
- Rainforest * MeSH
- Phylogeny * MeSH
- Moths * genetics physiology classification MeSH
- Altitude * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Papua New Guinea MeSH
We use community phylogenetics to elucidate the community assembly mechanisms for Geometridae moths (Lepidoptera) collected along a complete rainforest elevational gradient (200-3700 m a.s.l) on Mount Wilhelm in Papua New Guinea. A constrained phylogeny based on COI barcodes for 604 species was used to analyse 1390 species x elevation occurrences at eight elevational sites separated by 500 m elevation increments. We obtained Nearest Relatedness Index (NRI), Nearest Taxon Index (NTI) and Standardised Effect Size of Faith's Phylogenetic Diversity (SES.PD) and regressed these on temperature, plant species richness and predator abundance as key abiotic and biotic predictors. We also quantified beta diversity in the moth communities between elevations using the Phylogenetic Sorensen index. Overall, geometrid communities exhibited phylogenetic clustering, suggesting environmental filters, particularly at higher elevations at and above 2200 m a.s.l and no evidence of overdispersion. NRI, NTI and SES.PD showed no consistent trends with elevation or the studied biotic and abiotic variables. Change in community structure was driven by turnover of phylogenetic beta-diversity, except for the highest 2700-3200 m elevations, which were characterised by nested subsets of lower elevation communities. Overall, the elevational signal of geometrid phylogeny was weak-moderate. Additional insect community phylogeny studies are needed to understand this pattern.
Department of Crop and Environment Sciences Harper Adams University Newport United Kingdom
Faculty of Science Department of Zoology Palacky University Olomouc Olomouc Czech Republic
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Entomology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
New Guinea Binatang Research Centre Madang Papua New Guinea
PNG Institute of Biological Research Madang Papua New Guinea
See more in PubMed
Kraft Nathan JB, Cornwell William K, Webb Campbell O, Ackerly David D. Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities. The American Naturalist. 2007;170(2):271–83. doi: 10.1086/519400 PubMed DOI
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. The merging of community ecology and phylogenetic biology. Ecology Letters. 2009;12(7):693–715. doi: 10.1111/j.1461-0248.2009.01314.x PubMed DOI
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MMJAroe, evolution, systematics. Rethinking community assembly through the lens of coexistence theory. 2012;43:227–48.
Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science. 2008;322(5899):258. doi: 10.1126/science.1162547 PubMed DOI
Ricklefs RE. Community Diversity: Relative Roles of Local and Regional Processes. Science. 1987;235(4785):167–71. doi: 10.1126/science.235.4785.167 PubMed DOI
Cardillo M. Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1577):2545–53. doi: 10.1098/rstb.2011.0021 PubMed DOI PMC
Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, et al.. Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews. 2012;87(1):111–27. doi: 10.1111/j.1469-185X.2011.00187.x PubMed DOI
Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, et al.. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science. 2019;365(6458):1108. doi: 10.1126/science.aax0149 PubMed DOI
McCain CM, Grytnes J-A. Elevational Gradients in Species Richness. Encyclopedia of Life Sciences 2010.
Connor EF, Simberloff D. The Assembly of Species Communities: Chance or Competition? Ecology. 1979;60(6):1132–40.
Körner C. The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution. 2007;22(11):569–74. doi: 10.1016/j.tree.2007.09.006 PubMed DOI
McCain CM. Global analysis of bird elevational diversity. Global Ecology and Biogeography. 2009;18(3):346–60.
Beck J, McCain CM, Axmacher JC, Ashton LA, Bärtschi F, Brehm G, et al.. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Global Ecology and Biogeography. 2017;26(4):412–24.
Toussaint EFA, Hall R, Monaghan MT, Sagata K, Ibalim S, Shaverdo HV, et al.. The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications. 2014;5:4001. doi: 10.1038/ncomms5001 PubMed DOI
Felsenstein J. Phylogenies and the Comparative Method. The American Naturalist. 1985;125(1):1–15. PubMed
Webb CO. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. The American Naturalist. 2000;156(2):145–55. doi: 10.1086/303378 PubMed DOI
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and Community Ecology. Annual Review of Ecology and Systematics. 2002;33(1):475–505.
Cavender‐Bares J, Ackerly DD, Baum DA, Bazzaz FA. Phylogenetic Overdispersion in Floridian Oak Communities. The American Naturalist. 2004;163(6):823–43. doi: 10.1086/386375 PubMed DOI
Ives AR, Helmus MR. Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs. 2011;81(3):511–25.
Mayfield MM, Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters. 2010;13(9):1085–93. doi: 10.1111/j.1461-0248.2010.01509.x PubMed DOI
Pérez-Toledo GR, Villalobos F, Silva RR, Moreno CE, Pie MR, Valenzuela-González JE. Alpha and beta phylogenetic diversities jointly reveal ant community assembly mechanisms along a tropical elevational gradient. Scientific Reports. 2022;12(1):7728. doi: 10.1038/s41598-022-11739-y PubMed DOI PMC
Wiens JJ, Graham CH. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics. 2005;36(1):519–39.
Pearse WD, Cadotte MW, Cavender-Bares J, Ives AR, Tucker CM, Walker SC, et al.. pez: phylogenetics for the environmental sciences. Bioinformatics. 2015;31(17):2888–90. doi: 10.1093/bioinformatics/btv277 PubMed DOI
Rajaei H, Hausmann A, Scoble M, Wanke D, Plotkin D, Brehm G, et al.. An online taxonomic facility of Geometridae (Lepidoptera), with an overview of global species richness and systematics. Integrative Systematics: Stuttgart Contributions to Natural History. 2022;5(2):145–92.
Holloway JD. The larger moths of Gunung Mulu National Park; a preliminary assessment of their distribution, ecology and potential as environmental indicators. In. Gunung Mulu National Park, Sarawak, Part II. 1984;30:149–90.
Beck JAN, Schulze CH, Linsenmair KE, Fiedler K. From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. Journal of Tropical Ecology. 2002;18(1):33–51.
Axmacher JC, Holtmann G, Scheuermann L, Brehm G, Müller-Hohenstein K, Fiedler K. Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Diversity and Distributions. 2004;10(4):293–302.
Brehm G, Homeier J, Fiedler K. Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Diversity and Distributions. 2003;9(5):351–66.
Toko PS, Koane B, Molem K, Miller SE, Novotny V. Ecological trends in moth communities (Geometridae, Lepidoptera) along a complete rainforest elevation gradient in Papua New Guinea. Insect Conservation and Diversity. 2023;16(5):649–57.
Brehm G, Süssenbach D, Fiedler K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography. 2003;26(4):456–66.
Brehm G, Strutzenberger P, Fiedler K. Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography. 2013;36(11):1247–53.
Machac A, Janda M, Dunn RR, Sanders NJ. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography. 2011;34(3):364–71.
Brehm G, Colwell RK, Kluge J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography. 2007;16(2):205–19.
Sam K, Koane B, Bardos DC, Jeppy S, Novotny V. Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography. 2019;46(2):279–90.
Sam K, Koane B, Jeppy S, Sykorova J, Novotny V. Diet of land birds along an elevational gradient in Papua New Guinea. Scientific Reports. 2017;7(1):44018. doi: 10.1038/srep44018 PubMed DOI PMC
Moses J, Fayle TM, Novotny V, Klimes P. Elevation and leaf litter interact in determining the structure of ant communities on a tropical mountain. Biotropica. 2021;53(3):906–19.
Kress WJ, Erickson DL. DNA Barcodes: Methods and Protocols. In: Kress WJ, Erickson DL, editors. DNA Barcodes: Methods and Protocols. Totowa, NJ: Humana Press; 2012. p. 3–8. PubMed
Ratnasingham S, Hebert PDN. A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLOS ONE. 2013;8(7):e66213. doi: 10.1371/journal.pone.0066213 PubMed DOI PMC
Murillo-Ramos L, Brehm G, Sihvonen P, Hausmann A, Holm S, Reza Ghanavi H, et al.. A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies. PeerJ. 2019;7:e7386. doi: 10.7717/peerj.7386 PubMed DOI PMC
Cooper N, Rodríguez J, Purvis A. A common tendency for phylogenetic overdispersion in mammalian assemblages. Proceedings of the Royal Society B: Biological Sciences. 2008;275(1646):2031–7. doi: 10.1098/rspb.2008.0420 PubMed DOI PMC
Rajaei H, Greve C, Letsch H, Stüning D, Wahlberg N, Minet J, et al.. Advances in Geometroidea phylogeny, with characterization of a new family based on seudobiston pinratanai (Lepidoptera, Glossata). Zoologica Scripta. 2015;44(4):418–36.
Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. Comprehensive Molecular Sampling Yields a Robust Phylogeny for Geometrid Moths (Lepidoptera: Geometridae). PLOS ONE. 2011;6(6):e20356. doi: 10.1371/journal.pone.0020356 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution. 2015;32(1):268–74. doi: 10.1093/molbev/msu300 PubMed DOI PMC
Swenson NG. Phylogenetic Resolution and Quantifying the Phylogenetic Diversity and Dispersion of Communities. PLOS ONE. 2009;4(2):e4390. doi: 10.1371/journal.pone.0004390 PubMed DOI PMC
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al.. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Computational Biology. 2014;10(4):e1003537. doi: 10.1371/journal.pcbi.1003537 PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular Biology and Evolution. 2016;34(3):772–3. PubMed
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast Approximation for Phylogenetic Bootstrap. Molecular Biology and Evolution. 2013;30(5):1188–95. doi: 10.1093/molbev/mst024 PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution. 2017;35(2):518–22. PubMed PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology. 2010;59(3):307–21. doi: 10.1093/sysbio/syq010 PubMed DOI
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al.. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26(11):1463–4. doi: 10.1093/bioinformatics/btq166 PubMed DOI
Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24(18):2098–100. doi: 10.1093/bioinformatics/btn358 PubMed DOI
Kembel SW. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters. 2009;12(9):949–60. doi: 10.1111/j.1461-0248.2009.01354.x PubMed DOI
Webb CO, Gilbert GS, Donoghue MJ. PHYLODIVERSITY-DEPENDENT SEEDLING MORTALITY, SIZE STRUCTURE, AND DISEASE IN A BORNEAN RAIN FOREST. Ecology. 2006;87(sp7):S123–S31. PubMed
Faith DP. Conservation evaluation and phylogenetic diversity. Biological Conservation. 1992;61(1):1–10.
Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences. 2008;105(Supplement 1):11505–11. PubMed PMC
Zou Y, Sang W, Hausmann A, Axmacher JC. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages. Scientific Reports. 2016;6:23045. doi: 10.1038/srep23045 PubMed DOI PMC
R Core Team R. R: A language and environment for statistical computing. "R version 4.2.1 (2022-06-23 ucrt). 2022.
Bodner F, Brehm G, Fiedler K. Many caterpillars in a montane rain forest in Ecuador are not classical herbivores. Journal of Tropical Ecology. 2015;31(5):473–6.
Sam K, Jorge LR, Koane B, Amick PK, Sivault E. Vertebrates, but not ants, protect rainforest from herbivorous insects across elevations in Papua New Guinea. Journal of Biogeography. 2023;50(10):1803–16.
Sam K, Koane B, Sam L, Mrazova A, Segar S, Volf M, et al.. Insect herbivory and herbivores of Ficus species along a rain forest elevational gradient in Papua New Guinea. Biotropica. 2020;52(2):263–76.
Nokelainen O, Silvasti SA, Strauss SY, Wahlberg N, Mappes J. Predator selection on phenotypic variability of cryptic and aposematic moths. Nature Communications. 2024;15(1):1678. doi: 10.1038/s41467-024-45329-5 PubMed DOI PMC
Sam K, Koane B, Novotny V. Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography. 2015;38(3):293–300.
Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology. 2011;65(1):23–35.
Colwell RK, Gotelli NJ, Ashton LA, Beck J, Brehm G, Fayle TM, et al.. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters. 2016;19(9):1009–22. doi: 10.1111/ele.12640 PubMed DOI
Leprieur F, Albouy C, De Bortoli J, Cowman PF, Bellwood DR, Mouillot D. Quantifying Phylogenetic Beta Diversity: Distinguishing between ‘True’ Turnover of Lineages and Phylogenetic Diversity Gradients. PLOS ONE. 2012;7(8):e42760. doi: 10.1371/journal.pone.0042760 PubMed DOI PMC
Swenson NG. Phylogenetic Beta Diversity Metrics, Trait Evolution and Inferring the Functional Beta Diversity of Communities. PLOS ONE. 2011;6(6):e21264. doi: 10.1371/journal.pone.0021264 PubMed DOI PMC
Baselga A. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography. 2010;19(1):134–43.
Baselga A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography. 2012;21(12):1223–32.
Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, et al.. Arthropod Diversity in a Tropical Forest. Science. 2012;338(6113):1481. doi: 10.1126/science.1226727 PubMed DOI
Souto‐Vilarós D, Basset Y, Blažek P, Laird‐Hopkins B, Segar ST, Navarro‐Valencia E, et al.. Illuminating arthropod diversity in a tropical forest: Assessing biodiversity by automatic light trapping and DNA metabarcoding. Environmental DNA. 2024;6(2):e540.
Qian H, Hao Z, Zhang J. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology. 2014;7(2):154–65.
Kraft NJB, Sanders NJ, Stegen JC, Anderson MJ, Crist TO, Cornell HV, et al.. Response to Comments on “Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients”. Science. 2012;335(6076):1573.
Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N. Phylogenetic diversity and the functioning of ecosystems. Ecology letters. 2012;15(7):637–48. doi: 10.1111/j.1461-0248.2012.01795.x PubMed DOI
Brehm G, Fiedler K. Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. Journal of Biogeography. 2003;30(3):431–40.
Brehm G. Diversity of geometrid moths in a montane rainforest in Ecuador.: Universität Bayreuth, Germany; 2002.
Graham CH, Parra JL, Rahbek C, McGuire JA. Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences. 2009;106(Supplement 2):19673. doi: 10.1073/pnas.0901649106 PubMed DOI PMC
Novotny V, Miller SE, Hulcr J, Drew RAI, Basset Y, Janda M, et al.. Low beta diversity of herbivorous insects in tropical forests. Nature. 2007;448:692. doi: 10.1038/nature06021 PubMed DOI
Segar ST, Volf M, Zima Jnr J, Isua B, Sisol M, Sam L, et al.. Speciation in a keystone plant genus is driven by elevation: a case study in New Guinean Ficus. Journal of Evolutionary Biology. 2017;30(3):512–23. doi: 10.1111/jeb.13020 PubMed DOI
Souto-Vilarós D, Houadria M, Michalek J, Sisol M, Isua B, Kuyaiva T, et al.. Contrasting patterns of fig wasp communities along Mt. Wilhelm, Papua New Guinea. Biotropica. 2020;52(2):323–34.
Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand J-N, Guisan A, et al.. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution. 2012;2(8):1818–25. doi: 10.1002/ece3.296 PubMed DOI PMC
Kemp JE, Linder HP, Ellis AG. Beta diversity of herbivorous insects is coupled to high species and phylogenetic turnover of plant communities across short spatial scales in the Cape Floristic Region. Journal of Biogeography. 2017;44(8):1813–23.
Szczepański W, Vondráček D, Seidel M, Wardhaugh C, Fikacek M. High diversity of Cetiocyon beetles (Coleoptera: Hydrophilidae) along an elevational gradient on Mt. Wilhelm, New Guinea, with new records from the Bird’s Head Peninsula. Arthropod Systematics & Phylogeny. 2018;76:323–47.
Beck J, Chey VK. Explaining the elevational diversity pattern of geometrid moths from Borneo: a test of five hypotheses. Journal of Biogeography. 2008;35(8):1452–64.
Beck J, Kitching IJ. Drivers of moth species richness on tropical altitudinal gradients: a cross‐regional comparison. Global Ecology and Biogeography. 2009;18(3):361–71.
Plowman NS, Hood ASC, Moses J, Redmond C, Novotny V, Klimes P, et al.. Network reorganization and breakdown of an ant–plant protection mutualism with elevation. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1850):20162564. doi: 10.1098/rspb.2016.2564 PubMed DOI PMC
Souto‐Vilarós D, Machac A, Michalek J, Darwell CT, Sisol M, Kuyaiva T, et al.. Faster speciation of fig‐wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum. Molecular Ecology. 2019;28(17):3958–76. doi: 10.1111/mec.15190 PubMed DOI
Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, et al.. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications. 2016;7(1):13736. PubMed PMC
Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE. Phylogenetic Dispersion of Host Use in a Tropical Insect Herbivore Community. Ecology. 2006;87(7):S62–S75. PubMed
Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, et al.. Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests? Science. 2006;313(5790):1115. doi: 10.1126/science.1129237 PubMed DOI
Segar ST, Volf M, Isua B, Sisol M, Redmond CM, Rosati ME, et al.. Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1866):20171803. doi: 10.1098/rspb.2017.1803 PubMed DOI PMC
Volf M, Segar ST, Miller SE, Isua B, Sisol M, Aubona G, et al.. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecology Letters. 2018;21(1):83–92. doi: 10.1111/ele.12875 PubMed DOI
Hodkinson ID. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews. 2005;80(3):489–513. doi: 10.1017/s1464793105006767 PubMed DOI
Sheriff MJ, Thaler JS. Ecophysiological effects of predation risk; an integration across disciplines. Oecologia. 2014;176(3):607–11. doi: 10.1007/s00442-014-3105-5 PubMed DOI
Louy D, Habel JC, Abadjiev S, Schmitt T. Genetic legacy from past panmixia: high genetic variability and low differentiation in disjunct populations of the Eastern Large Heath butterfly. Biological Journal of the Linnean Society. 2013;110(2):281–90.
Welti EAR, Prather RM, Sanders NJ, de Beurs KM, Kaspari M. Bottom‐up when it is not top‐down: Predators and plants control biomass of grassland arthropods. Journal of Animal Ecology. 2020;89(5):1286–94. doi: 10.1111/1365-2656.13191 PubMed DOI
Michalko R, Gajski D, Košulič O, Khum W, Michálek O, Pekár S. Association between arthropod densities suggests dominance of top-down control of predator-prey food-webs on pear trees during winter. Food Webs. 2022;33:e00261.
Shi J, Chen F, Keena MA. Differences in wing morphometrics of Lymantria dispar (Lepidoptera: Erebidae) between populations that vary in female flight capability. Annals of the Entomological Society of America. 2015;108(4):528–35.
Wade LK, McVean DN. Mt Wilhelm studies. 1. The alpine and sub-alpine vegetation. Research School of Pacific Studies, Department of Biogeography and Geomorphology Publication BG/1 1969;Australian National University, Canberra. 255 pp.