On the mechanism of miR-29b enhancement of etoposide toxicity in vitro

. 2024 Aug 27 ; 14 (1) : 19880. [epub] 20240827

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39191993

Grantová podpora
IGA_LF_2022_025 Univerzita Palackého v Olomouci
RVO 61989592 Univerzita Palackého v Olomouci

Odkazy

PubMed 39191993
PubMed Central PMC11349908
DOI 10.1038/s41598-024-70856-y
PII: 10.1038/s41598-024-70856-y
Knihovny.cz E-zdroje

MicroRNA hsa-miR-29 was connected to a number of malignancies. Its target genes are many, among them Mcl-1 that is expressed in three possible isoforms, one of which is anti-apoptotic and another one pro-apoptotic. Ratio of these two isoforms appears to affect cell response to external stimuli. We have demonstrated that miR-29b enhanced etoposide toxicity in HeLa cell line by modulating this ratio of Mcl-1 isoforms. However, it is not known whether the described miR-29 effect is common to various cancer types or even have the opposite effect. This represents a significant problem for possible future applications. In this report, we demonstrate that miR-29b affects toxicity of 60 μM etoposide in cell lines derived from selected malignancies. The mechanism, however, differs among the cell lines tested. Hep G2 cells demonstrated similar effect of miR-29b on etoposide toxicity as was described in HeLa cells, i.e. modulation of Mcl-1 expression. Target protein down-regulated by miR-29b resulting in enhanced etoposide toxicity in Caco-2 cells was, however, Bcl-2 protein. Moreover, H9c2, Hek-293 and ARPE-19 cell lines selected as a representatives of non-malignant cells, showed no effect of miR-29b on etoposide toxicity. Our data suggest that miR-29b could be a common enhancer of etoposide toxicity in malignant cells due to its modulation of Bcl family proteins.

Zobrazit více v PubMed

White, M. C. et al. Age and cancer risk: A potentially modifiable relationship. Am. J. Prev. Med.46, S7-15. 10.1016/j.amepre.2013.10.029 (2014). 10.1016/j.amepre.2013.10.029 PubMed DOI PMC

Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell116, 281–297. 10.1016/s0092-8674(04)00045-5 (2004). 10.1016/s0092-8674(04)00045-5 PubMed DOI

Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798. 10.1016/s0092-8674(03)01018-3 (2003). 10.1016/s0092-8674(03)01018-3 PubMed DOI

Hanna, J., Hossain, G. S. & Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet.10, 478. 10.3389/fgene.2019.00478 (2019). 10.3389/fgene.2019.00478 PubMed DOI PMC

Kwon, J. J., Factora, T. D., Dey, S. & Kota, J. A systematic review of miR-29 in cancer. Mol. Ther. Oncolytics12, 173–194. 10.1016/j.omto.2018.12.011 (2019). 10.1016/j.omto.2018.12.011 PubMed DOI PMC

Zhao, W., Cheng, L., Quek, C., Bellingham, S. A. & Hill, A. F. Novel miR-29b target regulation patterns are revealed in two different cell lines. Sci. Rep.9, 17449. 10.1038/s41598-019-53868-x (2019). 10.1038/s41598-019-53868-x PubMed DOI PMC

Huang, H. Y. et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucl. Acids Res.50, D222–D230. 10.1093/nar/gkab1079 (2022). 10.1093/nar/gkab1079 PubMed DOI PMC

Mott, J. L., Kobayashi, S., Bronk, S. F. & Gores, G. J. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene26, 6133–6140. 10.1038/sj.onc.1210436 (2007). 10.1038/sj.onc.1210436 PubMed DOI PMC

Xiong, Y. et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology51, 836–845. 10.1002/hep.23380 (2010). 10.1002/hep.23380 PubMed DOI

Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. U S A104, 15805–15810. 10.1073/pnas.0707628104 (2007). 10.1073/pnas.0707628104 PubMed DOI PMC

Jiang, H., Zhang, G., Wu, J. H. & Jiang, C. P. Diverse roles of miR-29 in cancer (review). Oncol. Rep.31, 1509–1516. 10.3892/or.2014.3036 (2014). 10.3892/or.2014.3036 PubMed DOI

Cheng, J. et al. An extensive network of TET2-targeting MicroRNAs regulates malignant hematopoiesis. Cell Rep.5, 471–481. 10.1016/j.celrep.2013.08.050 (2013). 10.1016/j.celrep.2013.08.050 PubMed DOI PMC

Li, Z. et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem.284, 15676–15684. 10.1074/jbc.M809787200 (2009). 10.1074/jbc.M809787200 PubMed DOI PMC

Galluzzi, L. et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ.25, 486–541. 10.1038/s41418-017-0012-4 (2018). 10.1038/s41418-017-0012-4 PubMed DOI PMC

Kollinerova, S., Dostal, Z. & Modriansky, M. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1. Toxicol. In Vitro40, 289–296. 10.1016/j.tiv.2017.02.005 (2017). 10.1016/j.tiv.2017.02.005 PubMed DOI

Oltersdorf, T. & Fritz, L. C. in Annual Reports in Medicinal Chemistry 10.1016/S0065-7743(08)61090-8 Ch. 25, 253–262 (Academic Press, Cambridge, 1998).

Reed, J. C. Bcl-2 family proteins: Regulators of chemoresistance in cancer. Toxicol. Lett.82–83, 155–158. 10.1016/0378-4274(95)03551-6 (1995). 10.1016/0378-4274(95)03551-6 PubMed DOI

Rooswinkel, R. W. et al. Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood123, 2806–2815. 10.1182/blood-2013-08-519470 (2014). 10.1182/blood-2013-08-519470 PubMed DOI

Shamas-Din, A., Kale, J., Leber, B. & Andrews, D. W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol.5, a008714. 10.1101/cshperspect.a008714 (2013). 10.1101/cshperspect.a008714 PubMed DOI PMC

Alvarado-Luna, G. & Morales-Espinosa, D. Treatment for small cell lung cancer, Where are we now?-A review. Transl. Lung Cancer Res.5, 26–38. 10.3978/j.issn.2218-6751.2016.01.13 (2016). 10.3978/j.issn.2218-6751.2016.01.13 PubMed DOI PMC

Liu, M. Y. et al. Selective and effective targeting of chronic myeloid leukemia stem cells by topoisomerase II inhibitor etoposide in combination with imatinib mesylate in vitro. Cell Biol. Int.41, 16–23. 10.1002/cbin.10686 (2017). 10.1002/cbin.10686 PubMed DOI

Hande, K. R. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer34, 1514–1521. 10.1016/s0959-8049(98)00228-7 (1998). 10.1016/s0959-8049(98)00228-7 PubMed DOI

Gatto, B. & Leo, E. Drugs acting on the beta isoform of human topoisomerase II (p180). Curr. Med. Chem. Anticancer Agents3, 173–185. 10.2174/1568011033482486 (2003). 10.2174/1568011033482486 PubMed DOI

Montecucco, A. & Biamonti, G. Cellular response to etoposide treatment. Cancer Lett.252, 9–18. 10.1016/j.canlet.2006.11.005 (2007). 10.1016/j.canlet.2006.11.005 PubMed DOI

Davis, A. J. & Chen, D. J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res.2, 130–143. 10.3978/j.issn.2218-676X.2013.04.02 (2013). 10.3978/j.issn.2218-676X.2013.04.02 PubMed DOI PMC

Fan, Y., Schreiber, E. M., Giorgianni, A., Yalowich, J. C. & Day, B. W. Myeloperoxidase-catalyzed metabolism of etoposide to its quinone and glutathione adduct forms in HL60 cells. Chem. Res. Toxicol.19, 937–943. 10.1021/tx0600595 (2006). 10.1021/tx0600595 PubMed DOI

Koehler, B. C. et al. Beyond cell death - antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS One8, e76446. 10.1371/journal.pone.0076446 (2013). 10.1371/journal.pone.0076446 PubMed DOI PMC

Dusek, L. et al. Cancer incidence and mortality in the Czech Republic. Klin. Onkol.27, 406–423. 10.14735/amko2014406 (2014). 10.14735/amko2014406 PubMed DOI

Kavsan, V. M., Iershov, A. V. & Balynska, O. V. Immortalized cells and one oncogene in malignant transformation: Old insights on new explanation. BMC Cell Biol.12, 23. 10.1186/1471-2121-12-23 (2011). 10.1186/1471-2121-12-23 PubMed DOI PMC

Pai, V. B. & Nahata, M. C. Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Saf.22, 263–302. 10.2165/00002018-200022040-00002 (2000). 10.2165/00002018-200022040-00002 PubMed DOI

Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucl. Acids Res.47, D155–D162. 10.1093/nar/gky1141 (2019). 10.1093/nar/gky1141 PubMed DOI PMC

Chen, Y. & Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucl. Acids Res.48, D127–D131. 10.1093/nar/gkz757 (2020). 10.1093/nar/gkz757 PubMed DOI PMC

Dostal, Z., Kosina, P., Mlejnek, P., Kikalova, K. & Modriansky, M. Mifepristone potentiates etoposide toxicity in Hep G2 cells by modulating drug transport. Toxicol. In Vitro54, 33–40. 10.1016/j.tiv.2018.09.005 (2019). 10.1016/j.tiv.2018.09.005 PubMed DOI

Gutmann, H. et al. Evidence for different ABC-transporters in Caco-2 cells modulating drug uptake. Pharm. Res.16, 402–407. 10.1023/a:1018825819249 (1999). 10.1023/a:1018825819249 PubMed DOI

He, H., Tian, W., Chen, H. & Deng, Y. MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1. Mol. Med. Rep.13, 1923–1929. 10.3892/mmr.2015.4727 (2016). 10.3892/mmr.2015.4727 PubMed DOI

Sancho, M., Leiva, D., Lucendo, E. & Orzaez, M. Understanding MCL1: From cellular function and regulation to pharmacological inhibition. FEBS J.289, 6209–6234. 10.1111/febs.16136 (2022). 10.1111/febs.16136 PubMed DOI PMC

Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.162, 156–159. 10.1006/abio.1987.9999 (1987). 10.1006/abio.1987.9999 PubMed DOI

Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques15(532–534), 536–537 (1993). PubMed

Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res.29, e45. 10.1093/nar/29.9.e45 (2001). 10.1093/nar/29.9.e45 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...