Net primary productivity and litter decomposition rates in two distinct Amazonian peatlands

. 2024 Aug ; 30 (8) : e17436.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39162201

Grantová podpora
PRIMUS/23/SCI/013 Charles University
NE/R000751/1 Natural Environment Research Council
NE/R016860/1 Natural Environment Research Council
NE/V018760/1 Natural Environment Research Council

Measurements of net primary productivity (NPP) and litter decomposition from tropical peatlands are severely lacking, limiting our ability to parameterise and validate models of tropical peatland development and thereby make robust predictions of how these systems will respond to future environmental and climatic change. Here, we present total NPP (i.e., above- and below-ground) and decomposition data from two floristically and structurally distinct forested peatland sites within the Pastaza Marañón Foreland Basin, northern Peru, the largest tropical peatland area in Amazonia: (1) a palm (largely Mauritia flexuosa) dominated swamp forest and (2) a hardwood dominated swamp forest (known as 'pole forest', due to the abundance of thin-stemmed trees). Total NPP in the palm forest and hardwood-dominated forest (9.83 ± 1.43 and 7.34 ± 0.84 Mg C ha-1 year-1, respectively) was low compared with values reported for terra firme forest in the region (14.21-15.01 Mg C ha-1 year-1) and for tropical peatlands elsewhere (11.06 and 13.20 Mg C ha-1 year-1). Despite the similar total NPP of the two forest types, there were considerable differences in the distribution of NPP. Fine root NPP was seven times higher in the palm forest (4.56 ± 1.05 Mg C ha-1 year-1) than in the hardwood forest (0.61 ± 0.22 Mg C ha-1 year-1). Above-ground palm NPP, a frequently overlooked component, made large contributions to total NPP in the palm-dominated forest, accounting for 41% (14% in the hardwood-dominated forest). Conversely, Mauritia flexuosa litter decomposition rates were the same in both plots: highest for leaf material, followed by root and then stem material (21%, 77% and 86% of mass remaining after 1 year respectively for both plots). Our results suggest potential differences in these two peatland types' responses to climate and other environmental changes and will assist in future modelling studies of these systems.

Mediciones de la productividad primaria neta (PPN) y la descomposición de materia orgánica de las turberas tropicales son escasas, lo que limita nuestra capacidad para parametrizar y validar modelos de desarrollo de las turberas tropicales y, en consecuencia, realizar predicciones sólidas sobre la respuesta de estos sistemas ante futuros cambios ambientales y climáticos. En este estudio, presentamos datos de PPN total (es decir, biomasa aérea y subterránea) y descomposición de la materia orgánica colectada en dos turberas boscosas con características florísticas y estructurales contrastantes dentro de la cuenca Pastaza Marañón al norte del Perú, el área de turberas tropicales más grande de la Amazonia: (1) un bosque pantanoso dominado por palmeras (principalmente Mauritia flexuosa) y (2) un bosque pantanosos dominado por árboles leñosos de tallo delgado (conocido como ‘varillal hidromórfico’). La PPN total en el bosque de palmeras y el varillal hidromórfico (9,83 ± 1,43 y 7,34 ± 0,84 Mg C ha‐1 año‐1 respectivamente) fue baja en comparación con los valores reportados para los bosques de tierra firme en la región (14,21–15,01 Mg C ha‐1 año‐1) y para turberas tropicales en otros lugares (11,06 y 13,20 Mg C ha‐1 año‐1). A pesar de que la PPN total fue similar en ambos tipos de bosque, hubo diferencias considerables en la distribución de la PPN. La PPN de las raíces finas fue siete veces mayor en el bosque de palmeras (4,56 ± 1,05 Mg C ha‐1 año‐1) que en el varillal hidromórfico (0,61 ± 0,22 Mg C ha‐1 año‐1). La PPN de la biomasa aérea de las palmeras, un componente ignorado frecuentemente, contribuyó en gran medida a la PPN total del bosque de palmeras, representando el 41% (14% en el varillal hidromórfico). Por el contrario, la tasa de descomposición de materia orgánica de Mauritia flexuosa fue la misma en ambos sitios: la más alta corresponde a la hojarasca, seguida por las raíces y luego el tallo (21%, 77% y 86% de la masa restante después de un año, respectivamente para ambos sitios). Nuestros resultados sugieren diferencias potenciales en la respuesta de estos dos tipos de turberas al clima y otros cambios ambientales, y ayudarán en futuros estudios de modelamiento de estos sistemas.

Zobrazit více v PubMed

Andersen, R., Chapman, S. J., & Artz, R. R. E. (2013). Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry, 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003

Arnaud, M., Baird, A. J., Morris, P. J., Harris, A., & Huck, J. J. (2019). EnRoot: A narrow‐diameter, inexpensive and partially 3D‐printable minirhizotron for imaging fine root production. Plant Methods, 15, 101. https://doi.org/10.1186/s13007‐019‐0489‐6

Arnaud, M., Morris, P. J., Baird, A. J., Dang, H., & Nguyen, T. T. (2021). Fine root production in a chronosequence of mature reforested mangroves. New Phytologist, 232, 1591–1602. https://doi.org/10.1111/nph.17480

Avalos, G., Cambronero, M., & Alvarez‐Vergnani, C. (2022). Allometric models to estimate carbon content in Arecaceae based on seven species of Neotropical palms. Frontiers in Forests and Global Change, 5. https://doi.org/10.3389/ffgc.2022.867912

Baker, T., & Chao, K. (2011). Manual for coarse woody debris measurement in RAINFOR plots. https://rainfor.org/wp‐content/uploads/sites/129/2022/06/CWD_protocol_RAINFOR_2011_EN.pdf

Basuki, I., Kauffman, J. B., Peterson, J., Anshari, G., & Murdiyarso, D. (2019). Land cover changes reduce net primary production in tropical coastal peatlands of West Kalimantan, Indonesia. Mitigation and Adaptation Strategies for Global Change, 24, 557–573. https://doi.org/10.1007/s11027‐018‐9811‐2

Bocko, Y. E., Panzou, G. J. L., Dargie, G. C., Mampouya, Y. E. W., Mbemba, M., Loumeto, J. J., & Lewis, S. L. (2023). Allometric equation for Raphia laurentii De wild, the commonest palm in the central Congo peatlands. PLoS One, 18, e0273591. https://doi.org/10.1371/journal.pone.0273591

Bruijnzeel, L. A., & Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: The fog has not lifted yet. Ecology, 79, 3–9. https://doi.org/10.2307/176859

Capps, K. A., Graça, M. A. S., Encalada, A. C., & Flecker, A. S. (2011). Leaf‐litter decomposition across three flooding regimes in a seasonally flooded Amazonian watershed. Journal of Tropical Ecology, 27, 205–210. https://doi.org/10.1017/S0266467410000635

Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez‐Yrízar, A., Mugasha, W. A., Muller‐Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz‐Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190. https://doi.org/10.1111/gcb.12629

Chimner, R. A., & Ewel, K. C. (2005). A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecology and Management, 13, 671–684. https://doi.org/10.1007/s11273‐005‐0965‐9

Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & Holland, E. A. (2001). Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications, 11, 371–384. https://doi.org/10.2307/3060895

Clark, D. A., Clark, D. B., & Oberbauer, S. F. (2013). Field‐quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. Journal of Geophysical Research: Biogeosciences, 118, 783–794. https://doi.org/10.1002/jgrg.20067

Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542, 86–90. https://doi.org/10.1038/nature21048

del Aguila‐Pasquel, J., Doughty, C. E., Metcalfe, D. B., Silva‐Espejo, J. E., Girardin, C. A. J., Chung Gutierrez, J. A., Navarro‐Aguilar, G. E., Quesada, C. A., Hidalgo, C. G., Reyna Huaymacari, J. M., Halladay, K., del Castillo Torres, D., Phillips, O., & Malhi, Y. (2014). The seasonal cycle of productivity, metabolism and carbon dynamics in a wet aseasonal forest in north‐west Amazonia (Iquitos, Peru). Plant Ecology and Diversity, 7, 71–83. https://doi.org/10.1080/17550874.2013.798365

Dezzeo, N., Grandez‐Rios, J., Martius, C., & Hergoualc'h, K. (2021). Degradation‐driven changes in fine root carbon stocks, productivity, mortality, and decomposition rates in a palm swamp peat forest of the Peruvian Amazon. Carbon Balance and Management, 16, 33. https://doi.org/10.1186/s13021‐021‐00197‐0

Draper, F. C., Roucoux, K. H., Lawson, I. T., Mitchard, E. T. A., Coronado, E. N. H., Lähteenoja, O., Montenegro, L. T., Sandoval, E. V., Zaráte, R., & Baker, T. R. (2014). The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental Research Letters, 9, 124017. https://doi.org/10.1088/1748‐9326/9/12/124017

Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva‐Espejo, J. E., & Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000‐m elevation gradient in the Peruvian Andes. Oecologia, 172, 889–902. https://doi.org/10.1007/s00442‐012‐2522‐6

Flores Llampazo, G., Honorio Coronado, E. N., del Aguila‐Pasquel, J., Cordova Oroche, C. J., Díaz Narvaez, A., Reyna Huaymacari, J., Grandez Ríos, J., Lawson, I. T., Hastie, A., Baird, A. J., & Baker, T. R. (2022). The presence of peat and variation in tree species composition are under different hydrological controls in Amazonian wetland forests. Hydrological Processes, 36, e14690. https://doi.org/10.1002/hyp.14690

Fonseca, L. D. M., Dalagnol, R., Malhi, Y., Rifai, S. W., Costa, G. B., Silva, T. S. F., Da Rocha, H. R., Tavares, I. B., & Borma, L. S. (2019). Phenology and seasonal ecosystem productivity in an Amazonian floodplain forest. Remote Sensing, 11, 1530. https://doi.org/10.3390/rs11131530

Frangi, J. L., & Lugo, A. E. (1985). Ecosystem dynamics of a subtropical floodplain forest. Ecological Monographs, 55, 351–369. https://doi.org/10.2307/1942582

Freitas, L., Otárola, E., del Castillo Torres, D., Linares, C., Martínez, C., & Malca, G. A. (2006). Servicios Ambientales de Carbono y Secuestro de Carbono de Ecosistema Aguajal en la Reserva Nacional Pacaya Samiria, Loreto – Perú (Documento Técnico No. 29). Investigaciones de la Amazonía Peruana (IIAP). https://hdl.handle.net/20.500.12921/228

Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L. G., Tejada, G., Aragão, L. E. O. C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A. H., Corrêa, S. M., Anderson, L., Von Randow, C., Correia, C. S. C., Crispim, S. P., & Neves, R. A. L. (2021). Amazonia as a carbon source linked to deforestation and climate change. Nature, 595, 388–393. https://doi.org/10.1038/s41586‐021‐03629‐6

Girardin, C. A. J., Malhi, Y., Aragão, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., Feeley, K. J., Rapp, J., Silva‐Espejo, J. E., Silman, M., Salinas, N., & Whittaker, R. J. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16, 3176–3192. https://doi.org/10.1111/j.1365‐2486.2010.02235.x

Gloor, M., Barichivich, J., Ziv, G., Brienen, R., Schöngart, J., Peylin, P., Ladvocat Cintra, B. B., Feldpausch, T., Phillips, O., & Baker, J. (2015). Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Global Biogeochemical Cycles, 29, 1384–1399. https://doi.org/10.1002/2014GB005080

Goodman, R. C., Phillips, O. L., del Castillo Torres, D., Freitas, L., Cortese, S. T., Monteagudo, A., & Baker, T. R. (2013). Amazon palm biomass and allometry. Forest Ecology and Management, 310, 994–1004. https://doi.org/10.1016/j.foreco.2013.09.045

Graham, E. A., Mulkey, S. S., Kitajima, K., Phillips, N. G., & Wright, S. J. (2003). Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proceedings of the National Academy of Sciences of the United States of America, 100, 572–576. https://doi.org/10.1073/pnas.0133045100

Greenwell, B. M., & Schubert Kabban, C. M. (2014). investr: An R package for inverse estimation. The R Journal, 6, 90–100. https://doi.org/10.32614/RJ‐2014‐009

Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. Journal of Statistical Software, 40, 1–25. https://doi.org/10.18637/jss.v040.i03

Grothendieck, G. (2013). nls2: Non‐linear regression with brute force. https://cran.r‐project.org/package=nls2

Hastie, A., Honorio Coronado, E. N., Reyna, J., Mitchard, E. T. A., Åkesson, C. M., Baker, T. R., Cole, L. E. S., Oroche, C. J. C., Dargie, G., Dávila, N., De Grandi, E. C., Del Águila, J., Del Castillo Torres, D., De La Cruz Paiva, R., Draper, F. C., Flores, G., Grández, J., Hergoualc'h, K., Householder, J. E., … Lawson, I. T. (2022). Risks to carbon storage from land‐use change revealed by peat thickness maps of Peru. Nature Geoscience, 15, 369–374. https://doi.org/10.1038/s41561‐022‐00923‐4

Hättenschwiler, S., Aeschlimann, B., Coûteaux, M.‐M., Roy, J., & Bonal, D. (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist, 179, 165–175. https://doi.org/10.1111/j.1469‐8137.2008.02438.x

Hättenschwiler, S., Coq, S., Barantal, S., & Handa, I. T. (2011). Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytologist, 189, 950–965. https://doi.org/10.1111/j.1469‐8137.2010.03483.x

Hergoualc'h, K., van Lent, J., Dezzeo, N., Verchot, L. V., van Groenigen, J. W., López Gonzales, M., & Grandez‐Rios, J. (2023). Major carbon losses from degradation of Mauritia flexuosa peat swamp forests in western Amazonia. Biogeochemistry, 167, 327–345. https://doi.org/10.1007/s10533‐023‐01057‐4

Hidalgo Pizango, C. G., Honorio Coronado, E. N., del Águila‐Pasquel, J., Flores Llampazo, G., de Jong, J., Córdova Oroche, C. J., Reyna Huaymacari, J. M., Carver, S. J., del Castillo Torres, D., Draper, F. C., Phillips, O. L., Roucoux, K. H., de Bruin, S., Peña‐Claros, M., van der Zon, M., Mitchell, G., Lovett, J., García Mendoza, G., Gatica Saboya, L., … Baker, T. R. (2022). Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests. Nature Sustainability, 5, 479–487. https://doi.org/10.1038/s41893‐022‐00858‐z

Hodel, D. R. (2009). Biology of palms and implications for management in the landscape. HortTechnology, 19, 676–681. https://doi.org/10.21273/HORTSCI.19.4.676

Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M., Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F., Vining, S. R., Hough, M. A., Moore, T. R., Richard, P. J. H., De La Cruz, F. B., … Chanton, J. P. (2018). Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications, 9, 3640. https://doi.org/10.1038/s41467‐018‐06050‐2

Honorio Coronado, E. N., Hastie, A., Reyna, J., Flores, G., Grández, J., Lähteenoja, O., Draper, F. C., Åkesson, C. M., Baker, T. R., Bhomia, R. K., Cole, L. E. S., Dávila, N., Águila, J. D., Águila, M. D., Torres, D. D. C., Lawson, I. T., Brañas, M. M., Mitchard, E. T. A., Monteagudo, A., … Montoya, M. (2021). Intensive field sampling increases the known extent of carbon‐rich Amazonian peatland pole forests. Environmental Research Letters, 16, 074048. https://doi.org/10.1088/1748‐9326/ac0e65

Hoyos‐Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., Lopez, O. R., & Sjögersten, S. (2015). Getting to the root of the problem: Litter decomposition and peat formation in lowland Neotropical peatlands. Biogeochemistry, 126, 115–129. https://doi.org/10.1007/s10533‐015‐0147‐7

Kalliola, R., Puhakka, M., Salo, J., Tuomisto, H., & Ruokolainen, K. (1991). The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia. Annales Botanici Fennici, 28, 225–239.

Kozlowski, T. T. (2002). Physiological‐ecological impacts of flooding on riparian forest ecosystems. Wetlands, 22, 550–561. https://doi.org/10.1672/0277‐5212(2002)022[0550:PEIOFO]2.0.CO;2

Kurnianto, S., Warren, M., Talbot, J., Kauffman, B., Murdiyarso, D., & Frolking, S. (2015). Carbon accumulation of tropical peatlands over millennia: A modeling approach. Global Change Biology, 21, 431–444. https://doi.org/10.1111/gcb.12672

Lähteenoja, O., & Page, S. (2011). High diversity of tropical peatland ecosystem types in the Pastaza‐Marañón basin, Peruvian Amazonia. Journal of Geophysical Research, 116, G02025. https://doi.org/10.1029/2010JG001508

Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres, D. D. C., Oinonen, M., & Page, S. (2012). The large Amazonian peatland carbon sink in the subsiding Pastaza‐Marañón foreland basin, Peru. Global Change Biology, 18, 164–178. https://doi.org/10.1111/j.1365‐2486.2011.02504.x

Lähteenoja, O., Ruokolainen, K., Schulman, L., & Alvarez, J. (2009). Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. CATENA, 79, 140–145. https://doi.org/10.1016/j.catena.2009.06.006

Laiho, R., Bhuiyan, R., Straková, P., Mäkiranta, P., Badorek, T., & Penttilä, T. (2014). Modified ingrowth core method plus infrared calibration models for estimating fine root production in peatlands. Plant and Soil, 385, 311–327. https://doi.org/10.1007/s11104‐014‐2225‐3

Leifeld, J., Steffens, M., & Galego‐Sala, A. (2012). Sensitivity of peatland carbon loss to organic matter quality. Geophysical Research Letters, 39, L14704. https://doi.org/10.1029/2012GL051856

Loisel, J., Gallego‐Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Müller, J., van Bellen, S., West, J. B., … Wu, J. (2021). Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 11, 70–77. https://doi.org/10.1038/s41558‐020‐00944‐0

López Gonzales, M., Hergoualc'h, K., Angulo Núñez, Ó., Baker, T., Chimner, R., del Águila Pasquel, J., del Castillo Torres, D., Freitas Alvarado, L., Fuentealba Durand, B., & García Gonzales, E. (2020). What do we know about Peruvian peatlands? Occasional paper 210. CIFOR. https://doi.org/10.17528/cifor/007848

Malhi, Y., Aragão, L. E. O. C., Metcalfe, D. B., Paiva, R., Quesada, C. A., Almeida, S., Anderson, L., Brando, P., Chambers, J. Q., Da Costa, A. C. L., Hutyra, L. R., Oliveira, P., Patiño, S., Pyle, E. H., Robertson, A. L., & Teixeira, L. M. (2009). Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 15, 1255–1274. https://doi.org/10.1111/j.1365‐2486.2008.01780.x

Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik, C. I., Fiore, A. D., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Montoya, L. M. M., Monteagudo, A., Neill, D. A., Vargas, P. N., Patiño, S., … Lloyd, J. (2004). The above‐ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 10, 563–591. https://doi.org/10.1111/j.1529‐8817.2003.00778.x

Malhi, Y., Doughty, C., & Galbraith, D. (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society, B: Biological Sciences, 366, 3225–3245. https://doi.org/10.1098/rstb.2011.0062

Malhi, Y., Farfán Amézquita, F., Doughty, C. E., Silva‐Espejo, J. E., Girardin, C. A. J., Metcalfe, D. B., Aragão, L. E. O. C., Huaraca‐Quispe, L. P., Alzamora‐Taype, I., Eguiluz‐Mora, L., Marthews, T. R., Halladay, K., Quesada, C. A., Robertson, A. L., Fisher, J. B., Zaragoza‐Castells, J., Rojas‐Villagra, C. M., Pelaez‐Tapia, Y., Salinas, N., … Phillips, O. L. (2014). The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south‐western Amazonia, Peru. Plant Ecology and Diversity, 7, 85–105. https://doi.org/10.1080/17550874.2013.820805

Malhi, Y., Girardin, C., Metcalfe, D. B., Doughty, C. E., Aragão, L. E. O. C., Rifai, S. W., Oliveras, I., Shenkin, A., Aguirre‐Gutiérrez, J., Dahlsjö, C. A. L., Riutta, T., Berenguer, E., Moore, S., Huasco, W. H., Salinas, N., da Costa, A. C. L., Bentley, L. P., Adu‐Bredu, S., Marthews, T. R., … Phillips, O. L. (2021). The global ecosystems monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 253, 108889. https://doi.org/10.1016/j.biocon.2020.108889

Marcus, M. S., Hergoualc'h, K., Honorio Coronado, E. N., & Gutiérrez‐Vélez, V. H. (2024). Spatial distribution of degradation and deforestation of palm swamp peatlands and associated carbon emissions in the Peruvian Amazon. Journal of Environmental Management, 351, 119665. https://doi.org/10.1016/j.jenvman.2023.119665

Marengo, J. (1998). Climatología de la zona de Iquitos, Perú. In R. Kalliola & S. Flores Paitán (Eds.), Geoecología y desarrolloamazónico: estudio integrado en la zona de Iquitos, Perú (pp. 35–57). Annales Universitatis Turkuensis Ser A II 114. Finland: University of Turku.

Marengo, J. A., Souza, C. M., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., Alves, L. M., & Soares, W. R. (2018). Changes in climate and land use over the Amazon region: Current and future variability and trends. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00228

Marthews, T., Riutta, T., Oliveras Menor, I., Urrutia, R., Moore, S., Metcalfe, D., Malhi, Y., Phillips, O., Huaraca Huasco, W., Ruiz Jaén, M., Girardin, C., Butt, M., Cain, R., & colleagues from the RAINFOR and GEM networks. (2014). Measuring Tropical Forest Carbon Allocation and Cycling: A RAINFOR‐GEM Field Manual for Intensive Census Plots (v3.0). https://ora.ox.ac.uk/objects/uuid:f33a0929‐4675‐43c6‐91a3‐8cbcda962775/files/m1844bb29c06f7d69207569648142e020

Martin, A. R., Doraisami, M., & Thomas, S. C. (2018). Global patterns in wood carbon concentration across the world's trees and forests. Nature Geoscience, 11, 915–920. https://doi.org/10.1038/s41561‐018‐0246‐x

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C., & Page, S. E. (2017). From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 12, 024014. https://doi.org/10.1088/1748‐9326/aa5b6f

Miettinen, J., Shi, C., & Liew, S. C. (2016). Land cover distribution in the peatlands of peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6, 67–78. https://doi.org/10.1016/j.gecco.2016.02.004

Mitchard, E. T., Saatchi, S. S., Baccini, A., Asner, G. P., Goetz, S. J., Harris, N. L., & Brown, S. (2013). Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan‐tropical maps. Carbon Balance and Management, 8, 10. https://doi.org/10.1186/1750‐0680‐8‐10

Nebel, G., Dragsted, J., & Vega, A. S. (2001). Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. Forest Ecology and Management, 150, 93–102. https://doi.org/10.1016/S0378‐1127(00)00683‐6

Ono, K., Hiradate, S., Morita, S., Hiraide, M., Hirata, Y., Fujimoto, K., Tabuchi, R., & Lihpai, S. (2015). Assessing the carbon compositions and sources of mangrove peat in a tropical mangrove forest on Pohnpei Island, Federated States of Micronesia. Geoderma, 245–246, 11–20. https://doi.org/10.1016/j.geoderma.2015.01.008

Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17, 798–818. https://doi.org/10.1111/j.1365‐2486.2010.02279.x

Phillips, O., Baker, T., Feldpausch, T., & Brienen, R. (2021). RAINFOR field manual for plot establishment and remeasurement. https://forestplots.net/upload/ManualsEnglish/RAINFOR_field_manual_EN.pdf

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis. New Phytologist, 182, 565–588. https://doi.org/10.1111/j.1469‐8137.2009.02830.x

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/

Roucoux, K. H., Lawson, I. T., Baker, T. R., Del Castillo Torres, D., Draper, F. C., Lähteenoja, O., Gilmore, M. P., Honorio Coronado, E. N., Kelly, T. J., Mitchard, E. T. A., & Vriesendorp, C. F. (2017). Threats to intact tropical peatlands and opportunities for their conservation. Conservation Biology, 31, 1283–1292. https://doi.org/10.1111/cobi.12925

Schöngart, J., Piedade, M. T. F., Ludwigshausen, S., Horna, V., & Worbes, M. (2002). Phenology and stem‐growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology, 18, 581–597. https://doi.org/10.1017/S0266467402002389

Schuur, E. A. G. (2003). Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology, 84, 1165–1170.

Sciumbata, M., Wenina, Y. E. M., Mbemba, M., Dargie, G. C., Baird, A. J., Morris, P. J., Ifo, S. A., Aerts, R., & Lewis, S. L. (2023). First estimates of fine root production in tropical peat swamp and terra firme forests of the central Congo Basin. Scientific Reports, 13, 12315. https://doi.org/10.1038/s41598‐023‐38409‐x

Sousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel‐Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108, 2070–2082. https://doi.org/10.1111/1365‐2745.13377

Wang, H., Richardson, C. J., & Ho, M. (2015). Dual controls on carbon loss during drought in peatlands. Nature Climate Change, 5, 584–587. https://doi.org/10.1038/nclimate2643

Wickham, H. (2001). tidyr: Tidy messy data. https://cran.r‐project.org/web/packages/tidyr/index.html

Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A grammar of data manipulation. https://cran.r‐project.org/web/packages/dplyr/index.html

Wright, E. L., Black, C. R., Cheesman, A. W., Turner, B. L., & Sjögersten, S. (2013). Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a neotropical peatland. Wetlands, 33, 217–226. https://doi.org/10.1007/s13157‐012‐0369‐6

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender‐Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. https://doi.org/10.1038/nature02403

Young, D. M., Baird, A. J., Morris, P. J., Dargie, G. C., Mampouya Wenina, Y. E., Mbemba, M., Boom, A., Cook, P., Betts, R., Burke, E., Bocko, Y. E., Chadburn, S., Crabtree, D. E., Crezee, B., Ewango, C. E. N., Garcin, Y., Georgiou, S., Girkin, N. T., Gulliver, P., … Lewis, S. L. (2023). Simulating carbon accumulation and loss in the central Congo peatlands. Global Change Biology, 29, 6812–6827. https://doi.org/10.1111/gcb.16966

Yule, C. M., & Gomez, L. N. (2009). Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecology and Management, 17, 231–241. https://doi.org/10.1007/s11273‐008‐9103‐9

Zanne, A. E., Lopez‐Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Towards a worldwide wood economics spectrum [dataset]. Dryad, https://doi.org/10.5061/dryad.234

Zhang, H., Yuan, W., Dong, W., & Liu, S. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 240–247. https://doi.org/10.1016/j.ecocom.2014.01.003

Zhang‐Zheng, H., Adu‐Bredu, S., Duah‐Gyamfi, A., Moore, S., Addo‐Danso, S. D., Amissah, L., Valentini, R., Djagbletey, G., Anim‐Adjei, K., Quansah, J., Sarpong, B., Owusu‐Afriyie, K., Gvozdevaite, A., Tang, M., Ruiz‐Jaen, M. C., Ibrahim, F., Girardin, C. A. J., Rifai, S., Dahlsjö, C. A. L., … Malhi, Y. (2024). Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia. Nature Communications, 15, 3158. https://doi.org/10.1038/s41467‐024‐47202‐x

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...