Formyl peptide receptor 2 regulates dendritic cell metabolism and Th17 cell differentiation during neuroinflammation
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 DE029436
NIDCR NIH HHS - United States
PubMed
39148732
PubMed Central
PMC11324504
DOI
10.3389/fimmu.2024.1354074
Knihovny.cz E-zdroje
- Klíčová slova
- Th17 cells, dendritic cells, formyl peptide receptor 2, metabolism experimental autoimmune encephalomyelitis, nitric oxide,
- MeSH
- buněčná diferenciace * MeSH
- buňky Th17 * imunologie metabolismus MeSH
- cytokiny metabolismus MeSH
- dendritické buňky * imunologie metabolismus MeSH
- encefalomyelitida autoimunitní experimentální * imunologie metabolismus MeSH
- mícha imunologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- neurozánětlivé nemoci imunologie metabolismus MeSH
- receptory pro formylované peptidy * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
- formyl peptide receptor 2, mouse MeSH Prohlížeč
- receptory pro formylované peptidy * MeSH
Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2 KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1β, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.
Zobrazit více v PubMed
t Hart BA, Gran B, Weissert R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med. (2011) 17:119–25. doi: 10.1016/j.molmed.2010.11.006 PubMed DOI
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. (2011) 164:1079–106. doi: 10.1111/j.1476-5381.2011.01302.x PubMed DOI PMC
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. (2015) 15:545–58. doi: 10.1038/nri3871 PubMed DOI
Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. . Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. (2003) 421:744–8. doi: 10.1038/nature01355 PubMed DOI
Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. . IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. (2005) 201:233–40. doi: 10.1084/jem.20041257 PubMed DOI PMC
Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. . A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. (2005) 6:1133–41. doi: 10.1038/ni1261 PubMed DOI PMC
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. . Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. (2005) 6:1123–32. doi: 10.1038/ni1254 PubMed DOI
Mayo L, Quintana FJ, Weiner HL. The innate immune system in demyelinating disease. Immunol Rev. (2012) 248:170–87. doi: 10.1111/j.1600-065X.2012.01135.x PubMed DOI PMC
Giles DA, Duncker PC, Wilkinson NM, Washnock-Schmid JM, Segal BM. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J Clin Invest. (2018) 128:5322–34. doi: 10.1172/JCI123708 PubMed DOI PMC
Chastain EM, Duncan DS, Rodgers JM, Miller SD. The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta. (2011) 1812:265–74. doi: 10.1016/j.bbadis.2010.07.008 PubMed DOI PMC
Leung S, Liu X, Fang L, Chen X, Guo T, Zhang J. The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell Mol Immunol. (2010) 7:182–9. doi: 10.1038/cmi.2010.22 PubMed DOI PMC
Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G, et al. . Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol. (1996) 26:659–68. doi: 10.1002/eji.1830260323 PubMed DOI
Bradley LM, Dalton DK, Croft M. A direct role for IFN-gamma in regulation of Th1 cell development. J Immunol. (1996) 157:1350–8. doi: 10.4049/jimmunol.157.4.1350 PubMed DOI
Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. . IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature. (2008) 454:350–2. doi: 10.1038/nature07021 PubMed DOI PMC
Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. (2003) 278:1910–4. doi: 10.1074/jbc.M207577200 PubMed DOI
Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. (2007) 8:942–9. doi: 10.1038/ni1496 PubMed DOI
Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. (2010) 162:1–11. doi: 10.1111/j.1365-2249.2010.04143.x PubMed DOI PMC
Moller SH, Wang L, Ho PC. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol Immunol. (2022) 19:370–83. doi: 10.1038/s41423-021-00753-1 PubMed DOI PMC
Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, et al. . TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol. (2014) 15:323–32. doi: 10.1038/ni.2833 PubMed DOI PMC
Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett. (2018) 412:236–42. doi: 10.1016/j.canlet.2017.10.032 PubMed DOI PMC
Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R, Yarasheski KE, et al. . Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood. (2012) 120:1422–31. doi: 10.1182/blood-2012-03-419747 PubMed DOI PMC
Si C, Zhang R, Wu T, Lu G, Hu Y, Zhang H, et al. . Dendritic cell-derived nitric oxide inhibits the differentiation of effector dendritic cells. Oncotarget. (2016) 7:74834–45. doi: 10.18632/oncotarget.v7i46 PubMed DOI PMC
Lawless SJ, Kedia-Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, et al. . Glucose represses dendritic cell-induced T cell responses. Nat Commun. (2017) 8:15620. doi: 10.1038/ncomms15620 PubMed DOI PMC
Corinti S, Pastore S, Mascia F, Girolomoni G. Regulatory role of nitric oxide on monocyte-derived dendritic cell functions. J Interferon Cytokine Res. (2003) 23:423–31. doi: 10.1089/107999003322277838 PubMed DOI
Morita R, Uchiyama T, Hori T. Nitric oxide inhibits IFN-alpha production of human plasmacytoid dendritic cells partly via a guanosine 3’,5’-cyclic monophosphate-dependent pathway. J Immunol. (2005) 175:806–12. doi: 10.4049/jimmunol.175.2.806 PubMed DOI
Niedbala W, Alves-Filho JC, Fukada SY, Vieira SM, Mitani A, Sonego F, et al. . Regulation of type 17 helper T-cell function by nitric oxide during inflammation. Proc Natl Acad Sci U S A. (2011) 108:9220–5. doi: 10.1073/pnas.1100667108 PubMed DOI PMC
Jianjun Y, Zhang R, Lu G, Shen Y, Peng L, Zhu C, et al. . T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation. J Exp Med. (2013) 210:1447–62. doi: 10.1084/jem.20122494 PubMed DOI PMC
Corminboeuf O, Leroy X. FPR2/ALXR agonists and the resolution of inflammation. J Med Chem. (2015) 58:537–59. doi: 10.1021/jm501051x PubMed DOI
Chen K, Bao Z, Gong W, Tang P, Yoshimura T, Wang JM. Regulation of inflammation by members of the formyl-peptide receptor family. J Autoimmun. (2017) 85:64–77. doi: 10.1016/j.jaut.2017.06.012 PubMed DOI PMC
Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, et al. . Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol. (2010) 184:2611–9. doi: 10.4049/jimmunol.0903526 PubMed DOI PMC
De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. . LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. (2000) 192:1069–74. doi: 10.1084/jem.192.7.1069 PubMed DOI PMC
Zhu J, Li L, Ding J, Huang J, Shao A, Tang B. The role of formyl peptide receptors in neurological diseases via regulating inflammation. Front Cell Neurosci. (2021) 15:753832. doi: 10.3389/fncel.2021.753832 PubMed DOI PMC
Odobasic D, Jia Y, Kao W, Fan H, Wei X, Gu R, et al. . Formyl peptide receptor activation inhibits the expansion of effector T cells and synovial fibroblasts and attenuates joint injury in models of rheumatoid arthritis. Int Immunopharmacol. (2018) 61:140–9. doi: 10.1016/j.intimp.2018.05.028 PubMed DOI
Chen K, Le Y, Liu Y, Gong W, Ying G, Huang J, et al. . A critical role for the g protein-coupled receptor mFPR2 in airway inflammation and immune responses. J Immunol. (2010) 184:3331–5. doi: 10.4049/jimmunol.0903022 PubMed DOI PMC
Wang X, Zhu M, Hjorth E, Cortes-Toro V, Eyjolfsdottir H, Graff C, et al. . Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement. (2015) 11:40–50 e1-2. doi: 10.1016/j.jalz.2013.12.024 PubMed DOI PMC
Xie C, Alcaide P, Geisbrecht BV, Schneider D, Herrmann M, Preissner KT, et al. . Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus. J Exp Med. (2006) 203:985–94. doi: 10.1084/jem.20051681 PubMed DOI PMC
Choi EY, Lim JH, Neuwirth A, Economopoulou M, Chatzigeorgiou A, Chung KJ, et al. . Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry. (2015) 20:880–8. doi: 10.1038/mp.2014.146 PubMed DOI PMC
Bernardes D, Brambilla R, Bracchi-Ricard V, Karmally S, Dellarole A, Carvalho-Tavares J, et al. . Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis. J Neurochem. (2016) 136 Suppl 1:63–73. doi: 10.1111/jnc.13354 PubMed DOI
Huntemann N, Vogelsang A, Groeneweg L, Willison A, Herrmann AM, Meuth SG, et al. . An optimized and validated protocol for inducing chronic experimental autoimmune encephalomyelitis in C57BL/6J mice. J Neurosci Methods. (2022) 367:109443. doi: 10.1016/j.jneumeth.2021.109443 PubMed DOI
Pierson ER, Goverman JM. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease. JCI Insight. (2017) 2:e92362. doi: 10.1172/jci.insight.92362 PubMed DOI PMC
Saligrama N, Zhao F, Sikora MJ, Serratelli WS, Fernandes RA, Louis DM, et al. . Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature. (2019) 572:481–7. doi: 10.1038/s41586-019-1467-x PubMed DOI PMC
Savarin C, Hinton DR, Valentin-Torres A, Chen Z, Trapp BD, Bergmann CC, et al. . Astrocyte response to IFN-gamma limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. J neuroinflamm. (2015) 12:79. doi: 10.1186/s12974-015-0293-9 PubMed DOI PMC
El-behi M, Rostami A, Ciric B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. (2010) 5:189–97. doi: 10.1007/s11481-009-9188-9 PubMed DOI PMC
Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med. (2007) 13:1155–9. doi: 10.1038/nm1643 PubMed DOI
Bousso P. T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol. (2008) 8:675–84. doi: 10.1038/nri2379 PubMed DOI
Chen K, Xiang Y, Huang J, Gong W, Yoshimura T, Jiang Q, et al. . The formylpeptide receptor 2 (Fpr2) and its endogenous ligand cathelin-related antimicrobial peptide (CRAMP) promote dendritic cell maturation. J Biol Chem. (2014) 289:17553–63. doi: 10.1074/jbc.M113.535674 PubMed DOI PMC
Jeon YT, Na H, Ryu H, Chung Y. Modulation of dendritic cell activation and subsequent th1 cell polarization by lidocaine. PloS One. (2015) 10:e0139845. doi: 10.1371/journal.pone.0139845 PubMed DOI PMC
Iribarren P, Chen K, Hu J, Zhang X, Gong W, Wang JM. IL-4 inhibits the expression of mouse formyl peptide receptor 2, a receptor for amyloid beta1-42, in TNF-alpha-activated microglia. J Immunol. (2005) 175:6100–6. doi: 10.4049/jimmunol.175.9.6100 PubMed DOI
Tcherniuk S, Cenac N, Comte M, Frouard J, Errazuriz-Cerda E, Galabov A, et al. . Formyl peptide receptor 2 plays a deleterious role during influenza A virus infections. J Infect Dis. (2016) 214:237–47. doi: 10.1093/infdis/jiw127 PubMed DOI
Zhang L, Wang G, Chen X, Xue X, Guo Q, Liu M, et al. . Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling. Sci Rep. (2017) 7:206. doi: 10.1038/s41598-017-00314-5 PubMed DOI PMC
Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. . Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. (2010) 115:4742–9. doi: 10.1182/blood-2009-10-249540 PubMed DOI PMC
Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, et al. . Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. (2011) 12:255–63. doi: 10.1038/ni.1993 PubMed DOI PMC
Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. . IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. (2006) 177:566–73. doi: 10.4049/jimmunol.177.1.566 PubMed DOI
Clarkson BD, Walker A, Harris MG, Rayasam A, Sandor M, Fabry Z. CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression. J Immunol. (2015) 194:531–41. doi: 10.4049/jimmunol.1401320 PubMed DOI PMC
Paterka M, Siffrin V, Voss JO, Werr J, Hoppmann N, Gollan R, et al. . Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation. EMBO J. (2016) 35:89–101. doi: 10.15252/embj.201591488 PubMed DOI PMC
Vogel A, Kerndl M, Schabbauer G, Sharif O. Protocol to assess the tolerogenic properties of adoptively transferred dendritic cells during murine experimental autoimmune encephalomyelitis. STAR Protoc. (2022) 3:101653. doi: 10.1016/j.xpro.2022.101653 PubMed DOI PMC
Vogel A, Martin K, Soukup K, Halfmann A, Kerndl M, Brunner JS, et al. . JAK1 signaling in dendritic cells promotes peripheral tolerance in autoimmunity through PD-L1-mediated regulatory T cell induction. Cell Rep. (2022) 38:110420. doi: 10.1016/j.celrep.2022.110420 PubMed DOI
Pourbadie HG, Sayyah M, Khoshkholgh-Sima B, Choopani S, Nategh M, Motamedi F, et al. . Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer’s disease-related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiol Aging. (2018) 70:203–16. doi: 10.1016/j.neurobiolaging.2018.06.020 PubMed DOI
Cui YH, Le Y, Zhang X, Gong W, Abe K, Sun R, et al. . Up-regulation of FPR2, a chemotactic receptor for amyloid beta 1-42 (A beta 42), in murine microglial cells by TNF alpha. Neurobiol Dis. (2002) 10:366–77. doi: 10.1006/nbdi.2002.0517 PubMed DOI
Bisicchia E, Sasso V, Catanzaro G, Leuti A, Besharat ZM, Chiacchiarini M, et al. . Resolvin D1 halts remote neuroinflammation and improves functional recovery after focal brain damage via ALX/FPR2 receptor-regulated microRNAs. Mol Neurobiol. (2018) 55:6894–905. doi: 10.1007/s12035-018-0889-z PubMed DOI
Obermajer N, Wong JL, Edwards RP, Chen K, Scott M, Khader S, et al. . Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling. J Exp Med. (2013) 210:1433–445. doi: 10.1084/jem.20121277 PubMed DOI PMC
Basit F, Mathan T, Sancho D, de Vries IJM. Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Front Immunol. (2018) 9:2489. doi: 10.3389/fimmu.2018.02489 PubMed DOI PMC
Fekete T, Suto MI, Bencze D, Mazlo A, Szabo A, Biro T, et al. . Human plasmacytoid and monocyte-derived dendritic cells display distinct metabolic profile upon RIG-I activation. Front Immunol. (2018) 9:3070. doi: 10.3389/fimmu.2018.03070 PubMed DOI PMC