Evaluation of mining landscape changes with development landscape metrics in the Ostrava-Karviná Mining District (Czech Republic)
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
24-11526S
Grantová Agentura České Republiky
PubMed
39198321
DOI
10.1007/s10661-024-12994-4
PII: 10.1007/s10661-024-12994-4
Knihovny.cz E-zdroje
- Klíčová slova
- Aerial image, Land cover, Landscape changes, Landscape index, Map of stable cadastre, Ostrava-Karviná Mining District,
- MeSH
- hornictví * MeSH
- monitorování životního prostředí * metody MeSH
- těžba uhlí * MeSH
- zachování přírodních zdrojů * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The study presents an analysis of changes in the landscape of the Ostrava-Karviná Mining District (in the Czech Republic) covering the period of more than 170 years. In the area of interest affected by underground coal mining, both areas affected by changes and land cover preserving areas were identified in the study. A detailed assessment of the landscape changes was enabled by using landscape metrics and indices, namely the development index and total landscape change index. The underlying data were obtained from maps of stable cadastre (from the year 1836) and aerial images of the years 1947, 1971, and 2009. Visual photointerpretation of aerial images and interpretation of the maps of stable cadastre made it possible to create land cover maps according to CORINE Land Cover categories. Obtained information on the representation of individual land cover categories were used to identify and to analyze changes in the landscape affected by hard coal mining.
Zobrazit více v PubMed
Akin, A., & Erdogan, M. A. (2020). Analysing temporal and spatial urban sprawl change of Bursa city using landscape metrics and remote sensing. Modeling Earth Systems and Environment, 6, 1331–1343. https://doi.org/10.1007/s40808-020-00766-1 DOI
Antrop, M., & Van Eetvelde, V. (2000). Holistic aspects of suburban landscapes: Visual image interpretation and landscape metrics. Landscape and Urban Planning, 50(1–3), 43–58. https://doi.org/10.1016/S0169-2046(00)00079-7 DOI
Antwi, E. K., Krawczynski, R., & Wiegleb, G. (2008). Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS. Landscape and Urban Planning, 87, 22–32. https://doi.org/10.1016/j.landurbplan.2008.03.009 DOI
Arora, A., Pandey, M., Mishra, V. N., Kumar, R., Rai, P. K., Costache, R., Punia, M., & Di, L. (2021). Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics. Ecological Indicators, 128, 1–19. https://doi.org/10.1016/j.ecolind.2021.107810 DOI
Barell, J., & Grant, J. (2015). High-resolution, low-altitude aerial photography in physical geography: A case study characterizing eelgrass (Zostera marina L) and blue musel (Mytilus edulis L) landscape mosaic structure. Progress in Physical Geography, 39(4), 440–459. https://doi.org/10.1177/0309133315578943 DOI
Baude, M., & Meyer, B. C. (2023). Changes in landscape structure and ecosystem services since 1850 analyzed using landscape metrics in two German municipalities. Ecological Indicators, 152, 1–13. https://doi.org/10.1016/j.ecolind.2023.110365 DOI
Bičík, I., Jeleček, L., & Štěpánek, V. (2001). Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries. Land Use Policy, 18, 65–73. https://doi.org/10.1016/S0264-8377(00)00047-8 DOI
Bína, J., & Demek, J. (2012). Z nížin do hor: Geomorfologické jednotky České republiky (p. 343). Academia.
Bodlák, L., Křováková, K., Nedbal, V., & Pechar, L. (2012). Assessment of landscape functionality changes as one aspect of reclamation quality – The case of Velká podkrušnohorská dump, Czech Republic. Ecological Engineering, 43, 19–25. https://doi.org/10.1016/j.ecoleng.2011.11.018 DOI
Boguszak, F., & Císař, J. (1961). Vývoj mapového zobrazení území Československé socialistické republiky. III., mapování a měření českých zemí od pol.18.stol. do počátku 20.stol (p. 80). Praha: Ústřední správa geodézie a kartografie.
Bossard, M., Feranec, J., & Otahel, J. (2000). The revised and supplemented Corine land cover nomenclature (p. 110). Denmark: European Environment Agency.
Brůna, V., Křováková, K., & Nedbal, V. (2005). Stabilní katastr jako zdroj informací o krajině. Historická Geografie, 33, 397–409.
Carter F., & Turnock D. (2002). Environmental problems in East-Central Europe. Routledge, 464 pp. DOI
Cegielska, K., Noszczyk, T., Kukulska, A., Szylar, M., Hernik, J., Dixon-Gough, R., Jombach, S., Valánszki, I., & FilipnéKovács, K. (2018). Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy, 78, 1–18. https://doi.org/10.1016/j.landusepol.2018.06.017 DOI
Chlupáč, I., Brzobohatý, R., & Kovanda, J. (2002). Geologická minulost České republiky (p. 436). Academia.
CLMS: Copernicus Land Monitoring Service (2022). https://land.copernicus.eu/en . Accessed 4/4/2024
Corpade, C., Man, T., Petrea, D., Corpade, A. M., & Moldovan, C. (2014). Changes in landscape structure induced by transportation in Cluj-Napoca periurban area using GIS. Carpathian Journal of Earth and Environmental Sciences, 4, 177–184.
del Castillo, E. M., García-Martin, A., & Aladrén, L. A. L. (2015). Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Applied Geography, 62, 247–255. https://doi.org/10.1016/j.apgeog.2015.05.002 DOI
Demirel, N., Emil Kemal, M., & SebnemDuzgun, H. (2011). Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. International Journal of Coal Geology, 86, 3–11. https://doi.org/10.1016/j.coal.2010.11.010 DOI
DeWitt, D. J., Chirico, G. P., Bergstresser, E. S., & Warner, A. T. (2017). Multi-scale 46-year remote sensing change detection of diamond mining and land cover in a conflict and post-conflict setting. Remote Sensing Applications: Society and Environment, 8, 126–139. https://doi.org/10.1016/j.rsase.2017.08.002 DOI
DiBari, N. J. (2007). Evaluation of five landscape-level metrics for measuring the effects of urbanization on landscape structure: The case of Tucson, Arizona, USA. Landscape and Urban Planning, 79, 308–313. https://doi.org/10.1016/j.landurbplan.2006.04.004 DOI
Dolejš, M., & Forejt, M. (2019). Franziscean cadastre in landscape structure research: A systematic review. Quaestiones Geo-Graphicae, 38(1), 131–144. https://doi.org/10.2478/quageo-2019-0013 DOI
Dolný, A., & Ďuriš, Z. (2001). Výskyt ohrožených bezobratlých na důlních odkalištích v Karviné. Živa, 49(2001), 268–270.
Herzog, F., Lausch, A., Müller, E., Thulke, H. H., Steinhardt, U., & Lehmann, S. (2001). Landscape metrics for assessment of landscape destruction and rehabilitation. Environmental Management, 27, 91–107. https://doi.org/10.1007/s002670010136 DOI
Kolejka, J., & Klimánek, M. (2012). Vymezení a typologie postindustriální krajiny Česka. Geografie, 117(3), 289–307. DOI
Lausch, A., & Herzog, F. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2, 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5 DOI
Leitao, A. B., Miller, J., Ahern, J., & McGarigal, K. (2006). Measuring landscapes: A planner’s handbook (p. 245). Island Press.
Levin, G., Groom, G.B., Svenningsen, S.R. & Perner, M.L. (2020). Automated production of spatial datasets for land categories from historical maps. Method development and results for a pilot study of Danish late-1800s topographical maps. Aarhus University, DCE – Danish Centre for Environment and Energy, 121 pp. Scientific Report No. 389. http://dce2.au.dk/pub/SR389.pdf . Accessed 4/14/2024
Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42–54. https://doi.org/10.1016/j.apgeog.2014.10.002 DOI
Mísař, Z., Dudek, A. & Havlena, V., (1983). Geologie ČSSR I: Český masív. Praha, SPN, 333 pp..
Narumalani, S., Mishra, D. R., & Rothwell, R. G. (2004). Change detection and landscape metrics for inferring anthropogenic processes in the greater EFMO area. Remote Sensing of Environment, 91, 478–489. https://doi.org/10.1016/j.rse.2004.04.008 DOI
Ostafin, K., Kaim, D., Siwek, T., & Miklar, A. (2020). Historical dataset of administrative units with social-economic attributes for Austrian Silesia 1837–1910. Sci Data, 7, 208. https://doi.org/10.1038/s41597-020-0546-z DOI
Oyana, J. T., Johnson, J. S., & Wang, G. (2014). Landscape metrics and change analysis of a national wildlife refuge at different spatial resolutions. International Journal of Remote Sensing, 35, 3109–3134. https://doi.org/10.1080/01431161.2014.903443 DOI
Pazúr, R., & Bolliger, J. (2017). Land changes in Slovakia: Past processes and future directions. Applied Geography, 85, 163–175. https://doi.org/10.1016/j.apgeog.2017.05.009 DOI
Pivac, D., Roić, M., Križanović, J., & Paar, R. (2021). Availability of Historical Cadastral Data. Land, 10(9), 917. https://doi.org/10.3390/land10090917 DOI
Pocas, I., Cunha, M., & Pereira, S. L. (2011). Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal. Applied Geography, 31, 871–880. https://doi.org/10.1016/j.apgeog.2011.01.014 DOI
Popelka, P., Popelková, R., & Mulková, M. (2016). Black or green land? Industrialisation and landscape changes of the Ostrava-Karviná mining district in the 19th and 20th century (p. 191). Ostravská univerzita.
Popelková, R., & Mulková, M. (2016). Multitemporal aerial image analysis for the monitoring of the processes in the landscape affected by deep coal mining. European Journal of Remote Sensing., 49, 973–1009. https://doi.org/10.5721/EuJRS20164951 DOI
Popelková, R., & Mulková, M. (2018). The mining landscape of the Ostrava-Karviná coalfield: Processes of landscape change from the 1830s to the beginning of the 21st century. Applied Geography, 90, 28–43. https://doi.org/10.1016/j.apgeog.2017.11.008 DOI
Popelková, R. (2009). Retrospektivní analýza vývoje krajiny s využitím geoinformačních technologií (Ph.D. thesis). [Retrospective analysis of landscape development with the use of geoinformation technologies (GIT)] Vysoká škola báňská – Technická univerzita Ostrava, Hornicko-geologická fakulta, Institut geoinformatiky, 168 pp
Popelková, R. (2010). Landscape metrics for the assessment of landscape development affected by mineral resources extraction: Landscape changes in the central part of the Karviná region from the first half of the 19th century to the beginning of the 21st century. Landscape ecology - methods, applications and interdisciplinary approach (pp. 201–2017). Bratislava: Slovak Academy of Sciences.
Popović, S. G., Vukanić, S., Komatina, D. F., Alihodzic-Jasarevic, E., & Vatin, N. (2015). Models of landscape shaping in exploited quarries of urban area. Procedia Engineering, 117, 609–615. https://doi.org/10.1016/j.proeng.2015.08.221 DOI
Redondo-Vega, J. M., Gómez-Villar, A., Santos-González, J., González-Gutiérrez, R. B., & Álvarez-Martínez, J. (2017). Changes in land use due to mining in the north-western mountains of Spain during the previous 50 years. CATENA, 149, 844–856. https://doi.org/10.1016/j.catena.2016.03.017 DOI
Shang, C., & Wu, J. (2022). A legendary landscape in peril: Land use and land cover change and environmental impacts in the Wulagai River Basin, Inner Mongolia. Journal of Environmental Management, 301, 1–11. https://doi.org/10.1016/j.jenvman.2021.113816 DOI
Shooshtari, S. J., & Gholamalifard, M. (2015). Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed. Iran. Remote Sensing Applications: Society and Environment, 1, 1–19. https://doi.org/10.1016/j.rsase.2015.05.001 DOI
Siqueira-Gay, J., Sonter, L. J., & Sánchez, L. E. (2020). Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resources Policy, 67, 1–10. https://doi.org/10.1016/j.resourpol.2020.101662 DOI
Skaloš, J., & Kašparová, I. (2012). Landscape memory and landscape change in relation to mining. Ecological Engineering, 43, 60–69. https://doi.org/10.1016/j.ecoleng.2011.07.001 DOI
Skaloš, J., Novotný, M., Woitsch, J., Zacharová, J., Berchová, K., Svoboda, M., Křováková, K., Romportl, D., & Keken, Z. (2015). What are the transitions of woodlands at the landscape level? Change trajectories of forest, non-forest and reclamation woody vegetation elements in a mining landscape in North-western Czech Republic. Applied Geography, 58, 206–216. https://doi.org/10.1016/j.apgeog.2015.02.003 DOI
Sklenička, P., & Lhota, T. (2002). Landscape heterogenity – A quantitative criterion for landscape reconstruction. Landscape and Urban Planning, 58(2–4), 147–156. https://doi.org/10.1016/S0169-2046(01)00217-1 DOI
Štěpánek, V. (1996). Data o struktuře ploch: Jejich spolehlivost a vypovídací schopnost. [Data on the structure of surfaces: Their reliability and explanatory power.] Geografie – Sborník ČGS, 101 (1), 13–21
Svenningsen, S. R., Levin, G. & Jepsen, M. R. (2015). Decrease in Danish semi-natural grassland A social construct or a real-world change? Geografisk Tidsskrift-Danish Journal of Geography, 115 (2,) 157–166. https://doi.org/10.1080/00167223.2015.1070276
Van Eetvelde, V., & Antrop, M. (2009). Indicators for assessing changing landscape character of cultural landscapes in Flanders (Belgium). Land Use Policy, 26, 901–910. https://doi.org/10.1016/j.landusepol.2008.11.001 DOI
Vizzari, M., Hilal, M., Sigura, M., Antognelli, S., & Joly, D. (2018). Urban-rural-natural gradient analysis with CORINE data: An application to the metropolitan France. Landscape and Urban Planning, 171, 18–29. https://doi.org/10.1016/j.landurbplan.2017.11.005 DOI
Zomeni, M., Tzanopoulos, J., & Pantis, D. J. (2008). Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landscape and Urban Planning, 86, 38–46. https://doi.org/10.1016/j.landurbplan.2007.12.006 DOI