On the mechanism of miR-29b enhancement of etoposide toxicity in vitro
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2022_025
Univerzita Palackého v Olomouci
RVO 61989592
Univerzita Palackého v Olomouci
PubMed
39191993
PubMed Central
PMC11349908
DOI
10.1038/s41598-024-70856-y
PII: 10.1038/s41598-024-70856-y
Knihovny.cz E-zdroje
- MeSH
- antitumorózní látky fytogenní farmakologie toxicita MeSH
- apoptóza účinky léků genetika MeSH
- buňky Hep G2 MeSH
- Caco-2 buňky MeSH
- etoposid * toxicita farmakologie MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- protein MCL-1 * genetika metabolismus MeSH
- protoonkogenní proteiny c-bcl-2 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky fytogenní MeSH
- etoposid * MeSH
- MCL1 protein, human MeSH Prohlížeč
- mikro RNA * MeSH
- MIRN29a microRNA, human MeSH Prohlížeč
- protein MCL-1 * MeSH
- protoonkogenní proteiny c-bcl-2 MeSH
MicroRNA hsa-miR-29 was connected to a number of malignancies. Its target genes are many, among them Mcl-1 that is expressed in three possible isoforms, one of which is anti-apoptotic and another one pro-apoptotic. Ratio of these two isoforms appears to affect cell response to external stimuli. We have demonstrated that miR-29b enhanced etoposide toxicity in HeLa cell line by modulating this ratio of Mcl-1 isoforms. However, it is not known whether the described miR-29 effect is common to various cancer types or even have the opposite effect. This represents a significant problem for possible future applications. In this report, we demonstrate that miR-29b affects toxicity of 60 μM etoposide in cell lines derived from selected malignancies. The mechanism, however, differs among the cell lines tested. Hep G2 cells demonstrated similar effect of miR-29b on etoposide toxicity as was described in HeLa cells, i.e. modulation of Mcl-1 expression. Target protein down-regulated by miR-29b resulting in enhanced etoposide toxicity in Caco-2 cells was, however, Bcl-2 protein. Moreover, H9c2, Hek-293 and ARPE-19 cell lines selected as a representatives of non-malignant cells, showed no effect of miR-29b on etoposide toxicity. Our data suggest that miR-29b could be a common enhancer of etoposide toxicity in malignant cells due to its modulation of Bcl family proteins.
Zobrazit více v PubMed
White, M. C. et al. Age and cancer risk: A potentially modifiable relationship. Am. J. Prev. Med.46, S7-15. 10.1016/j.amepre.2013.10.029 (2014). 10.1016/j.amepre.2013.10.029 PubMed DOI PMC
Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell116, 281–297. 10.1016/s0092-8674(04)00045-5 (2004). 10.1016/s0092-8674(04)00045-5 PubMed DOI
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798. 10.1016/s0092-8674(03)01018-3 (2003). 10.1016/s0092-8674(03)01018-3 PubMed DOI
Hanna, J., Hossain, G. S. & Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet.10, 478. 10.3389/fgene.2019.00478 (2019). 10.3389/fgene.2019.00478 PubMed DOI PMC
Kwon, J. J., Factora, T. D., Dey, S. & Kota, J. A systematic review of miR-29 in cancer. Mol. Ther. Oncolytics12, 173–194. 10.1016/j.omto.2018.12.011 (2019). 10.1016/j.omto.2018.12.011 PubMed DOI PMC
Zhao, W., Cheng, L., Quek, C., Bellingham, S. A. & Hill, A. F. Novel miR-29b target regulation patterns are revealed in two different cell lines. Sci. Rep.9, 17449. 10.1038/s41598-019-53868-x (2019). 10.1038/s41598-019-53868-x PubMed DOI PMC
Huang, H. Y. et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucl. Acids Res.50, D222–D230. 10.1093/nar/gkab1079 (2022). 10.1093/nar/gkab1079 PubMed DOI PMC
Mott, J. L., Kobayashi, S., Bronk, S. F. & Gores, G. J. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene26, 6133–6140. 10.1038/sj.onc.1210436 (2007). 10.1038/sj.onc.1210436 PubMed DOI PMC
Xiong, Y. et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology51, 836–845. 10.1002/hep.23380 (2010). 10.1002/hep.23380 PubMed DOI
Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. U S A104, 15805–15810. 10.1073/pnas.0707628104 (2007). 10.1073/pnas.0707628104 PubMed DOI PMC
Jiang, H., Zhang, G., Wu, J. H. & Jiang, C. P. Diverse roles of miR-29 in cancer (review). Oncol. Rep.31, 1509–1516. 10.3892/or.2014.3036 (2014). 10.3892/or.2014.3036 PubMed DOI
Cheng, J. et al. An extensive network of TET2-targeting MicroRNAs regulates malignant hematopoiesis. Cell Rep.5, 471–481. 10.1016/j.celrep.2013.08.050 (2013). 10.1016/j.celrep.2013.08.050 PubMed DOI PMC
Li, Z. et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem.284, 15676–15684. 10.1074/jbc.M809787200 (2009). 10.1074/jbc.M809787200 PubMed DOI PMC
Galluzzi, L. et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ.25, 486–541. 10.1038/s41418-017-0012-4 (2018). 10.1038/s41418-017-0012-4 PubMed DOI PMC
Kollinerova, S., Dostal, Z. & Modriansky, M. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1. Toxicol. In Vitro40, 289–296. 10.1016/j.tiv.2017.02.005 (2017). 10.1016/j.tiv.2017.02.005 PubMed DOI
Oltersdorf, T. & Fritz, L. C. in Annual Reports in Medicinal Chemistry 10.1016/S0065-7743(08)61090-8 Ch. 25, 253–262 (Academic Press, Cambridge, 1998).
Reed, J. C. Bcl-2 family proteins: Regulators of chemoresistance in cancer. Toxicol. Lett.82–83, 155–158. 10.1016/0378-4274(95)03551-6 (1995). 10.1016/0378-4274(95)03551-6 PubMed DOI
Rooswinkel, R. W. et al. Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood123, 2806–2815. 10.1182/blood-2013-08-519470 (2014). 10.1182/blood-2013-08-519470 PubMed DOI
Shamas-Din, A., Kale, J., Leber, B. & Andrews, D. W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol.5, a008714. 10.1101/cshperspect.a008714 (2013). 10.1101/cshperspect.a008714 PubMed DOI PMC
Alvarado-Luna, G. & Morales-Espinosa, D. Treatment for small cell lung cancer, Where are we now?-A review. Transl. Lung Cancer Res.5, 26–38. 10.3978/j.issn.2218-6751.2016.01.13 (2016). 10.3978/j.issn.2218-6751.2016.01.13 PubMed DOI PMC
Liu, M. Y. et al. Selective and effective targeting of chronic myeloid leukemia stem cells by topoisomerase II inhibitor etoposide in combination with imatinib mesylate in vitro. Cell Biol. Int.41, 16–23. 10.1002/cbin.10686 (2017). 10.1002/cbin.10686 PubMed DOI
Hande, K. R. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer34, 1514–1521. 10.1016/s0959-8049(98)00228-7 (1998). 10.1016/s0959-8049(98)00228-7 PubMed DOI
Gatto, B. & Leo, E. Drugs acting on the beta isoform of human topoisomerase II (p180). Curr. Med. Chem. Anticancer Agents3, 173–185. 10.2174/1568011033482486 (2003). 10.2174/1568011033482486 PubMed DOI
Montecucco, A. & Biamonti, G. Cellular response to etoposide treatment. Cancer Lett.252, 9–18. 10.1016/j.canlet.2006.11.005 (2007). 10.1016/j.canlet.2006.11.005 PubMed DOI
Davis, A. J. & Chen, D. J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res.2, 130–143. 10.3978/j.issn.2218-676X.2013.04.02 (2013). 10.3978/j.issn.2218-676X.2013.04.02 PubMed DOI PMC
Fan, Y., Schreiber, E. M., Giorgianni, A., Yalowich, J. C. & Day, B. W. Myeloperoxidase-catalyzed metabolism of etoposide to its quinone and glutathione adduct forms in HL60 cells. Chem. Res. Toxicol.19, 937–943. 10.1021/tx0600595 (2006). 10.1021/tx0600595 PubMed DOI
Koehler, B. C. et al. Beyond cell death - antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS One8, e76446. 10.1371/journal.pone.0076446 (2013). 10.1371/journal.pone.0076446 PubMed DOI PMC
Dusek, L. et al. Cancer incidence and mortality in the Czech Republic. Klin. Onkol.27, 406–423. 10.14735/amko2014406 (2014). 10.14735/amko2014406 PubMed DOI
Kavsan, V. M., Iershov, A. V. & Balynska, O. V. Immortalized cells and one oncogene in malignant transformation: Old insights on new explanation. BMC Cell Biol.12, 23. 10.1186/1471-2121-12-23 (2011). 10.1186/1471-2121-12-23 PubMed DOI PMC
Pai, V. B. & Nahata, M. C. Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Saf.22, 263–302. 10.2165/00002018-200022040-00002 (2000). 10.2165/00002018-200022040-00002 PubMed DOI
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucl. Acids Res.47, D155–D162. 10.1093/nar/gky1141 (2019). 10.1093/nar/gky1141 PubMed DOI PMC
Chen, Y. & Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucl. Acids Res.48, D127–D131. 10.1093/nar/gkz757 (2020). 10.1093/nar/gkz757 PubMed DOI PMC
Dostal, Z., Kosina, P., Mlejnek, P., Kikalova, K. & Modriansky, M. Mifepristone potentiates etoposide toxicity in Hep G2 cells by modulating drug transport. Toxicol. In Vitro54, 33–40. 10.1016/j.tiv.2018.09.005 (2019). 10.1016/j.tiv.2018.09.005 PubMed DOI
Gutmann, H. et al. Evidence for different ABC-transporters in Caco-2 cells modulating drug uptake. Pharm. Res.16, 402–407. 10.1023/a:1018825819249 (1999). 10.1023/a:1018825819249 PubMed DOI
He, H., Tian, W., Chen, H. & Deng, Y. MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1. Mol. Med. Rep.13, 1923–1929. 10.3892/mmr.2015.4727 (2016). 10.3892/mmr.2015.4727 PubMed DOI
Sancho, M., Leiva, D., Lucendo, E. & Orzaez, M. Understanding MCL1: From cellular function and regulation to pharmacological inhibition. FEBS J.289, 6209–6234. 10.1111/febs.16136 (2022). 10.1111/febs.16136 PubMed DOI PMC
Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.162, 156–159. 10.1006/abio.1987.9999 (1987). 10.1006/abio.1987.9999 PubMed DOI
Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques15(532–534), 536–537 (1993). PubMed
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res.29, e45. 10.1093/nar/29.9.e45 (2001). 10.1093/nar/29.9.e45 PubMed DOI PMC