Investigation of potential ascorbate peroxidase inhibitors for anti-leishmaniasis therapy

. 2025 Apr ; 70 (2) : 371-390. [epub] 20240817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39153157
Odkazy

PubMed 39153157
DOI 10.1007/s12223-024-01190-z
PII: 10.1007/s12223-024-01190-z
Knihovny.cz E-zdroje

L eishmaniasis is a prevalent disease that impacts 98 countries and territories, mainly in Africa, Asia, and South America. It can cause substantial illness and death, particularly in its visceral manifestation that can be specifically targeted in the development of medications to combat leishmaniasis. This study has found natural compounds with possible inhibitory activity against APX using a reliable and accurate QSAR model. Despite the severe side effects of current treatments and the absence of an effective vaccination, these compounds show promise as a potential treatment for the disease. Nine hit compounds were found, and subsequent molecular docking was performed. Estradiol cypionate showed the lowest binding energy (- 10.5 kcal/mol), thus showing the strongest binding, and also had the strongest binding affinity, with a ΔGTotal of - 26.31 ± 3.01 kcal/mol, second only to the control molecule. Additionally, three hits viz. cloxacillin-sodium (- 16.57 ± 2.89 kcal/mol), cinchonidine (- 16.04 ± 3.27 kcal/mol), and quinine hydrochloride dihydrate (13.38 ± 1.06 kcal/mol) also showed significant binding affinity. Multiple interactions between drugs and active site residues demonstrated a substantial binding affinity with the target protein. The identified compounds exhibited drug-like effects and were orally bioavailable based on their ADME-toxicology features. Overall, estradiol cypionate, cloxacillin sodium, cinchonidine, and quinine hydrochloride dihydrate all exhibited inhibitory effects on the APX enzyme of Leishmania donovani. These results suggest that further investigation is needed to explore the potential of developing novel anti-leishmaniasis drugs using these compounds.

Zobrazit více v PubMed

Adak S, Datta AK (2005) Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J 390:465–474 PubMed DOI PMC

Adasme MF, Linnemann KL, Bolz SN et al (2021) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49:W530–W534. https://doi.org/10.1093/nar/gkab294 PubMed DOI PMC

Ariyanayagam MR, Fairlamb AH (2001) Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol Biochem Parasitol 115:189–198 PubMed DOI

Backman TW, Cao Y, Girke T (2011) ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res 39:W486–W491 PubMed DOI PMC

Badyal SK, Eaton G, Mistry S et al (2009) Evidence for heme oxygenase activity in a heme peroxidase. Biochemistry 48:4738–4746 PubMed DOI

Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263 PubMed DOI PMC

Barr SD, Gedamu L (2003) Role of peroxidoxins in Leishmania chagasisurvival: evidence of an enzymatic defense against nitrosative stress. J Biol Chem 278:10816–10823 PubMed DOI

Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420 PubMed DOI

Castro H, Tomás AM (2008) Peroxidases of trypanosomatids. Antioxid Redox Signal 10:1593–1606 PubMed DOI

Chan J, Fujiwara T, Brennan P et al (1989) Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci 86:2453–2457 PubMed DOI PMC

Channon JY, Blackwell JM (1985) A study of the sensitivity of Leishmania donovani promastigotes and amastigotes to hydrogen peroxide. II. Possible mechanisms involved in protective H2O2 scavenging. Parasitology 91:207–217 PubMed DOI

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717 PubMed DOI PMC

Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397 DOI

Davies M, Nowotka M, Papadatos G et al (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 43:W612–W620 PubMed DOI PMC

Dolai S, Yadav RK, Pal S, Adak S (2009) Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage. Eukaryot Cell 8:1721–1731. https://doi.org/10.1128/EC.00198-09 PubMed DOI PMC

Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–3898 PubMed DOI PMC

Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 152:9–20 PubMed DOI PMC

Gelpi J, Hospital A, Goñi R, Orozco M (2015) Molecular dynamics simulations: advances and applications. AABC 37:37. https://doi.org/10.2147/AABC.S70333 DOI

Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936 PubMed DOI PMC

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H DOI

Kashif M, Paladhi A, Singh R et al (2020) Leishmanicidal activity of an in silico -screened novel inhibitor against ascorbate peroxidase of Leishmania donovani. Antimicrob Agents Chemother 64:e01766–e01819. https://doi.org/10.1128/AAC.01766-19 PubMed DOI PMC

Kumar A, Das S, Purkait B et al (2014) Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 58:6172–6184 PubMed DOI PMC

Landrum G (2014) RDKit: open-source cheminformatics. Available at: https://www.rdkit.org

Miller MA, McGowan SE, Gantt KR et al (2000) Inducible resistance to oxidant stress in the protozoan Leishmania chagasi. J Biol Chem 275:33883–33889 PubMed DOI

Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741–746 PubMed DOI PMC

O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminformatics 3:1–14

Paissoni C, Spiliotopoulos D, Musco G, Spitaleri A (2014) GMXPBSA 2.0: a GROMACS tool to perform MM/PBSA and computational alanine scanning. Comput Phys Commun 185:2920–2929 DOI

Pal S, Dolai S, Yadav RK, Adak S (2010) Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress. PLoS ONE 5:e11271 PubMed DOI PMC

Paramchuk WJ, Ismail SO, Bhatia A, Gedamu L (1997) Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from Leishmania chagasi: role in pathogenesis. Mol Biochem Parasitol 90:203–221. https://doi.org/10.1016/S0166-6851(97)00141-2 PubMed DOI

Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693 DOI

Sacks D, Kenney R, Neva F et al (1995) Indian kala-azar caused by Leishmania tropica. Lancet 345:959–961 PubMed DOI

Sardar AH, Kumar S, Kumar A et al (2013) Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteomics 81:185–199 PubMed DOI

Singh K, Garg G, Ali V (2016) Current therapeutics, their problems and thiol metabolism as potential drug targets in leishmaniasis. Curr Drug Metab 17:897–919 PubMed DOI

Srivastava P, Tiwari A (2017) Critical role of computer simulations in drug discovery and development. Curr Top Med Chem 17:2422–2432 PubMed DOI

Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26 PubMed DOI

The UniProt Consortium (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51:D523–D531. https://doi.org/10.1093/nar/gkac1052 DOI

Tian W, Chen C, Lei X et al (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367 PubMed DOI PMC

Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168. https://doi.org/10.1021/ci3003649 PubMed DOI PMC

Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444 PubMed DOI

World Health Organization WHO Expert Committee on the Control of the Leishmaniases & World Health Organization (2010) Control of the leishmaniases: report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, 22–26 March 2010

Xiang L, Laranjeira-Silva MF, Maeda FY et al (2019) Ascorbate-dependent peroxidase (APX) from Leishmania amazonensis is a reactive oxygen species-induced essential enzyme that regulates virulence. Infect Immun 87:10–1128 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...