Analyzing chaos and superposition of lump waves with other waves in the time-fractional coupled nonlinear schördinger equation
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39196950
PubMed Central
PMC11356411
DOI
10.1371/journal.pone.0304334
PII: PONE-D-24-08941
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- Nonlinear Dynamics * MeSH
- Models, Theoretical MeSH
- Publication type
- Journal Article MeSH
This article aims to study the time fractional coupled nonlinear Schrödinger equation, which explains the interaction between modes in nonlinear optics and Bose-Einstein condensation. The proposed generalized projective Riccati equation method and modified auxiliary equation method extract a more efficient and broad range of soliton solutions. These include novel solutions like a combined dark-lump wave soliton, multiple dark-lump wave soliton, two dark-kink solitons, flat kink-lump wave, multiple U-shaped with lump wave, combined bright-dark with high amplitude lump wave, bright-dark with lump wave and kink dark-periodic solitons are derived. The travelling wave patterns of the model are graphically presented with suitable parameters in 3D, density, contour and 2D surfaces, enhancing understanding of parameter impact. The proposed model's dynamics were observed and presented as quasi-periodic chaotic, periodic systems and quasi-periodic. This analysis confirms the effectiveness and reliability of the method employed, demonstrating its applicability in discovering travelling wave solitons for a wide range of nonlinear evolution equations.
Department of Computer Science and Mathematics Lebanese American University Byblos Lebanon
Department of Mathematics College of Science King Khalid University Abha Saudi Arabia
Department of Mathematics University of Management and Technology Lahore Pakistan
It4innovations VSB Technical University of Ostrava Ostrava Czech Republic
See more in PubMed
Wazwaz AM. Partial differential equations and solitary waves theory. Springer Science & Business Media. 2010.
Levi D. On a new Darboux transformation for the construction of exact solutions of the Schrodinger equation. Inverse Problems. 1988; 4(1): 165. doi: 10.1088/0266-5611/4/1/014 DOI
Mollenauer LF, Gordon JP. Solitons in optical fibres: fundamentals and applications. Elsevier. (2006).
Wazwaz AM, New Painlevé Integrable (3 + 1)-Dimensional Combined pKP-BKP Equation: Lump and Multiple Soliton Solutions. Chinese Physics Letters, 2023; 40(12): 120501. doi: 10.1088/0256-307X/40/12/120501 DOI
Kumar S, Mann N. Abundant closed-form solutions of the (3 + 1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering. Journal of Ocean Engineering and Science. 2022. doi: 10.1016/j.joes.2022.04.007 DOI
Khan SM, Sunny DA, Aqeel M. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system. The European Physical Journal Plus. 2017; 132: 1–10. doi: 10.1140/epjp/i2017-11673-7 DOI
Khader MM, Adel M, Riaz MB, Ahmad H. Theoretical treatment and implementation of the SCM included Appell-Changhee polynomials for the fractional delayed carbon absorption-emission model. Results in Physics. 2024; 58: 107459. doi: 10.1016/j.rinp.2024.107459 DOI
Siddiqui AA, Ahmad S, Aqeel M. Influence of the magnetic field on merging flow of the Powell-Eyring fluids: an exact solution. Meccanica. 2018; 53(9): 2287–2298. doi: 10.1007/s11012-018-0819-1 DOI
Esen A, Sulaiman TA, Bulut H, Baskonus HM. Optical solitons to the space-time fractional (1 + 1)-dimensional coupled nonlinear Schrödinger equation. Optik. 2018; 167: 150–156. doi: 10.1016/j.ijleo.2018.04.015 DOI
Ur-Rehman S, Ahmad J. Dynamics of optical and multiple lump solutions to the fractional coupled nonlinear Schrödinger equation. Optical and Quantum Electronics. 2022; 54(10): 640. doi: 10.1007/s11082-022-03961-9 DOI
Ahmad J, Mustafa Z. Analysis of soliton solutions with different wave configurations to the fractional coupled nonlinear Schrödinger equations and applications. Optical and Quantum Electronics. 2023; 55(14): 1228. doi: 10.1007/s11082-023-05534-w DOI
Zhang S, Zhu F, Xu B. Localized symmetric and asymmetric solitary wave solutions of fractional coupled nonlinear Schrödinger equations. Symmetry. 2023; 15(6): 1211. doi: 10.3390/sym15061211 DOI
Yao SW, Islam ME, Akbar MA, Inc M, Adel M, Osman MS. Analysis of parametric effects in the wave profile of the variant Boussinesq equation through two analytical approaches. Open Physics. 2022; 20(1): 778–794. doi: 10.1515/phys-2022-0071 DOI
Boakye G, Hosseini K, Hinçal E, Sirisubtawee S, Osman MS. Some models of solitary wave propagation in optical fibers involving Kerr and parabolic laws. Optical and Quantum Electronics. 2024; 56(3): 345. doi: 10.1007/s11082-023-05903-5 DOI
Wazwaz AM, Alhejaili W, El-Tantawy SA. On the Painlevé integrability and nonlinear structures to a (3 + 1)-dimensional Boussinesq-type equation in fluid mediums: Lumps and multiple soliton/shock solutions. Physics of Fluids. 2024; 36(3): 033116. doi: 10.1063/5.0194071 DOI
Irandoust-Pakchin S, Abdi-Mazraeh S, Adel M. Application of flatlet oblique multiwavelets to solve the fractional stochastic integro-differential equation using Galerkin method. Mathematical Methods in the Applied Sciences. 2024. doi: 10.1002/mma.10017 DOI
Li Z, Xie X, Jin C. Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results in Physics. 2022; 41: 105932. doi: 10.1016/j.rinp.2022.105932 DOI
Shen Y, Tian B, Gao XT. Bilinear auto-Bäcklund transformation, soliton and periodic-wave solutions for a (2 + 1)-dimensional generalized Kadomtsev–Petviashvili system in fluid mechanics and plasma physics. Chinese Journal of Physics. 2022; 77: 2698–2706. doi: 10.1016/j.cjph.2021.11.025 DOI
Mohammed WW, El-Morshedy M, Moumen A, Ali EE, Benaissa M, Abouelregal AE. Effects of M-Truncated Derivative and Multiplicative Noise on the Exact Solutions of the Breaking Soliton Equation. Symmetry. 2023; 15(2): 288. doi: 10.3390/sym15020288 DOI
Bruzzone OA, Perri DV, Easdale MH. Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach. Ecological Informatics. 2022; 73: 101913. doi: 10.1016/j.ecoinf.2022.101913 DOI
Zhou TY, Tian B, Zhang CR, Liu SH. Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3 + 1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. The European Physical Journal Plus. 2022; 137(8); 1–17. doi: 10.1140/epjp/s13360-022-02950-x PubMed DOI
Alabedalhadi M. Exact travelling wave solutions for a nonlinear system of spatiotemporal fractional quantum mechanics equations. Alexandria Engineering Journal. 2022; 61(2): 1033–1044. doi: 10.1016/j.aej.2021.07.019 DOI
Akinyemi L, Rezazadeh H, Yao SW, Akbar MA, Khater MM, Jhangeer A, Ahmad H. Nonlinear dispersion in parabolic law medium and its optical solitons. Results in Physics. 2021; 26: 104411. doi: 10.1016/j.rinp.2021.104411 DOI
Ghanbari B, Baleanu D. Abundant optical solitons to the (2 + 1)-dimensional Kundu-Mukherjee-Naskar equation in fiber communication systems. Optical and Quantum Electronics. 2023; 55(13): 1133. doi: 10.1007/s11082-023-05457-6 DOI
Ali KK, Wazwaz AM, Osman MS. Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik. 2020; 208: 164132. doi: 10.1016/j.ijleo.2019.164132 DOI
Zhang R., Bilige S., & Chaolu T. (2021). Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. Journal of Systems Science and Complexity, 34(1), 122–139. doi: 10.1007/s11424-020-9392-5 DOI
Alqurashi NT, Manzoor M, Majid SZ, Asjad MI, Osman MS. Solitary waves pattern appear in tropical tropospheres and nonlinear Landau–Ginzburg–Higgs equation mid-latitudes with chaotic analysis. Results in Physics. 2023; 54: 107116. doi: 10.1016/j.rinp.2023.107116 DOI
Faiz Z, Javeed S, Ahmed I, Baleanu D, Riaz MB, Sabir Z. Numerical Solutions of the Wolbachia Invasive Model Using Levenberg-Marquardt Backpropagation Neural Network Technique. Results in Physics. 2023; 50: 106602. doi: 10.1016/j.rinp.2023.106602 DOI
Ibrahim S, Baleanu D. Classes of solitary solution for nonlinear Schrödinger equation arising in optical fibers and their stability analysis. Optical and Quantum Electronics. 2023; 55(13): 1158. doi: 10.1007/s11082-023-05423-2 DOI
Adel M, Sweilam NH, Khader MM, Ahmed SM, Ahmad H, Botmart T. Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation. Results in Physics. 2022; 39: 105682. doi: 10.1016/j.rinp.2022.105682 DOI
Asjad MI, Manzoor M, Faridi WA, Majid SZ. Precise invariant travelling wave soliton solutions of the Nizhnik–Novikov–Veselov equation with dynamic assessment. Optik. 2023; 294: 171438. doi: 10.1016/j.ijleo.2023.171438 DOI
Muniyappan A, Parasuraman E, Seadawy AR, Sudharsan JB. Chirped dark soliton propagation in optical fiber under a self phase modulation and a self-steepening effect for higher order nonlinear Schrödinger equation. Optical and Quantum Electronics. 2024; 56(5): 1–19. doi: 10.1007/s11082-024-06358-y DOI
Kumar S, Rani S, Mann N. Diverse analytical wave solutions and dynamical behaviors of the new (2 + 1)-dimensional Sakovich equation emerging in fluid dynamics. The European Physical Journal Plus. 2022; 137(11): 1226. doi: 10.1140/epjp/s13360-022-03397-w DOI
Majid SZ, Asjad MI, Faridi WA. Solitary travelling wave profiles to the nonlinear generalized Calogero–Bogoyavlenskii–Schiff equation and dynamical assessment. The European Physical Journal Plus. 2023; 138(11): 1040. doi: 10.1140/epjp/s13360-023-04681-z DOI
Khader MM, Gómez-Aguilar JF, Adel M. Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method. International Journal of Circuit Theory and Applications. 2021; 49(10): 3266–3285. doi: 10.1002/cta.3103 DOI
Majid SZ, Faridi WA, Asjad MI, El-Rahman A, Eldin SM. Explicit Soliton Structure Formation for the Riemann Wave Equation and a Sensitive Demonstration. Fractal and Fractional. 2023; 7(2): 102. doi: 10.3390/fractalfract7020102 DOI
Ahmad J, Rani S, Turki NB, Shah NA. Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Results in Physics. 2023; 52: 106761. doi: 10.1016/j.rinp.2023.106761 DOI
Ali A, Ahmad J, Javed S. Exploring the dynamic nature of soliton solutions to the fractional coupled nonlinear Schrödinger model with their sensitivity analysis. 2023; Optical and Quantum Electronics. 2023; 55(9): 810. doi: 10.1007/s11082-023-05033-y DOI
Okposo NI, Veeresha P, Okposo EN. Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons. Chinese Journal of Physics. 2022; 77: 965–984. doi: 10.1016/j.cjph.2021.10.014 DOI
Lakestani M, Manafian J. Analytical treatments of the space–time fractional coupled nonlinear Schrödinger equations. Optical and Quantum Electronics. 2018; 50(396): 1–33. doi: 10.1007/s11082-018-1615-9 DOI
Zayed EM, Alurrfi KA. The generalized projective Riccati equations method and its applications for solving two nonlinear PDEs describing microtubules. International Journal of Physical Sciences. 2015; 10(13): 391–402. doi: 10.5897/IJPS2015.4289 DOI
Zhang TX, Xuan HN, Zhang DF, Wang CJ. Non-travelling wave solutions to a (3 + 1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures. Chaos, Solitons & Fractals. 2007; 34(3): 1006–1013. doi: 10.1016/j.chaos.2006.04.005 DOI
Khater MM, Lu D, Attia RA. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method. AIP Advances. 2019; 9(4): 049902. doi: 10.1063/1.5087647 DOI
Akram G, Sadaf M, Khan MAU. Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik. 2022; 251: 168163. doi: 10.1016/j.ijleo.2021.168163 DOI
Lakshmanan M, Rajaseekar S. Nonlinear dynamics: integrability, chaos and patterns. Springer Science & Business Media. (2012).