Straightforward synthesis of complex polymeric architectures with ultra-high chain density

. 2024 Aug 14 ; 15 (32) : 12739-12753. [epub] 20240712

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39148800

Synthesis of complex polymeric architectures (CPAs) via reversible-deactivation radical polymerization (RDRP) currently relies on the rather inefficient attachment of monofunctional initiation/transfer sites onto CPA precursors. This drawback seriously limits the overall functionality of the resulting (macro)initiators and, consequently, also the total number of installable polymeric chains, which represents a significant bottleneck in the design of new polymeric materials. Here, we show that the (macro)initiator functionality can be substantially amplified by using trichloroacetyl isocyanate as a highly efficient vehicle for the rapid and clean introduction of trichloroacetyl groups (TAGs) into diverse precursors. Through extensive screening of polymerization conditions and comprehensive NMR and triple-detection SEC studies, we demonstrate that TAGs function as universal trifunctional initiators of copper-mediated RDRP of different monomer classes, affording low-dispersity polymers in a wide molecular weight range. We thus unlock access to a whole new group of ultra-high chain density CPAs previously inaccessible via simple RDRP protocols. We highlight new opportunities in CPA synthesis through numerous examples, including the de novo one-pot synthesis of a novel "star-on-star" CPA, the preparation of β-cyclodextrin-based 45-arm star polymers, and facile grafting from otherwise problematic cellulose substrates both in solution and from surface, obtaining effortlessly ultra-dense, ultra-high-molecular weight bottle-brush copolymers and thick spatially-controlled polymeric coatings, respectively.

Zobrazit více v PubMed

Ren J. M. McKenzie T. G. Fu Q. Wong E. H. H. Xu J. An Z. Shanmugam S. Davis T. P. Boyer C. Qiao G. G. Star Polymers. Chem. Rev. 2016;116:6743–6836. doi: 10.1021/acs.chemrev.6b00008. PubMed DOI

Bosman A. W. Janssen H. M. Meijer E. W. About Dendrimers: Structure, Physical Properties, and Applications. Chem. Rev. 1999;99:1665–1688. doi: 10.1021/cr970069y. PubMed DOI

Feng C. Li Y. Yang D. Hu J. Zhang X. Huang X. Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem. Soc. Rev. 2011;40:1282–1295. doi: 10.1039/B921358A. PubMed DOI

Sheiko S. S. Sumerlin B. S. Matyjaszewski K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 2008;33:759–785. doi: 10.1016/j.progpolymsci.2008.05.001. DOI

Kapil K. Szczepaniak G. Martinez M. R. Murata H. Jazani A. M. Jeong J. Das S. R. Matyjaszewski K. Visible-Light-Mediated Controlled Radical Branching Polymerization in Water. Angew. Chem., Int. Ed. 2023;62:e202217658. doi: 10.1002/anie.202217658. PubMed DOI

Kakkar A. Traverso G. Farokhzad O. C. Weissleder R. Langer R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 2017;1:0063. doi: 10.1038/s41570-017-0063. PubMed DOI PMC

Detappe A. Nguyen H. V. T. Jiang Y. Agius M. P. Wang W. Mathieu C. Su N. K. Kristufek S. L. Lundberg D. J. Bhagchandani S. Ghobrial I. M. Ghoroghchian P. P. Johnson J. A. Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma. Nat. Nanotechnol. 2023;18:184–192. doi: 10.1038/s41565-022-01310-1. PubMed DOI PMC

Johnson J. A. Lu Y. Y. Burts A. O. Lim Y.-H. Finn M. G. Koberstein J. T. Turro N. J. Tirrell D. A. Grubbs R. H. Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To. J. Am. Chem. Soc. 2011;133:559–566. PubMed PMC

Newland B. Zheng Y. Jin Y. Abu-Rub M. Cao H. Wang W. Pandit A. Single Cyclized Molecule Versus Single Branched Molecule: A Simple and Efficient 3D “Knot” Polymer Structure for Nonviral Gene Delivery. J. Am. Chem. Soc. 2012;134:4782–4789. doi: 10.1021/ja2105575. PubMed DOI

Sowers M. A. McCombs J. R. Wang Y. Paletta J. T. Morton S. W. Dreaden E. C. Boska M. D. Ottaviani M. F. Hammond P. T. Rajca A. Johnson J. A. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat. Commun. 2014;5:5460. doi: 10.1038/ncomms6460. PubMed DOI PMC

Terashima T. Kamigaito M. Baek K.-Y. Ando T. Sawamoto M. Polymer Catalysts from Polymerization Catalysts: Direct Encapsulation of Metal Catalyst into Star Polymer Core during Metal-Catalyzed Living Radical Polymerization. J. Am. Chem. Soc. 2003;125:5288–5289. doi: 10.1021/ja034973l. PubMed DOI

Huang K. Rzayev J. Well-Defined Organic Nanotubes from Multicomponent Bottlebrush Copolymers. J. Am. Chem. Soc. 2009;131:6880–6885. doi: 10.1021/ja901936g. PubMed DOI

He Y. Yoon Y. J. Harn Y. W. Biesold-McGee G. V. Liang S. Lin C. H. Tsukruk V. V. Thadhani N. Kang Z. Lin Z. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 2019;5:eaax4424. doi: 10.1126/sciadv.aax4424. PubMed DOI PMC

Pang X. He Y. Jung J. Lin Z. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science. 2016;353:1268–1272. doi: 10.1126/science.aad8279. PubMed DOI

Sveinbjörnsson B. R. Weitekamp R. A. Miyake G. M. Xia Y. Atwater H. A. Grubbs R. H. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl. Acad. Sci. U. S. A. 2012;109:14332–14336. PubMed PMC

Daniel W. F. M. Burdyńska J. Vatankhah-Varnoosfaderani M. Matyjaszewski K. Paturej J. Rubinstein M. Dobrynin A. V. Sheiko S. S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016;15:183–189. PubMed

Vatankhah-Varnosfaderani M. Daniel W. F. M. Everhart M. H. Pandya A. A. Liang H. Matyjaszewski K. Dobrynin A. V. Sheiko S. S. Mimicking biological stress–strain behaviour with synthetic elastomers. Nature. 2017;549:497–501. doi: 10.1038/nature23673. PubMed DOI

Vatankhah-Varnosfaderani M. Keith A. N. Cong Y. Liang H. Rosenthal M. Sztucki M. Clair C. Magonov S. Ivanov D. A. Dobrynin A. V. Sheiko S. S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science. 2018;359:1509–1513. doi: 10.1126/science.aar5308. PubMed DOI

Braunecker W. Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007;32:93–146. doi: 10.1016/j.progpolymsci.2006.11.002. DOI

Corrigan N. Jung K. Moad G. Hawker C. J. Matyjaszewski K. Boyer C. Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog. Polym. Sci. 2020;111:101311. doi: 10.1016/j.progpolymsci.2020.101311. DOI

Sumerlin B. S. Neugebauer D. Matyjaszewski K. Initiation Efficiency in the Synthesis of Molecular Brushes by Grafting from via Atom Transfer Radical Polymerization. Macromolecules. 2005;38:702–708. doi: 10.1021/ma048351b. DOI

Zoppe J. O. Ataman N. C. Mocny P. Wang J. Moraes J. Klok H.-A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017;117:1105–1318. doi: 10.1021/acs.chemrev.6b00314. PubMed DOI

Destarac M. Bessiere J.-M. Boutevin B. Atom transfer radical polymerization of styrene initiated by polychloroalkanes and catalyzed by CuCl/2,2′-bipyridine: A kinetic and mechanistic study. J. Polym. Sci., Part A: Polym. Chem. 1998;36:2933–2947. doi: 10.1002/(SICI)1099-0518(19981130)36:16<2933::AID-POLA12>3.0.CO;2-W. DOI

Destarac M. Matyjaszewski K. Boutevin B. Polychloroalkane initiators in copper-catalyzed atom transfer radical polymerization of (meth)acrylates. Macromol. Chem. Phys. 2000;201:265–272. doi: 10.1002/(SICI)1521-3935(20000201)201:2<265::AID-MACP265>3.0.CO;2-A. DOI

Destarac M. Boutevin B. Matyjaszewski K. Controlled/Living Radical Polymerization. Am. Chem. Soc. 2000;768(17):234–247.

Matyjaszewski K. Tsarevsky N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009;1:276. PubMed

Matyjaszewski K. Advanced Materials by Atom Transfer Radical Polymerization. Adv. Mater. 2018;30:1706441. doi: 10.1002/adma.201706441. PubMed DOI

Chen Y. Yang D. Yoon Y. J. Pang X. Wang Z. Jung J. He Y. Harn Y. W. He M. Zhang S. Zhang G. Lin Z. Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties. J. Am. Chem. Soc. 2017;139:12956–12967. doi: 10.1021/jacs.7b04545. PubMed DOI

Burdyńska J. Li Y. Aggarwal A. V. Höger S. Sheiko S. S. Matyjaszewski K. Synthesis and Arm Dissociation in Molecular Stars with a Spoked Wheel Core and Bottlebrush Arms. J. Am. Chem. Soc. 2014;136:12762–12770. doi: 10.1021/ja506780y. PubMed DOI

Carlmark A. Malmström E. Atom Transfer Radical Polymerization from Cellulose Fibers at Ambient Temperature. J. Am. Chem. Soc. 2002;124:900–901. doi: 10.1021/ja016582h. PubMed DOI

Vlček P. Janata M. Látalová P. Kríž J. Čadová E. Toman L. Controlled grafting of cellulose diacetate. Polymer. 2006;47:2587–2595. doi: 10.1016/j.polymer.2006.02.067. DOI

Vlček P. Raus V. Janata M. Kříž J. Sikora A. Controlled grafting of cellulose esters using SET-LRP process. J. Polym. Sci., Part A: Polym. Chem. 2011;49:164–173. doi: 10.1002/pola.24431. DOI

Raus V. Štěpánek M. Uchman M. Šlouf M. Látalová P. Čadová E. Netopilík M. Kříž J. Dybal J. Vlček P. Cellulose-based graft copolymers with controlled architecture prepared in a homogeneous phase. J. Polym. Sci., Part A: Polym. Chem. 2011;49:4353–4367. doi: 10.1002/pola.24876. DOI

Li F. Cao M. Feng Y. Liang R. Fu X. Zhong M. Site-Specifically Initiated Controlled/Living Branching Radical Polymerization: A Synthetic Route toward Hierarchically Branched Architectures. J. Am. Chem. Soc. 2019;141:794–799. doi: 10.1021/jacs.8b12433. PubMed DOI

Boyer C. Atme A. Waldron C. Anastasaki A. Wilson P. Zetterlund P. B. Haddleton D. Whittaker M. R. Copper(0)-mediated radical polymerisation in a self-generating biphasic system. Polym. Chem. 2013;4:106–112. doi: 10.1039/C2PY20560B. DOI

Aksakal R. Resmini M. Becer C. R. SET-LRP of acrylates catalyzed by a 1 penny copper coin. Polym. Chem. 2016;7:6564–6569. doi: 10.1039/C6PY01295G. DOI

Pang X. Zhao L. Akinc M. Kim J. K. Lin Z. Novel Amphiphilic Multi-Arm, Star-Like Block Copolymers as Unimolecular Micelles. Macromolecules. 2011;44:3746–3752. doi: 10.1021/ma200594j. DOI

Zaborniak I. Chmielarz P. Wolski K. Grześ G. Wang Z. Górska A. Pielichowska K. Matyjaszewski K. Maltotriose-based star polymers as self-healing materials. Eur. Polym. J. 2022;164:110972. doi: 10.1016/j.eurpolymj.2021.110972. DOI

Samek Z. Buděšínský M. In situ reactions with trichloroacetyl isocyanate and their application to structural assignment of hydroxy compounds by 1H NMR spectroscopy. A general comment. Collect. Czech. Chem. Commun. 1979;44:558–588. doi: 10.1135/cccc19790558. DOI

Bose A. K. Srinivasan P. R. NMR spectral studies—XII. Tetrahedron. 1975;31:3025–3029. doi: 10.1016/0040-4020(75)80141-4. DOI

Goodlett V. W. Use of In Situ Reactions for Characterization of Alcohols and Glycols by Nuclear Magnetic Resonance. Anal. Chem. 1965;37:431–432. doi: 10.1021/ac60222a042. DOI

Buděšínský M. Samek Z. Tichý M. In situ reactions of amines and amino alcohols and their application to structural assignment by 1H NMR spectroscopy. Collect. Czech. Chem. Commun. 1980;45:2784–2803. doi: 10.1135/cccc19802784. DOI

Butler P. E. Mueller W. H. Simplification of Thiol Nuclear Magnetic Resonance Spectra by in Situ Derivatization. Anal. Chem. 1966;38:1407–1408. doi: 10.1021/ac60242a031. DOI

Loccufier J. Van Bos M. Schacht E. Convenient method for the analysis of primary and secondary hydroxyl end groups in polyethers. Polym. Bull. 1991;27:201–204. doi: 10.1007/BF00296031. DOI

Fallais I. Devaux J. Jérôme R. End-capping of polystyrene by aliphatic primary amine by derivatization of precursor hydroxyl end group. J. Polym. Sci., Part A: Polym. Chem. 2000;38:1618–1629. doi: 10.1002/(SICI)1099-0518(20000501)38:9<1618::AID-POLA26>3.0.CO;2-C. DOI

Donovan A. R. Moad G. A novel method for determination of polyester end-groups by NMR spectroscopy. Polymer. 2005;46:5005–5011. doi: 10.1016/j.polymer.2005.04.032. DOI

Postma A. Davis T. P. Donovan A. R. Li G. Moad G. Mulder R. O'Shea M. S. A simple method for determining protic end-groups of synthetic polymers by 1H NMR spectroscopy. Polymer. 2006;47:1899–1911. doi: 10.1016/j.polymer.2006.01.050. DOI

Cao L. Cao B. Lu C. Wang G. Yu L. Ding J. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J. Mater. Chem. B. 2015;3:1268–1280. doi: 10.1039/C4TB01705F. PubMed DOI

Martin J. C. Chitwood J. L. Gott P. G. Reactions of trichloroacetyl isocyanate with unsaturated ethers. J. Org. Chem. 1971;36:2228–2232. doi: 10.1021/jo00815a006. DOI

Ando T. Kamigaito M. Sawamoto M. Design of initiators for living radical polymerization of methyl methacrylate mediated by ruthenium(II) complex. Tetrahedron. 1997;53:15445–15457. doi: 10.1016/S0040-4020(97)00972-1. DOI

Shen Y. Zhu S. Zeng F. Pelton R. Versatile Initiators for Macromonomer Syntheses of Acrylates, Methacrylates, and Styrene by Atom Transfer Radical Polymerization. Macromolecules. 2000;33:5399–5404. doi: 10.1021/ma000201n. DOI

Soriano-Moro G. Percino J. Cerón M. Bañuelos A. Chapela V. M. Castro M. E. Using of Novel Halides in the ATRP Polymerization. Estimation of Polymer Molecular Mass. Macromol. Symp. 2014;339:112–121. doi: 10.1002/masy.201300144. DOI

Lorandi F. Fantin M. Wang Y. Isse A. A. Gennaro A. Matyjaszewski K. Atom Transfer Radical Polymerization of Acrylic and Methacrylic Acids: Preparation of Acidic Polymers with Various Architectures. ACS Macro Lett. 2020;9:693–699. doi: 10.1021/acsmacrolett.0c00246. PubMed DOI

Alkan S. Toppare L. Hepuzer Y. Yagci Y. Block copolymers of thiophene-capped poly(methyl methacrylate) with pyrrole. J. Polym. Sci., Part A: Polym. Chem. 1999;37:4218–4225. doi: 10.1002/(SICI)1099-0518(19991115)37:22<4218::AID-POLA22>3.0.CO;2-Z. DOI

Bamford C. H. Middleton I. P. Ai-Lamee K. G. Paprotny J. Halo-isocyanates as ‘transformation’ reagents. Br. Polym. J. 1987;19:269–274. doi: 10.1002/pi.4980190308. DOI

Shirai Y. Kawatsura K. Tsubokawa N. Graft polymerization of vinyl monomers from initiating groups introduced onto polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups. Prog. Org. Coat. 1999;36:217–224. doi: 10.1016/S0300-9440(99)00046-6. DOI

Shirai Y. Shirai K. Tsubokawa N. Effective grafting of polymers onto ultrafine silica surface: Photopolymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface and Mn2(CO)10. J. Polym. Sci., Part A: Polym. Chem. 2001;39:2157–2163. doi: 10.1002/pola.1192. DOI

Shirai Y. Tsubokawa N. Grafting of polymers onto ultrafine inorganic particle surface: graft polymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface and molybdenum hexacarbonyl. React. Funct. Polym. 1997;32:153–160. doi: 10.1016/S1381-5148(96)00078-8. DOI

Wei G. Shirai K. Fujiki K. Saitoh H. Yamauchi T. Tsubokawa N. Grafting of vinyl polymers onto VGCF surface and the electric properties of the polymer-grafted VGCF. Carbon. 2004;42:1923–1929. doi: 10.1016/j.carbon.2004.03.023. DOI

Lorandi F. Fantin M. Matyjaszewski K. Atom Transfer Radical Polymerization: A Mechanistic Perspective. J. Am. Chem. Soc. 2022;144:15413–15430. doi: 10.1021/jacs.2c05364. PubMed DOI

Anastasaki A. Nikolaou V. Nurumbetov G. Wilson P. Kempe K. Quinn J. F. Davis T. P. Whittaker M. R. Haddleton D. M. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem. Rev. 2016;116:835–877. doi: 10.1021/acs.chemrev.5b00191. PubMed DOI

Percec V. Guliashvili T. Ladislaw J. S. Wistrand A. Stjerndahl A. Sienkowska M. J. Monteiro M. J. Sahoo S. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25 °C. J. Am. Chem. Soc. 2006;128:14156–14165. doi: 10.1021/ja065484z. PubMed DOI

Rosen B. M. Percec V. Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization. Chem. Rev. 2009;109:5069–5119. doi: 10.1021/cr900024j. PubMed DOI

Zhang Y. Wang Y. Matyjaszewski K. ATRP of Methyl Acrylate with Metallic Zinc, Magnesium, and Iron as Reducing Agents and Supplemental Activators. Macromolecules. 2011;44:683–685. doi: 10.1021/ma102492c. DOI

Zhang Y. Wang Y. Peng C.-h. Zhong M. Zhu W. Konkolewicz D. Matyjaszewski K. Copper-Mediated CRP of Methyl Acrylate in the Presence of Metallic Copper: Effect of Ligand Structure on Reaction Kinetics. Macromolecules. 2012;45:78–86.

Raus V. Janata M. Čadová E. Copper Wire–Catalyzed RDRP in Nonpolar Media as a Route to Ultrahigh Molecular Weight Organic–Inorganic Hybrid Polymers. Macromol. Chem. Phys. 2018;219:1800141. doi: 10.1002/macp.201800141. DOI

Leng X. Nguyen N. H. van Beusekom B. Wilson D. A. Percec V. SET-LRP of 2-hydroxyethyl acrylate in protic and dipolar aprotic solvents. Polym. Chem. 2013;4:2995–3004. doi: 10.1039/C3PY00048F. DOI

Zhang M. Cunningham M. F. Hutchinson R. A. Aqueous copper(0) mediated reversible deactivation radical polymerization of 2-hydroxyethyl acrylate. Polym. Chem. 2015;6:6509–6518. doi: 10.1039/C5PY00921A. DOI

West A. G. Hornby B. Tom J. Ladmiral V. Harrisson S. Perrier S. Origin of Initial Uncontrolled Polymerization and Its Suppression in the Copper(0)-Mediated Living Radical Polymerization of Methyl Acrylate in a Nonpolar Solvent. Macromolecules. 2011;44:8034–8041. doi: 10.1021/ma201568h. DOI

Hornby B. D. West A. G. Tom J. C. Waterson C. Harrisson S. Perrier S. Copper(0)-Mediated Living Radical Polymerization of Methyl Methacrylate in a Non-polar Solvent. Macromol. Rapid Commun. 2010;31:1276–1280. doi: 10.1002/marc.201000031. PubMed DOI

Poláková L. Raus V. Kostka L. Braunová A. Pilař J. Lobaz V. Pánek J. Sedláková Z. Antioxidant Properties of 2-Hydroxyethyl Methacrylate-Based Copolymers with Incorporated Sterically Hindered Amine. Biomacromolecules. 2015;16:2726–2734. doi: 10.1021/acs.biomac.5b00599. PubMed DOI

Poláková L. Raus V. Cuchalová L. Poręba R. Hrubý M. Kučka J. Větvička D. Trhlíková O. Sedláková Z. SHARP hydrogel for the treatment of inflammatory bowel disease. Int. J. Pharm. 2022;613:121392. doi: 10.1016/j.ijpharm.2021.121392. PubMed DOI

Janata M. Čadová E. Johnson J. W. Raus V. Diminishing the catalyst concentration in the Cu(0)-RDRP and ATRP synthesis of well-defined low-molecular weight poly(glycidyl methacrylate) J. Polym. Sci. 2023;61:1348–1359. doi: 10.1002/pol.20230087. DOI

Nguyen N. H. Leng X. Percec V. Synthesis of ultrahigh molar mass poly(2-hydroxyethyl methacrylate) by single-electron transfer living radical polymerization. Polym. Chem. 2013;4:2760–2766. doi: 10.1039/C3PY00224A. DOI

Gupta S. Raus V. Cu(0)-RDRP of 2-hydroxyethyl methacrylate in a non-polar solvent enables rapid synthesis of high-molecular weight homopolymers and direct access to amphiphilic copolymers. React. Funct. Polym. 2023;183:105509. doi: 10.1016/j.reactfunctpolym.2023.105509. DOI

Liu T. Li X. Qian Y. Hu X. Liu S. Multifunctional pH-Disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-Based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomaterials. 2012;33:2521–2531. doi: 10.1016/j.biomaterials.2011.12.013. PubMed DOI

Hu X. Liu S. Huang Y. Chen X. Jing X. Biodegradable Block Copolymer-Doxorubicin Conjugates via Different Linkages: Preparation, Characterization, and In Vitro Evaluation. Biomacromolecules. 2010;11:2094–2102. doi: 10.1021/bm100458n. PubMed DOI

Kim B.-S. Lee H.-i. Min Y. Poon Z. Hammond P. T. Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery. Chem. Commun. 2009:4194–4196. doi: 10.1039/B908688A. doi: 10.1039/B908688A. PubMed DOI PMC

Dittert L. W. Higuchi T. Rates of Hydrolysis of Carbamate and Carbonate Esters in Alkaline Solution. J. Pharm. Sci. 1963;52:852–857. doi: 10.1002/jps.2600520908. PubMed DOI

Vontor T. Vecera M. Carbamates 4. Kinetics and Mechanism of Hydrolysis of Substituted Phenyl N-Methylcarbamates in Strongly Alkaline and Acid-Media. Collect. Czech. Chem. Commun. 1973;38:3139–3145. doi: 10.1135/cccc19733139. DOI

Vandenabeele-Trambouze O. Garrelly L. Mion L. Boiteau L. Commeyras A. Key parameters for carbamate stability in dilute aqueous–organic solution. Adv. Environ. Res. 2001;6:67–80. doi: 10.1016/S1093-0191(00)00071-X. DOI

Ghosh A. K. Brindisi M. Organic Carbamates in Drug Design and Medicinal Chemistry. J. Med. Chem. 2015;58:2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC

Lin C. Y. Coote M. L. Petit A. Richard P. Poli R. Matyjaszewski K. Ab Initio Study of the Penultimate Effect for the ATRP Activation Step Using Propylene, Methyl Acrylate, and Methyl Methacrylate Monomers. Macromolecules. 2007;40:5985–5994. doi: 10.1021/ma070911u. DOI

Rolph M. S. Pitto-Barry A. O'Reilly R. K. The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars. Polym. Chem. 2017;8:5060–5070. doi: 10.1039/C7PY00219J. DOI

Zheng Z. Ling J. Müller A. H. E. Revival of the R-Group Approach: A “CTA-shuttled” Grafting from Approach for Well-Defined Cylindrical Polymer Brushes via RAFT Polymerization. Macromol. Rapid Commun. 2014;35:234–241. doi: 10.1002/marc.201300578. PubMed DOI

Raus V. Sturcova A. Dybal J. Slouf M. Vackova T. Salek P. Kobera L. Vlcek P. Activation of cellulose by 1,4-dioxane for dissolution in N,N-dimethylacetamide/LiCl. Cellulose. 2012;19:1893–1906. doi: 10.1007/s10570-012-9779-0. DOI

Klemm D. Heublein B. Fink H.-P. Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem., Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI

Potthast A. Radosta S. Saake B. Lebioda S. Heinze T. Henniges U. Isogai A. Koschella A. Kosma P. Rosenau T. Schiehser S. Sixta H. Strlič M. Strobin G. Vorwerg W. Wetzel H. Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose. 2015;22:1591–1613. doi: 10.1007/s10570-015-0586-2. DOI

Gerle M. Fischer K. Roos S. Müller A. H. E. Schmidt M. Sheiko S. S. Prokhorova S. Möller M. Main Chain Conformation and Anomalous Elution Behavior of Cylindrical Brushes As Revealed by GPC/MALLS, Light Scattering, and SFM. Macromolecules. 1999;32:2629–2637. doi: 10.1021/ma9816463. DOI

Xu Q. Yang J. Zhang X. Wen X. Yamada M. Fu F. Diao H. Liu X. A “grafting through” strategy for constructing Janus cotton fabric by mist polymerization. J. Mater. Chem. A. 2020;8:24553–24562. doi: 10.1039/D0TA08538C. DOI

Zaborniak I. Chmielarz P. Polymer-modified regenerated cellulose membranes: following the atom transfer radical polymerization concepts consistent with the principles of green chemistry. Cellulose. 2023;30:1–38. doi: 10.1007/s10570-022-04880-4. DOI

Sant S. Klok H.-A. Linear, Y- and Ψ-shaped poly(2-(dimethylamino)ethyl methacrylate) and poly(methyl methacrylate) brushes prepared by surface-initiated polymerization from a homologous series of ATRP initiators. Eur. Polym. J. 2024;205:112706. doi: 10.1016/j.eurpolymj.2023.112706. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...