Renal and Extrarenal Phenotypes in Patients With HNF1B Variants and Chromosome 17q12 Microdeletions

. 2024 Aug ; 9 (8) : 2514-2526. [epub] 20240516

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39156164
Odkazy

PubMed 39156164
PubMed Central PMC11328578
DOI 10.1016/j.ekir.2024.05.007
PII: S2468-0249(24)01715-7
Knihovny.cz E-zdroje

INTRODUCTION: Hepatocyte nuclear factor 1-beta (HNF1B) gene variants or the chromosome 17q12 deletion (17q12del) represent the most common monogenic cause of developmental kidney disease. Although neurodevelopmental disorders have been associated with the 17q12del, specific genotype-phenotype associations with respect to kidney function evolution have not yet been fully defined. Here, we aimed to determine whether 17q12del or specific HNF1B variants were associated with kidney survival in a large patient population with HNF1B disease. METHODS: This was a retrospective observational study involving 521 patients with HNF1B disease from 14 countries using the European Reference Network for rare kidney diseases with detailed information on the HNF1B genotype (HNF1B variants or the 17q12del). Median follow-up time was 11 years with 6 visits per patient. The primary end point was progression to chronic kidney disease (CKD) stage 3 (estimated glomerular filtration rate [eGFR] < 60 ml/min per 1.73 m2). Secondary end points were the development of hypomagnesemia or extrarenal disorders, including hyperuricemia and hyperglycemia. RESULTS: Progression toward CKD stage 3 was significantly delayed in patients with the 17q12del compared to patients with HNF1B variants (hazard ratio [HR]: 0.29, 95% confidence interval [CI]: 0.19-0.44, P < 0.001). Progression toward CKD stage 3 was also significantly delayed when HNF1B variants involved the HNF1B Pit-1, Oct-1, and Unc-86 homeodomain (POUh) DNA-binding and transactivation domains rather than the POU-specific domain (POUs) DNA-binding domain (HR: 0.15 [95% CI: 0.06-0.37), P < 0.001 and HR: 0.25 (95% CI: 0.11-0.57), P = 0.001, respectively). Finally, the 17q12del was positively associated with hypomagnesemia and negatively associated with hyperuricemia, but not with hyperglycemia. CONCLUSION: Patients with the 17q12del display a significantly better kidney survival than patients with other HNF1B variants; and for the latter, variants in the POUs DNA-binding domain lead to the poorest kidney survival. These are clinically relevant HNF1B kidney genotype-phenotype correlations that inform genetic counseling.

APHP Service de Néphrologie Pédiatrique Hôpital Universitaire Necker Enfants malades Paris France

Centre De Compétence Maladies Rénales Rares Filière ORphan KIdney Disease France

Centre De Référence Des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte Paris France

Centre De Référence Des Maladies Rénales Rares du Sud Ouest Montpellier France

Centre De Référence Des Maladies Rénales Rares du Sud Ouest Nantes France

Centre De Référence Des Maladies Rénales Rares du Sud Ouest Toulouse University Hospital Toulouse France

Centre de Référence des Maladies Rénales Rares Hôpital Femme Mère Enfant Hospices Civils de Lyon Bron France

Département de Pédiatrie Unité de Néphrologie Hémodialyse CHU Charles Nicolle Rouen France

Department of General Pediatrics University Children's Hospital Münster Germany

Department of Genetics UMC Utrecht Utrecht The Netherlands

Department of Medicine 4 Faculty of Medicine Medical Center University of Freiburg Freiburg Germany

Department of Nephrology and Organ Transplantation University Hospital of Toulouse and French Intensive Care Renal Network Toulouse France

Department of Nephrology Radboud University Medical Center Nijmegen the Netherlands

Department of Pediatric Gastroenterology Nephrology and Metabolic Diseases Charité Universitätsmedizin Berlin Berlin Germany

Department of Pediatric Internal Medicine Rheumatology and Nephrology Toulouse University Hospital Toulouse France

Department of Pediatric Nephrology Centre Hospitalier Universitaire de Clermont Ferrand Clermont Ferrand France

Department of Pediatric Nephrology University Hospitals Leuven Belgium

Department of Pediatric Nephrology University Hospitals Leuven Leuven Belgium

Department of Pediatrics 1 University Children's Hospital Heidelberg Heidelberg Germany

Department of Pediatrics 2 University Hospital of Essen University of Duisburg Essen Essen Germany

Department of Pediatrics 2nd Faculty of Medicine Charles University Prague Czech Republic

Department of Pediatrics and Center for Family Health Center for Rare Diseases and Center for Molecular Medicine University Hospital Cologne and Medical Faculty University of Cologne Cologne Germany

Department of Pediatrics Faculty of Medicine and University Hospital Cologne University of Cologne Cologne Germany

Department of Pediatrics Hôpital Mère Enfant University Hospital of Limoges Limoges France

Department of Pediatrics Hôpital Nord CHU de Saint Etienne Saint Etienne France

Department of Pediatrics Semmelweis University Budapest Hungary

Department of Pediatrics University Hospital of Caen Caen France

Department of Pediatrics University of Zielona Góra Zielona Góra Poland

Division of Nephrology Bambino Gesù Children's Hospital IRCCS Rome Italy

Division of Pediatric Nephrology Heidelberg University Center for Pediatrics and Adolescent Medicine Heidelberg Germany

Filière ORphan KIdney Disease Montpellier France

INSERM 1033 Faculté de Médecine Lyon Est Lyon France

Klinik für Kinder und Jugendmedizin Krankenhaus St Elisabeth und St Barbara Halle Saale Germany

Medizinische Genetik Mainz Limbach Genetics Mainz Germany

MTA SE Lendület Nephrogenetic Laboratory Budapest Hungary

National Institute of Health and Medical Research UMR 1297 Institute of Cardiovascular and Metabolic Disease Toulouse France

Néphrologie Pédiatrique CHU de Montpellier Montpellier France

Nephrology and Dialysis Unit Meyer Children's Hospital IRCCS Florence Italy

Nephrology Department Robert Debré Hospital APHP Nord Paris University Paris France

Pediatric Nephrology Dialysis and Transplantation Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy

Pediatric Nephrology University Children's Hospital Marburg Marburg Germany

Pediatric Nephrology University Hospital Vall d'Hebron Barcelona Spain

PKD Research Group Department of Cellular and Molecular Medicine KU Leuven Leuven Belgium

Renal Unit Great Ormond Street Hospital for Children NHS Foundation Trust London UK

Service de Néphrologie Pédiatrique CHU Réunion site Félix GUYON St Denis Ile de La Réunion France

Service de Néphrologie Pédiatrique Hôpital Clocheville CHRU Tours France

Service de Néphrologie Pédiatrique Hôpital des Enfants CHRU Nancy Vandoeuvre les Nancy France

Service des Maladies Chroniques de l'Enfant Hopital Mère Enfant CHU Nantes Nantes France

Unité de néphrologie Hôpital Jeanne de Flandre CHU Lille Lille France

Unité de Néphrologie Pédiatrique Hôpital Pellegrin Enfants CHU de Bordeaux Centre de Références des Maladies rénales rares du Sud Ouest Bordeaux France

Université de Montpellier Montpellier France

University College London Department of Renal Medicine London UK

University College London Medical School London UK

University Paul Sabatier Toulouse 3 Toulouse France

Zobrazit více v PubMed

Decramer S., Parant O., Beaufils S., et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol. 2007;18:923–933. doi: 10.1681/ASN.2006091057. PubMed DOI

Weber S., Moriniere V., Knuppel T., et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the Escape study. J Am Soc Nephrol. 2006;17:2864–2870. doi: 10.1681/ASN.2006030277. PubMed DOI

Thomas R., Sanna-Cherchi S., Warady B.A., Furth S.L., Kaskel F.J., Gharavi A.G. HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol. 2011;26:897–903. doi: 10.1007/s00467-011-1826-9. PubMed DOI PMC

Heidet L., Decramer S., Pawtowski A., et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5:1079–1090. doi: 10.2215/CJN.06810909. PubMed DOI PMC

Bellanné-Chantelot C., Chauveau D., Gautier J.F., et al. Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med. 2004;140:510–517. doi: 10.7326/0003-4819-140-7-200404060-00009. PubMed DOI

Edghill E.L., Bingham C., Ellard S., Hattersley A.T. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet. 2006;43:84–90. doi: 10.1136/jmg.2005.032854. PubMed DOI PMC

Lokmane L., Heliot C., Garcia-Villalba P., Fabre M., Cereghini S. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development. 2010;137:347–357. doi: 10.1242/dev.042226. PubMed DOI

Gresh L., Fischer E., Reimann A., et al. A transcriptional network in polycystic kidney disease. EMBO J. 2004;23:1657–1668. doi: 10.1038/sj.emboj.7600160. PubMed DOI PMC

Clissold R.L., Hamilton A.J., Hattersley A.T., Ellard S., Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol. 2015;11:102–112. doi: 10.1038/nrneph.2014.232. PubMed DOI

Coffinier C., Thépot D., Babinet C., Yaniv M., Barra J. Essential role for the homeoprotein vHNF1/HNF1beta in visceral endoderm differentiation. Development. 1999;126:4785–4794. doi: 10.1242/dev.126.21.4785. PubMed DOI

Ferrè S., Igarashi P. New insights into the role of HNF-1β in kidney (patho)physiology. Pediatr Nephrol. 2019;34:1325–1335. doi: 10.1007/s00467-018-3990-7. PubMed DOI PMC

Faguer S., Decramer S., Chassaing N., et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 2011;80:768–776. doi: 10.1038/ki.2011.225. PubMed DOI

Mendel D.B., Khavari P.A., Conley P.B., et al. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science. 1991;254:1762–1767. doi: 10.1126/science.1763325. PubMed DOI

Lu P., Rha G.B., Chi Y.I. Structural basis of disease-causing mutations in hepatocyte nuclear factor 1beta. Biochemistry. 2007;46:12071–12080. doi: 10.1021/bi7010527. PubMed DOI PMC

Barbacci E., Chalkiadaki A., Masdeu C., et al. HNF1beta/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum Mol Genet. 2004;13:3139–3149. doi: 10.1093/hmg/ddh338. PubMed DOI

Laliève F., Decramer S., Heidet L., et al. School Level of children carrying a HNF1B variant or a deletion. Eur J Hum Genet. 2020;28:56–63. doi: 10.1038/s41431-019-0490-6. PubMed DOI PMC

Moreno-De-Luca D., SGENE Consortium, Mulle J.G., et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet. 2010;87:618–630. doi: 10.1016/j.ajhg.2010.10.004. PubMed DOI PMC

Clissold R.L., Shaw-Smith C., Turnpenny P., et al. Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. Kidney Int. 2016;90:203–211. doi: 10.1016/j.kint.2016.03.027. PubMed DOI PMC

Dubois-Laforgue D., Bellanné-Chantelot C., Charles P., et al. Intellectual disability in patients with MODY due to hepatocyte nuclear factor 1B (HNF1B) molecular defects. Diabetes Metab. 2017;43:89–92. doi: 10.1016/j.diabet.2016.10.003. PubMed DOI

Dubois-Laforgue D., Cornu E., Saint-Martin C., et al. Diabetes, associated clinical spectrum, long-term prognosis, and genotype/phenotype correlations in 201 adult patients with hepatocyte nuclear factor 1B (HNF1B) molecular defects. Diabetes Care. 2017;40:1436–1443. doi: 10.2337/dc16-2462. PubMed DOI

Levey A.S., Stevens L.A., Schmid C.H., et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006. PubMed DOI PMC

Schwartz G.J., Munoz A., Schneider M.F., et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–637. doi: 10.1681/ASN.2008030287. PubMed DOI PMC

Smeets N.J.L., IntHout J., van der Burgh M.J.P., Schwartz G.J., Schreuder M.F., de Wildt S.N. Maturation of GFR in term-born neonates: an individual participant data meta-analysis. J Am Soc Nephrol. 2022;33:1277–1292. doi: 10.1681/ASN.2021101326. PubMed DOI PMC

Sharpe D. Chi-square test is statistically significant: now what? Pract Assess Res Eval. 20:8. doi: 10.7275/tbfa-x148 DOI

Burnham K.P., Anderson D.R., editors. Model Selection and Multimodel Inference. Springer; New York: 2004. Advanced issues and deeper insights; pp. 267–351. DOI

Vasileiou G., Hoyer J., Thiel C.T., et al. Prenatal diagnosis of HNF1B-associated renal cysts: is there a need to differentiate intragenic variants from 17q12 microdeletion syndrome? Prenat Diagn. 2019;39:1136–1147. doi: 10.1002/pd.5556. PubMed DOI

Hojny J., Bartu M., Krkavcova E., et al. Identification of novel HNF1B mRNA splicing variants and their qualitative and semi-quantitative profile in selected healthy and tumour tissues. Sci Rep. 2020;10:6958. doi: 10.1038/s41598-020-63733-x. PubMed DOI PMC

Barbacci E., Reber M., Ott M.O., Breillat C., Huetz F., Cereghini S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development. 1999;126:4795–4805. doi: 10.1242/dev.126.21.4795. PubMed DOI

Niborski L.L., Paces-Fessy M., Ricci P., et al. Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model. Dis Model Mech. 2021;14 doi: 10.1242/dmm.047498. PubMed DOI PMC

Yoshida K., Mushimoto Y., Tanase-Nakao K., et al. A case report with functional characterization of a HNF1B mutation (p.Leu168Pro) causing MODY5. Clin Pediatr Endocrinol. 2021;30:179–185. doi: 10.1297/cpe.30.179. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...