• This record comes from PubMed

Analyzing chaos and superposition of lump waves with other waves in the time-fractional coupled nonlinear schördinger equation

. 2024 ; 19 (8) : e0304334. [epub] 20240828

Language English Country United States Media electronic-ecollection

Document type Journal Article

This article aims to study the time fractional coupled nonlinear Schrödinger equation, which explains the interaction between modes in nonlinear optics and Bose-Einstein condensation. The proposed generalized projective Riccati equation method and modified auxiliary equation method extract a more efficient and broad range of soliton solutions. These include novel solutions like a combined dark-lump wave soliton, multiple dark-lump wave soliton, two dark-kink solitons, flat kink-lump wave, multiple U-shaped with lump wave, combined bright-dark with high amplitude lump wave, bright-dark with lump wave and kink dark-periodic solitons are derived. The travelling wave patterns of the model are graphically presented with suitable parameters in 3D, density, contour and 2D surfaces, enhancing understanding of parameter impact. The proposed model's dynamics were observed and presented as quasi-periodic chaotic, periodic systems and quasi-periodic. This analysis confirms the effectiveness and reliability of the method employed, demonstrating its applicability in discovering travelling wave solitons for a wide range of nonlinear evolution equations.

Erratum In

PubMed

See more in PubMed

Wazwaz AM. Partial differential equations and solitary waves theory. Springer Science & Business Media. 2010.

Levi D. On a new Darboux transformation for the construction of exact solutions of the Schrodinger equation. Inverse Problems. 1988; 4(1): 165. doi: 10.1088/0266-5611/4/1/014 DOI

Mollenauer LF, Gordon JP. Solitons in optical fibres: fundamentals and applications. Elsevier. (2006).

Wazwaz AM, New Painlevé Integrable (3 + 1)-Dimensional Combined pKP-BKP Equation: Lump and Multiple Soliton Solutions. Chinese Physics Letters, 2023; 40(12): 120501. doi: 10.1088/0256-307X/40/12/120501 DOI

Kumar S, Mann N. Abundant closed-form solutions of the (3 + 1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering. Journal of Ocean Engineering and Science. 2022. doi: 10.1016/j.joes.2022.04.007 DOI

Khan SM, Sunny DA, Aqeel M. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system. The European Physical Journal Plus. 2017; 132: 1–10. doi: 10.1140/epjp/i2017-11673-7 DOI

Khader MM, Adel M, Riaz MB, Ahmad H. Theoretical treatment and implementation of the SCM included Appell-Changhee polynomials for the fractional delayed carbon absorption-emission model. Results in Physics. 2024; 58: 107459. doi: 10.1016/j.rinp.2024.107459 DOI

Siddiqui AA, Ahmad S, Aqeel M. Influence of the magnetic field on merging flow of the Powell-Eyring fluids: an exact solution. Meccanica. 2018; 53(9): 2287–2298. doi: 10.1007/s11012-018-0819-1 DOI

Esen A, Sulaiman TA, Bulut H, Baskonus HM. Optical solitons to the space-time fractional (1 + 1)-dimensional coupled nonlinear Schrödinger equation. Optik. 2018; 167: 150–156. doi: 10.1016/j.ijleo.2018.04.015 DOI

Ur-Rehman S, Ahmad J. Dynamics of optical and multiple lump solutions to the fractional coupled nonlinear Schrödinger equation. Optical and Quantum Electronics. 2022; 54(10): 640. doi: 10.1007/s11082-022-03961-9 DOI

Ahmad J, Mustafa Z. Analysis of soliton solutions with different wave configurations to the fractional coupled nonlinear Schrödinger equations and applications. Optical and Quantum Electronics. 2023; 55(14): 1228. doi: 10.1007/s11082-023-05534-w DOI

Zhang S, Zhu F, Xu B. Localized symmetric and asymmetric solitary wave solutions of fractional coupled nonlinear Schrödinger equations. Symmetry. 2023; 15(6): 1211. doi: 10.3390/sym15061211 DOI

Yao SW, Islam ME, Akbar MA, Inc M, Adel M, Osman MS. Analysis of parametric effects in the wave profile of the variant Boussinesq equation through two analytical approaches. Open Physics. 2022; 20(1): 778–794. doi: 10.1515/phys-2022-0071 DOI

Boakye G, Hosseini K, Hinçal E, Sirisubtawee S, Osman MS. Some models of solitary wave propagation in optical fibers involving Kerr and parabolic laws. Optical and Quantum Electronics. 2024; 56(3): 345. doi: 10.1007/s11082-023-05903-5 DOI

Wazwaz AM, Alhejaili W, El-Tantawy SA. On the Painlevé integrability and nonlinear structures to a (3 + 1)-dimensional Boussinesq-type equation in fluid mediums: Lumps and multiple soliton/shock solutions. Physics of Fluids. 2024; 36(3): 033116. doi: 10.1063/5.0194071 DOI

Irandoust-Pakchin S, Abdi-Mazraeh S, Adel M. Application of flatlet oblique multiwavelets to solve the fractional stochastic integro-differential equation using Galerkin method. Mathematical Methods in the Applied Sciences. 2024. doi: 10.1002/mma.10017 DOI

Li Z, Xie X, Jin C. Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results in Physics. 2022; 41: 105932. doi: 10.1016/j.rinp.2022.105932 DOI

Shen Y, Tian B, Gao XT. Bilinear auto-Bäcklund transformation, soliton and periodic-wave solutions for a (2 + 1)-dimensional generalized Kadomtsev–Petviashvili system in fluid mechanics and plasma physics. Chinese Journal of Physics. 2022; 77: 2698–2706. doi: 10.1016/j.cjph.2021.11.025 DOI

Mohammed WW, El-Morshedy M, Moumen A, Ali EE, Benaissa M, Abouelregal AE. Effects of M-Truncated Derivative and Multiplicative Noise on the Exact Solutions of the Breaking Soliton Equation. Symmetry. 2023; 15(2): 288. doi: 10.3390/sym15020288 DOI

Bruzzone OA, Perri DV, Easdale MH. Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach. Ecological Informatics. 2022; 73: 101913. doi: 10.1016/j.ecoinf.2022.101913 DOI

Zhou TY, Tian B, Zhang CR, Liu SH. Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3 + 1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. The European Physical Journal Plus. 2022; 137(8); 1–17. doi: 10.1140/epjp/s13360-022-02950-x PubMed DOI

Alabedalhadi M. Exact travelling wave solutions for a nonlinear system of spatiotemporal fractional quantum mechanics equations. Alexandria Engineering Journal. 2022; 61(2): 1033–1044. doi: 10.1016/j.aej.2021.07.019 DOI

Akinyemi L, Rezazadeh H, Yao SW, Akbar MA, Khater MM, Jhangeer A, Ahmad H. Nonlinear dispersion in parabolic law medium and its optical solitons. Results in Physics. 2021; 26: 104411. doi: 10.1016/j.rinp.2021.104411 DOI

Ghanbari B, Baleanu D. Abundant optical solitons to the (2 + 1)-dimensional Kundu-Mukherjee-Naskar equation in fiber communication systems. Optical and Quantum Electronics. 2023; 55(13): 1133. doi: 10.1007/s11082-023-05457-6 DOI

Ali KK, Wazwaz AM, Osman MS. Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik. 2020; 208: 164132. doi: 10.1016/j.ijleo.2019.164132 DOI

Zhang R., Bilige S., & Chaolu T. (2021). Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. Journal of Systems Science and Complexity, 34(1), 122–139. doi: 10.1007/s11424-020-9392-5 DOI

Alqurashi NT, Manzoor M, Majid SZ, Asjad MI, Osman MS. Solitary waves pattern appear in tropical tropospheres and nonlinear Landau–Ginzburg–Higgs equation mid-latitudes with chaotic analysis. Results in Physics. 2023; 54: 107116. doi: 10.1016/j.rinp.2023.107116 DOI

Faiz Z, Javeed S, Ahmed I, Baleanu D, Riaz MB, Sabir Z. Numerical Solutions of the Wolbachia Invasive Model Using Levenberg-Marquardt Backpropagation Neural Network Technique. Results in Physics. 2023; 50: 106602. doi: 10.1016/j.rinp.2023.106602 DOI

Ibrahim S, Baleanu D. Classes of solitary solution for nonlinear Schrödinger equation arising in optical fibers and their stability analysis. Optical and Quantum Electronics. 2023; 55(13): 1158. doi: 10.1007/s11082-023-05423-2 DOI

Adel M, Sweilam NH, Khader MM, Ahmed SM, Ahmad H, Botmart T. Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation. Results in Physics. 2022; 39: 105682. doi: 10.1016/j.rinp.2022.105682 DOI

Asjad MI, Manzoor M, Faridi WA, Majid SZ. Precise invariant travelling wave soliton solutions of the Nizhnik–Novikov–Veselov equation with dynamic assessment. Optik. 2023; 294: 171438. doi: 10.1016/j.ijleo.2023.171438 DOI

Muniyappan A, Parasuraman E, Seadawy AR, Sudharsan JB. Chirped dark soliton propagation in optical fiber under a self phase modulation and a self-steepening effect for higher order nonlinear Schrödinger equation. Optical and Quantum Electronics. 2024; 56(5): 1–19. doi: 10.1007/s11082-024-06358-y DOI

Kumar S, Rani S, Mann N. Diverse analytical wave solutions and dynamical behaviors of the new (2 + 1)-dimensional Sakovich equation emerging in fluid dynamics. The European Physical Journal Plus. 2022; 137(11): 1226. doi: 10.1140/epjp/s13360-022-03397-w DOI

Majid SZ, Asjad MI, Faridi WA. Solitary travelling wave profiles to the nonlinear generalized Calogero–Bogoyavlenskii–Schiff equation and dynamical assessment. The European Physical Journal Plus. 2023; 138(11): 1040. doi: 10.1140/epjp/s13360-023-04681-z DOI

Khader MM, Gómez-Aguilar JF, Adel M. Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method. International Journal of Circuit Theory and Applications. 2021; 49(10): 3266–3285. doi: 10.1002/cta.3103 DOI

Majid SZ, Faridi WA, Asjad MI, El-Rahman A, Eldin SM. Explicit Soliton Structure Formation for the Riemann Wave Equation and a Sensitive Demonstration. Fractal and Fractional. 2023; 7(2): 102. doi: 10.3390/fractalfract7020102 DOI

Ahmad J, Rani S, Turki NB, Shah NA. Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Results in Physics. 2023; 52: 106761. doi: 10.1016/j.rinp.2023.106761 DOI

Ali A, Ahmad J, Javed S. Exploring the dynamic nature of soliton solutions to the fractional coupled nonlinear Schrödinger model with their sensitivity analysis. 2023; Optical and Quantum Electronics. 2023; 55(9): 810. doi: 10.1007/s11082-023-05033-y DOI

Okposo NI, Veeresha P, Okposo EN. Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons. Chinese Journal of Physics. 2022; 77: 965–984. doi: 10.1016/j.cjph.2021.10.014 DOI

Lakestani M, Manafian J. Analytical treatments of the space–time fractional coupled nonlinear Schrödinger equations. Optical and Quantum Electronics. 2018; 50(396): 1–33. doi: 10.1007/s11082-018-1615-9 DOI

Zayed EM, Alurrfi KA. The generalized projective Riccati equations method and its applications for solving two nonlinear PDEs describing microtubules. International Journal of Physical Sciences. 2015; 10(13): 391–402. doi: 10.5897/IJPS2015.4289 DOI

Zhang TX, Xuan HN, Zhang DF, Wang CJ. Non-travelling wave solutions to a (3 + 1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures. Chaos, Solitons & Fractals. 2007; 34(3): 1006–1013. doi: 10.1016/j.chaos.2006.04.005 DOI

Khater MM, Lu D, Attia RA. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method. AIP Advances. 2019; 9(4): 049902. doi: 10.1063/1.5087647 DOI

Akram G, Sadaf M, Khan MAU. Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik. 2022; 251: 168163. doi: 10.1016/j.ijleo.2021.168163 DOI

Lakshmanan M, Rajaseekar S. Nonlinear dynamics: integrability, chaos and patterns. Springer Science & Business Media. (2012).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...