Vanadium-Containing Ionic Liquids Derived from Complexes of Modified Edta as Catalysts of Epoxy-Anhydride Ring-Opening Copolymerization

. 2024 Sep 09 ; 63 (36) : 16631-16644. [epub] 20240828

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39205399

A new type of vanadium-containing ionic liquids (ILs) was synthesized by cation exchange from barium salts of oxidovanadium(IV) complexes stabilized by edta and its congeners (dcta, oedta, and heedta) serving as pentadentate ligands. All starting barium salts and several magnesium and cesium salts, serving as models for the cation exchange, were structurally characterized by single-crystal XRD analysis. The synthesized ILs consisting of organic cations (Bu4N+, Bmim+, and Bu4P+) and complex anions ([VO(edta)]2-, [VO(dcta)]2-, [VO(oedta)]-, and [VO(heedta)]-) were characterized by analytical and spectroscopic methods including EPR spectroscopy and cyclic voltammetry. Then, ILs were tested as catalysts for the ring-opening copolymerization of epoxy resin with cyclic anhydride showing significant catalytic activity, which led to production of highly cross-linked glassy thermosets. A detailed isothermal DSC kinetic study was performed for the most promising IL showing that the progress of cross-linking can be successfully fitted by the Kamal-Sourour model. Based on the DSC and NIR results, the initiation mechanism of the cross-linking in the presence of vanadium-containing IL was suggested. IL had ability to activate a rapid hydrolysis of anhydride cycle and the formed carboxyl groups initiated a polyesterification. In parallel, the role of imidazolium cation of IL for the initiation of chain-growth anionic copolymerization is also discussed.

Zobrazit více v PubMed

Singh S. K.; Savoy A. W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. 10.1016/j.molliq.2019.112038. DOI

Hayes R.; Warr G. G.; Atkin R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 2015, 115 (13), 6357–6426. 10.1021/cr500411q. PubMed DOI

Beil S.; Markiewicz M.; Pereira C. S.; Stepnowski P.; Thöming J.; Stolte S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem. Rev. 2021, 121 (21), 13132–13173. 10.1021/acs.chemrev.0c01265. PubMed DOI

de Jesus S. S.; Filho R. M. Are ionic liquids eco-friendly?. Renewable Sustainable Energy Rev. 2022, 157, 112039. 10.1016/j.rser.2021.112039. DOI

Quintana A. A.; Sztapka A. M.; de Carvalho Santos Ebinuma V.; Agatemor C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future?. Angew. Chem., Int. Ed. 2022, 61 (37), e202205609 10.1002/anie.202205609. PubMed DOI

Hayashi S.; Hamaguchi H. Discovery of a Magnetic Ionic Liquid [bmim]FeCl DOI

González-Martína R.; Lodoso-Ruiz E.; Trujillo-Rodríguez M. J.; Pino V. Magnetic Ionic Liquids in Analytical Microextraction: A Tutorial Review. J. Chromatogr. A 2022, 1685, 463577. 10.1016/j.chroma.2022.463577. PubMed DOI

Qiao L.; Tao Y.; Qin H.; Niu R. Multi-magnetic center ionic liquids for dispersive liquid-liquid microextraction coupled with in-situ decomposition based back-extraction for the enrichment of parabens in beverage samples. J. Chromatogr. A 2023, 1689, 463771. 10.1016/j.chroma.2022.463771. PubMed DOI

Alves M. S.; Ferreira Neto L. C.; Scheid C.; Merib J. An overview of magnetic ionic liquids: From synthetic strategies to applications in microextraction techniques. J. Sep. Sci. 2022, 45 (1), 258–281. 10.1002/jssc.20210059. PubMed DOI

Hu X.; Zhang H.; Wang Y.; Liang Y.; Liu H.; Lin W.; Liu B. Magnetic-ionic-liquid-integrated microfiber Mach-Zehnder interferometer for simultaneous measurement of magnetic field and temperature. Opt. Fiber Technol. 2021, 67, 102746. 10.1016/j.yofte.2021.102746. DOI

Giernoth R. Task-Specific Ionic Liquids. Angew. Chem., Int. Ed. 2010, 49 (16), 2834–2839. 10.1002/anie.200905981. PubMed DOI

Ahmad M. G.; Chanda K. Ionic liquid coordinated metal-catalyzed organic transformations: A comprehensive review. Coord. Chem. Rev. 2022, 472, 214769. 10.1016/j.ccr.2022.214769. DOI

Liu X. B.; Rong Q.; Tan J.; Chen C.; Hu Y. L. Recent Advances in Catalytic Oxidation of Organic Sulfides: Applications of Metal–Ionic Liquid Catalytic Systems. Front. Chem. 2022, 9, 798603. 10.3389/fchem.2021.798603. PubMed DOI PMC

Wang Q.; Geng Y.; Lu X.; Zhang S. First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly(ethylene terephthalate) (PET). ACS Sustainable Chem. Eng. 2015, 3 (2), 340–348. 10.1021/sc5007522. DOI

Wu H.; Xie R.; Qu G.; Li X.; Ning P.; Zeng Y.; Yan Z.; Chen Y. Pyrolysis of cellulose in Fe-[Bmim]OTf catalyst for selective production of 4,4-dimethyl-2-cyclohexen-1-one. Environ. Prog. Sustainable Energy 2023, 42 (6), e14212 10.1002/ep.14212. DOI

Xie R.; He W.; Qu G.; Wu H. H.; Li Z.; Li J.; Li W. Low-Temperature Catalytic Pyrolysis of Cellulose to Directional Products 5-Methylfurfural by Magnetic Ionic Liquid. BioEnergy Res. 2023, 16 (2), 1108–1120. 10.1007/s12155-022-10494-2. DOI

Fan Z.; Chen J.; Sun S.; Zhou Q. A novel strategy to reduce the viscosity of cellulose-ionic liquid solution assisted by transition metal ions. Carbohydr. Polym. 2021, 256, 117535. 10.1016/j.carbpol.2020.117535. PubMed DOI

Li Z.; Wang X.; Liu M.; Wang J.; Li L.; Wang Q.; You X. Different anionic MIL structure optimization and molecular dynamics simulation of adsorption on coal surface. Surf. Interfaces 2023, 40, 103150. 10.1016/j.surfin.2023.103150. DOI

Sniekers J.; Malaquias J. C.; Van Meervelt L.; Fransaer J.; Binnemans K. Manganese-containing ionic liquids: synthesis, crystal structures and electrodeposition of manganese films and nanoparticles. Dalton Trans. 2017, 46 (8), 2497–2509. 10.1039/C6DT04781E. PubMed DOI

Sniekers J.; Geysens P.; Vander Hoogerstraete T.; Van Meervelt L.; Fransaer J.; Binnemans K. Cobalt(II) liquid metal salts for high current density electrodeposition of cobalt. Dalton Trans. 2018, 47 (14), 4975–4986. 10.1039/C8DT00283E. PubMed DOI

Yanagisawa J.; Hiraoka T.; Kobayashi F.; Saito D.; Yoshida M.; Kato M.; Takeiri F.; Kobayashi G.; Ohba M.; Lindoy L. F.; et al. Luminescent ionic liquid formed from a melted rhenium(V) cluster. Chem. Commun. 2020, 56 (57), 7957–7960. 10.1039/D0CC02937H. PubMed DOI

Yoshida M.; Sääsk V.; Saito D.; Yoshimura N.; Takayama J.; Hiura S.; Murayama A.; Põhako-Esko K.; Kobayashi A.; Kato M. Thermo- and Mechano-Triggered Luminescence ON/OFF Switching by Supercooled Liquid/Crystal Transition of Platinum(II) Complex Thin Films. Adv. Opt. Mater. 2022, 10 (7), 2102614. 10.1002/adom.202102614. DOI

Narita T.; Fujii K.; Endo T.; Kimura Y. Effect of cation alkyl chain length on photo-luminescence dynamics of ionic liquids containing dicyanoaurate(I) anion. J. Mol. Liq. 2020, 318, 114212. 10.1016/j.molliq.2020.114212. DOI

Branco A.; Belchior J.; Branco L. C.; Pina F. Intrinsically electrochromic ionic liquids based on vanadium oxides: illustrating liquid electrochromic cells. RSC Adv. 2013, 3 (48), 25627–25630. 10.1039/c3ra42460j. DOI

Kelley S. P.; Berton P.; Metlen A.; Rogers R. D. Polyoxometalate catalysts for biomass dissolution: understanding and design. Phys. Sci. Rev. 2018, 3 (8), 20170190. 10.1515/psr-2017-0190. DOI

Rafiee E.; Kahrizi M. Mechanistic investigation of Heck reaction catalyzed by new catalytic system composed of Fe DOI

Rebei M.; Mahun A.; Walterová Z.; Trhlíková O.; Donato R. K.; Beneš H. VOC-free tricomponent reaction platform for epoxy network formation mediated by a recyclable ionic liquid. Polym. Chem. 2022, 13 (37), 5380–5388. 10.1039/D2PY01031C. DOI

Rebei M.; Červinka C.; Mahun A.; Ecorchard P.; Honzíček J.; Livi S.; Donato R. K.; Beneš H. Fast carbon dioxide–epoxide cycloaddition catalyzed by metal and metal-free ionic liquids for designing non-isocyanate polyurethanes. Mater. Adv. 2024, 5 (10), 4311–4323. 10.1039/D3MA00852E. DOI

Livi S.; Baudoux J.; Gérard J.-F.; Duchet-Rumeau J. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Prog. Polym. Sci. 2022, 132, 101581. 10.1016/j.progpolymsci.2022.101581. DOI

Perchacz M.; Matějka L.; Konefał R.; Seixas L.; Livi S.; Baudoux J.; Beneš H.; Donato R. K. Self-Catalyzed Coupling between Bro̷nsted-Acidic Imidazolium Salts and Epoxy-Based Materials: A Theoretical/Experimental Study. ACS Sustainable Chem. Eng. 2019, 7 (23), 19050–19061. 10.1021/acssuschemeng.9b04810. DOI

Henriques R.; Soares B. G.; Livi S. From Epoxy Prepolymers to Tunable Epoxy–Ionic Liquid Networks: Mechanistic Investigation and Thermo-Mechanical Properties. ACS Appl. Polym. Mater. 2023, 5 (7), 5043–5050. 10.1021/acsapm.3c00551. DOI

Freitas G.; Henriques R. R.; Calheiros L. S.; Soares B. G. Impact of magnetic ionic liquids as catalysts on the curing process of epoxy/anhydride system: Mechanistic investigation and dynamic-mechanical analysis. J. Appl. Polym. Sci. 2022, 139 (28), e52606 10.1002/app.52606. DOI

Rebei M.; Kočková O.; R̆ehák M.; Abbrent S.; Vykydalová A.; Honzíček J.; Ecorchard P.; Beneš H. Accelerating effect of metal ionic liquids for epoxy-anhydride copolymerization. Eur. Polym. J. 2024, 212, 113077. 10.1016/j.eurpolymj.2024.113077. DOI

Miceli C.; Rintjema J.; Martin E.; Escudero-Adán E. C.; Zonta C.; Licini G.; Kleij A. W. Vanadium(V) Catalysts with High Activity for the Coupling of Epoxides and CO DOI

Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, D.C., 2001; pp. 532–543.. PubMed

Supanchaiyamat N.; Hunt A. J. Conservation of Critical Elements of the Periodic Table. ChemSuschem 2019, 12 (2), 397–403. 10.1002/cssc.201802556. PubMed DOI

Sawyer D. T.; McKinnie J. M. Properties and Infrared Spectra of Ethylenediaminetetraacetic Acid Complexes. III. Chelates of Higher Valent Ions. J. Am. Chem. Soc. 1960, 82 (16), 4191–4196. 10.1021/ja01501a019. DOI

Podlahová J. Herstellung und Eigenschaften von Äthylendiamintetraessigsäurekomplexen IV. Verbindungen mit vierwertigem Vanadium. Collect. Czech. Chem. Commun. 1965, 30 (6), 2012–2019. 10.1135/cccc19652012. DOI

Charamzová I.; Vinklárek J.; Kalenda P.; Císařová I.; Honzíček J. Oxidovanadium(V) dithiocarbamates as driers for alkyd binders. J. Coat. Technol. Res. 2020, 17 (5), 1113–1122. 10.1007/s11998-020-00326-3. DOI

Antsyshkina A. S.; Sadikov G. G.; Sergienko V. S.; Poznyak A. L. The Crystal Structure of [Mg(H DOI

Ibrahim M. M.; Mersal G. A. M.; Ramadan A.-M.-M.; Shaban S. Y.; Mohamed M. A.; Al-Juaid S. Synthesis, characterization and antioxidant/cytotoxic activity of oxovanadium(IV) complexes of methyliminodiacetic acid and ethylenediaminetetracetic acid. J. Mol. Struct. 2017, 1137, 742–755. 10.1016/j.molstruc.2017.02.080. DOI

Zhang R.-H.; Lu L.-P.; Li M.-X.; Zhu M.-L. Poly[μ-aqua-diaqua-(μ PubMed DOI PMC

Ogino H.; Shimoi M.; Saito Y. Structural Identification of the Reactive Vanadium(III) Intermediate Formed in the Electron-Transfer Reactions of [ DOI

Alberico E.; Micera G.; Sanna D.; Dessì A. Coordination of oxovanadium(IV) to aminocarboxylic acids in aqueous solution. Polyhedron 1994, 13 (11), 1763–1771. 10.1016/S0277-5387(00)80108-4. DOI

Foix D.; Yu Y.; Serra A.; Ramis X.; Salla J. M. Study on the chemical modification of epoxy/anhydride thermosets using a hydroxyl terminated hyperbranched polymer. Eur. Polym. J. 2009, 45 (5), 1454–1466. 10.1016/j.eurpolymj.2009.02.003. DOI

Altuna F. I.; Riccardi C. C.; Marín Quintero D. C.; Ruseckaite R. A.; Stefani P. M. Effect of an Anhydride Excess on the Curing Kinetics and Dynamic Mechanical Properties of Synthetic and Biogenic Epoxy Resins. Int. J. Polym. Sci 2019, 2019, 5029153. 10.1155/2019/5029153. DOI

Guimarães B. S. S.; Guiguer E. L.; Bianchi O.; Canto L. B. Non-isothermal cure kinetics of an anhydride-cured cycloaliphatic/aromatic epoxy system in the presence of a reactive diluent. Thermochim. Acta 2022, 717, 179351. 10.1016/j.tca.2022.179351. DOI

Musto P.; Abbate M.; Ragosta G.; Scarinzi G. A study by Raman, near-infrared and dynamic-mechanical spectroscopies on the curing behaviour, molecular structure and viscoelastic properties of epoxy/anhydride networks. Polymer 2007, 48, 3703–3716. 10.1016/j.polymer.2007.04.042. DOI

Barabanova A. I.; Lokshin B. V.; Kharitonova E. P.; Afanasyev E. S.; Askadskii A. A.; Philippova O. E. Curing cycloaliphatic epoxy resin with 4-methylhexahydrophthalic anhydride: Catalyzed vs. uncatalyzed reaction. Polymer 2019, 178, 121590. 10.1016/j.polymer.2019.121590. DOI

Maksym P.; Tarnacka M.; Dzienia A.; Matuszek K.; Chrobok A.; Kaminski K.; Paluch M. Enhanced Polymerization Rate and Conductivity of Ionic Liquid-Based Epoxy Resin. Macromolecules 2017, 50 (8), 3262–3272. 10.1021/acs.macromol.6b02749. DOI

Amirova L. R.; Burilov A. R.; Amirova L. M.; Bauer I.; Habicher W. D. Kinetics and Mechanistic Investigation of Epoxy–Anhydride Compositions Cured with Quaternary Phosphonium Salts as Accelerators. J. Polym. Sci., Part A: Polym. Chem. 2016, 54 (8), 1088–1097. 10.1002/pola.27946. DOI

Fernández-Francos X.; Rybak A.; Sekula R.; Ramis X.; Serra A. Modification of epoxy–anhydride thermosets using a hyperbranched poly(ester-amide): I. Kinetic Study. Polym. Int. 2012, 61 (12), 1710–1725. 10.1002/pi.4259. DOI

Binks F. C.; Cavalli G.; Henningsen M.; Howlin B. J.; Hamerton I. Investigating the mechanism through which ionic liquids initiate the polymerization of epoxy resins. Polymer 2018, 139, 163–176. 10.1016/j.polymer.2018.01.087. DOI

Dzienia A.; Tarnacka M.; Koperwas K.; Maksym P.; Ziȩba A.; Feder-Kubis J.; Kamiński K.; Paluch M. Impact of Imidazolium-Based Ionic Liquids on the Curing Kinetics and Physicochemical Properties of Nascent Epoxy Resins. Macromolecules 2020, 53 (15), 6341–6352. 10.1021/acs.macromol.0c00783. PubMed DOI PMC

McCrary P. D.; Barber P. S.; Kelley S. P.; Rogers R. D. Nonaborane and Decaborane Cluster Anions Can Enhance the Ignition Delay in Hypergolic Ionic Liquids and Induce Hypergolicity in Molecular Solvents. Inorg. Chem. 2014, 53 (9), 4770–4776. 10.1021/ic500622f. PubMed DOI

Rigaku. CrysAlisPRO (version 1.171.43.105a) Oxford Diffraction; Rigaku: Yarnton, UK, 2024.

Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A. K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42 (2), 339–341. 10.1107/S0021889808042726. DOI

Sheldrick G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystalogr., Sect. C 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Yang Y.; Dong J.; Cai B.; Jiang Z.; Cheng L.; Li X. Environmentally responsive adsorption and assembly behaviors from DOI

Jaeger D. A.; Jose R.; Mendoza A.; Apkarian R. P. Surfactant transition metal chelates. Colloids Surf., A 2007, 302, 186–196. 10.1016/j.colsurfa.2007.02.021. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...