Mechanism of Grain Refinement in 3D-Printed AlSi10Mg Alloy Subjected to Severe Plastic Deformation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2021/43/D/ST8/01946
National Science Centre
PubMed
39203276
PubMed Central
PMC11356052
DOI
10.3390/ma17164098
PII: ma17164098
Knihovny.cz E-resources
- Keywords
- AlSi10Mg, EBSD, ECAP, TKD, grain refinement, microstructure,
- Publication type
- Journal Article MeSH
In this article, the evolution of microstructural characteristics of selectively laser-melted AlSi10Mg alloy subjected to equal channel angular pressing (ECAP) is investigated. The microstructures were analyzed in detail using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), and transmission electron microscopy (TEM). A heterogeneous ultrafine-grained microstructure was produced after one ECAP pass at 100 °C. This microstructure was composed of Al/Si cells and sub-micrometer grains. The grains were refined by conventional dislocation processes; however, evidence of dynamic recrystallization was also documented. Furthermore, it was revealed that the Al/Si cells contribute significantly to grain refinement. EBSD/TKD investigations showed that cell misorientation increased after ECAP processing, resulting in an increased fraction of grains with very low misorientation angles.
See more in PubMed
Hansen N. Hall-petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI
Mohammadi A., Enikeev N.A., Murashkin M.Y., Arita M., Edalati K. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. J. Mater. Sci. Technol. 2021;91:78–89. doi: 10.1016/j.jmst.2021.01.096. DOI
Ghassemali E., Riestra M., Bogdanoff T., Kumar B.S., Seifeddine S. Hall-Petch equation in a hypoeutectic Al-Si cast alloy: Grain size vs. secondary dendrite arm spacing. Procedia Eng. 2017;207:19–24. doi: 10.1016/j.proeng.2017.10.731. DOI
Votano J., Parham M., Hall L. Hanbook of Aluminum Volume 2 Alloy Production and Material Manufacturing. CRC Press; Boca Raton, FL, USA: 2004. pp. 1–731.
Król M. Effect of grain refinements on the microstructure and thermal behaviour of Mg–Li–Al alloy. J. Therm. Anal. Calorim. 2018;133:237–246. doi: 10.1007/s10973-018-7223-x. DOI
Mazurina I., Sakai T., Miura H., Sitdikov O., Kaibyshev R. Grain refinement in aluminum alloy 2219 during ECAP at 250 °C. Mater. Sci. Eng. A. 2008;473:297–305. doi: 10.1016/j.msea.2007.04.112. DOI
Langdon T.G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 2013;61:7035–7059. doi: 10.1016/j.actamat.2013.08.018. DOI
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Brodova I.G., Petrova A.N., Shirinkina I.G., Rasposienko D.Y., Yolshina L.A., Muradymov R.V., Razorenov S.V., Shorokhov E.V. Mechanical properties of submicrocrystalline aluminium matrix composites reinforced by “in situ” graphene through severe plastic deformation processes. J. Alloys Compd. 2021;859:158387. doi: 10.1016/j.jallcom.2020.158387. DOI
Awasthi A., Sathish Rao U., Saxena K.K., Dwivedi R.K. Impact of equal channel angular pressing on aluminium alloys: An overview. Mater. Today Proc. 2022;57:908–912. doi: 10.1016/j.matpr.2022.03.037. DOI
Volokitina I., Bychkov A., Volokitin A., Kolesnikov A. Natural Aging of Aluminum Alloy 2024 After Severe Plastic Deformation. Metallogr. Microstruct. Anal. 2023;12:564–566. doi: 10.1007/s13632-023-00966-y. DOI
Olugbade T.O. Review: Corrosion Resistance Performance of Severely Plastic Deformed Aluminium Based Alloys via Different Processing Routes. Met. Mater. Int. 2023;29:2415–2443. doi: 10.1007/s12540-023-01403-z. DOI
Liu M., Roven H.J., Murashkin M., Valiev R.Z. Structural characterization by high-resolution electron microscopy of an Al-Mg alloy processed by high-pressure torsion. Mater. Sci. Eng. A. 2009;503:122–125. doi: 10.1016/j.msea.2008.02.053. DOI
Jiang S., Peng R.L., Jia N., Zhao X., Zuo L. Microstructural and textural evolutions in multilayered Ti/Cu composites processed by accumulative roll bonding. J. Mater. Sci. Technol. 2019;35:1165–1174. doi: 10.1016/j.jmst.2018.12.018. DOI
Langdon T.G. The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng. A. 2007;462:3–11. doi: 10.1016/j.msea.2006.02.473. DOI
Shivashankara B.S., Gopi K.R., Pradeep S., Raghavendra Rao R. Investigation of mechanical properties of ECAP processed AL7068 aluminium alloy. IOP Conf. Ser. Mater. Sci. Eng. 2021;1189:012027. doi: 10.1088/1757-899X/1189/1/012027. DOI
Awasthi A., Saxena K.K., Dwivedi R.K., Buddhi D., Mohammed K.A. Design and analysis of ECAP Processing for Al6061 Alloy: A microstructure and mechanical property study. Int. J. Interact. Des. Manuf. (IJIDeM) 2023;17:2309–2321. doi: 10.1007/s12008-022-00990-2. DOI
Derakhshan J.F., Parsa M.H., Jafarian H.R. Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process. Mater. Sci. Eng. A. 2019;747:120–129. doi: 10.1016/j.msea.2019.01.058. DOI
Park K.T., Lee H.J., Lee C.S., Shin D.H. Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al-Mg alloy at 723 K. Mater. Sci. Eng. A. 2005;393:118–124. doi: 10.1016/j.msea.2004.09.066. DOI
Damavandi E., Nourouzi S., Rabiee S.M., Jamaati R. Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy. Trans. Nonferrous Met. Soc. China. 2019;29:931–940. doi: 10.1016/S1003-6326(19)65002-8. DOI
Snopiński P., Woźniak A., Łukowiec D., Matus K., Tański T., Rusz S., Hilšer O. Evolution of Microstructure, Texture and Corrosion Properties of Additively Manufactured AlSi10Mg Alloy Subjected to Equal Channel Angular Pressing (ECAP) Symmetry. 2022;14:674. doi: 10.3390/sym14040674. DOI
Liu Q., Fang L., Xiong Z., Yang J., Tan Y., Liu Y., Zhang Y., Tan Q., Hao C., Cao L., et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates. Mater. Sci. Eng. A. 2021;822:141704. doi: 10.1016/j.msea.2021.141704. DOI
Hirth J.P., Lothe J., Mura T. Theory of Dislocations (2nd ed.) J. Appl. Mech. 1983;50:476–477. doi: 10.1115/1.3167075. DOI
Liu Y., Xu M., Xiao L., Chen X., Hu Z., Gao B., Liang N., Zhu Y., Cao Y., Zhou H., et al. Dislocation array reflection enhances strain hardening of a dual-phase heterostructured high-entropy alloy. Mater. Res. Lett. 2023;11:638–647. doi: 10.1080/21663831.2023.2208166. DOI
Liu S., Xia D., Yang H., Huang G., Yang F., Chen X., Tang A., Jiang B., Pan F. Mechanical properties and deformation mechanism in Mg-Gd alloy laminate with dual-heterostructure grain size and texture. Int. J. Plast. 2022;157:103371. doi: 10.1016/j.ijplas.2022.103371. DOI
Fang X.T., He G.Z., Zheng C., Ma X.L., Kaoumi D., Li Y.S., Zhu Y.T. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Mater. 2020;186:644–655. doi: 10.1016/j.actamat.2020.01.037. DOI
Li J., Fang C., Liu Y., Huang Z., Wang S., Mao Q., Li Y. Deformation mechanisms of 304L stainless steel with heterogeneous lamella structure. Mater. Sci. Eng. A. 2019;742:409–413. doi: 10.1016/j.msea.2018.11.047. DOI
Ma Y., Yang M., Yuan F., Wu X. A review on heterogeneous nanostructures: A strategy for superiormechanical properties inmetals. Metals. 2019;9:598. doi: 10.3390/met9050598. DOI
Jeong S.G., Karthik G.M., Kim E.S., Zargaran A., Ahn S.Y., Sagong M.J., Kang S.H., Cho J.-W., Kim H.S. Architectured heterogeneous alloys with selective laser melting. Scr. Mater. 2022;208:114332. doi: 10.1016/j.scriptamat.2021.114332. DOI
Zhang Y., Li X., Yuan S., Sun R., Sakai T., Lashari M.I., Hamid U., Li W. High-cycle-fatigue properties of selective-laser-melted AlSi10Mg with multiple building directions. Int. J. Mech. Sci. 2022;224:107336. doi: 10.1016/j.ijmecsci.2022.107336. DOI
Wang Z., Lin X., Kang N., Wang Y., Yu X., Tan H., Yang H., Huang W. Making selective-laser-melted high-strength Al–Mg–Sc–Zr alloy tough via ultrafine and heterogeneous microstructure. Scr. Mater. 2021;203:114052. doi: 10.1016/j.scriptamat.2021.114052. DOI
Snopiński P., Hilšer O., Hajnyš J. Tuning the defects density in additively manufactured fcc aluminium alloy via modifying the cellular structure and post-processing deformation. Mater. Sci. Eng. A. 2023;865:144605. doi: 10.1016/j.msea.2023.144605. DOI
Kong D., Dong C., Wei S., Ni X., Zhang L., Li R., Wang L., Man C., Li X. About metastable cellular structure in additively manufactured austenitic stainless steels. Addit. Manuf. 2021;38:101804. doi: 10.1016/j.addma.2020.101804. DOI
Wang P., Rabori A.S., Dong Q., Ravkov L., Balogh L., Fallah V. The role of cellular structure, non-equilibrium eutectic phases and precipitates on quasi-static strengthening mechanisms of as-built AlSi10Mg parts 3D printed via laser powder bed fusion. Mater. Charact. 2023;198:112730. doi: 10.1016/j.matchar.2023.112730. DOI
Al-Zubaydi A.S.J., Gao N., Džugan J., Podaný P., Chen Y., Reed P.A.S. Fracture behaviour assessment of the additively manufactured and HPT-processed Al–Si–Cu alloy. Mater. Sci. Technol. 2024:02670836241262477. doi: 10.1177/02670836241262477. DOI
Muñoz J.A., Komissarov A., Avalos M., Bolmaro R.E., Zhu Y., Cabrera J.M. Improving density and strength-to-ductility ratio of a 3D-printed Al–Si alloy by high-pressure torsion. J. Mater. Sci. 2024;59:6024–6047. doi: 10.1007/s10853-023-09298-2. DOI
Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI
Han J.-K., Liu X., Lee I., Kuzminova Y.O., Evlashin S.A., Liss K.-D., Kawasaki M. Structural evolution during nanostructuring of additive manufactured 316L stainless steel by high-pressure torsion. Mater. Lett. 2021;302:130364. doi: 10.1016/j.matlet.2021.130364. DOI
Al-Zubaydi A.S.J., Gao N., Wang S., Reed P.A.S. Microstructural and hardness evolution of additively manufactured Al–Si–Cu alloy processed by high-pressure torsion. J. Mater. Sci. 2022;57:8956–8977. doi: 10.1007/s10853-022-07234-4. DOI
Snopiński P. Effects of KoBo-Processing and Subsequent Annealing Treatment on Grain Boundary Network and Texture Development in Laser Powder Bed Fusion (LPBF) AlSi10Mg Alloy. Symmetry. 2024;16:122. doi: 10.3390/sym16010122. DOI
Snopiński P., Matus K., Tatiček F., Rusz S. Overcoming the strength-ductility trade-off in additively manufactured AlSi10Mg alloy by ECAP processing. J. Alloys Compd. 2022;918:165817. doi: 10.1016/j.jallcom.2022.165817. DOI
Snopiński P., Matus K., Hilšer O., Rusz S. Effects of Built Direction and Deformation Temperature on the Grain Refinement of 3D Printed AlSi10Mg Alloy Processed by Equal Channel Angular Pressing (ECAP) Materials. 2023;16:4288. doi: 10.3390/ma16124288. PubMed DOI PMC
Beausir B., Fundenberger J.-J. Analysis Tools for Electron and X-ray Diffraction, ATEX-Software 2007. [(accessed on 13 August 2024)]. Available online: http://www.atex-software.eu/index.html#testimonials2-d.
Li Z., Li Z., Tan Z., Xiong D.B., Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int. J. Plast. 2020;127:102640. doi: 10.1016/j.ijplas.2019.12.003. DOI
Biswas P., Ma J. Development of crystallographic misorientation in laser powder bed fusion 316L stainless steel. Addit. Manuf. 2024;80:103951. doi: 10.1016/j.addma.2023.103951. DOI
Huang Z., Zhai Z., Lin W., Chang H., Wu Y., Yang R., Zhang Z. On the orientation dependent microstructure and mechanical behavior of Hastelloy X superalloy fabricated by laser powder bed fusion. Mater. Sci. Eng. A. 2022;844:143208. doi: 10.1016/j.msea.2022.143208. DOI
Santos Macías J.G., Zhao L., Tingaud D., Bacroix B., Pyka G., van der Rest C., Ryelandt L., Simar A. Hot isostatic pressing of laser powder bed fusion AlSi10Mg: Parameter identification and mechanical properties. J. Mater. Sci. 2022;57:9726–9740. doi: 10.1007/s10853-022-07027-9. DOI
Alghamdi F., Song X., Hadadzadeh A., Shalchi-Amirkhiz B., Mohammadi M., Haghshenas M. Post heat treatment of additive manufactured AlSi10Mg: On silicon morphology, texture and small-scale properties. Mater. Sci. Eng. A. 2020;783:139296. doi: 10.1016/j.msea.2020.139296. DOI
Tradowsky U., White J., Ward R.M., Read N., Reimers W., Attallah M.M. Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater. Des. 2016;105:212–222. doi: 10.1016/j.matdes.2016.05.066. DOI
Tóth L.S., Beausir B., Gu C.F., Estrin Y., Scheerbaum N., Davies C.H.J. Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution. Acta Mater. 2010;58:6706–6716. doi: 10.1016/j.actamat.2010.08.036. DOI
Muñoz J.A., Chand M., Signorelli J.W., Calvo J., Cabrera J.M. Strengthening of duplex stainless steel processed by equal channel angular pressing (ECAP) Int. J. Adv. Manuf. Technol. 2022;123:2261–2278. doi: 10.1007/s00170-022-10311-2. DOI
Chen Y., Jin L., Dong J., Wang F., Li Y., Li Y., Pan H., Nie X. Effects of LPSO/α-Mg interfaces on dynamic recrystallization behavior of Mg96.5Gd2.5Zn1 alloy. Mater. Charact. 2017;134:253–259. doi: 10.1016/j.matchar.2017.10.028. DOI
Mackenzie D.S. Handbook of Aluminum. CRC Press; Boca Raton, FL, USA: 2003. DOI
Snopiński P. Electron Microscopy Study of Structural Defects Formed in Additively Manufactured AlSi10Mg Alloy Processed by Equal Channel Angular Pressing. Symmetry. 2023;15:860. doi: 10.3390/sym15040860. DOI
Birosca S., Liu G., Ding R., Jiang J., Simm T., Deen C., Whittaker M. The dislocation behaviour and GND development in a nickel based superalloy during creep. Int. J. Plast. 2019;118:252–268. doi: 10.1016/j.ijplas.2019.02.015. DOI
Duan H.Q., Zhang H.M., Mu X.N., Fan Q.B., Cheng X.W., Xiong N., Feng K. Nano-carbon-mediated microstructure evolution and superior performance in Ti-based nanocomposites. Mater. Charact. 2023;201:112965. doi: 10.1016/j.matchar.2023.112965. DOI