A closed 3D printed microfluidic device for automated growth and differentiation of cerebral organoids from single-cell suspension

. 2024 Aug ; 19 (8) : e2400240.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39212189

Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008451 European Regional Development Fund-Project INBIO
MUNI/IGA/1297/2021 Masaryk University
MUNI/A/1598/2023 Masaryk University
21-06524S Czech Science Foundation
21-21510S Czech Science Foundation
Alzheimer NF
LM2023050 Ministry of Education, Youth and Sports (MEYS)
LX22NPO5107 Ministry of Education, Youth and Sports (MEYS)
101087124 European Union's Horizon Europe - ADDIT-CE
L200522101 The Czech Academy of Sciences
LX22NPO5102 National Institute for Cancer Research - Programme EXCELES
NU21-08-00373 Czech Health Research Council AZV

The development of 3D organoids has provided a valuable tool for studying human tissue and organ development in vitro. Cerebral organoids, in particular, offer a unique platform for investigating neural diseases. However, current methods for generating cerebral organoids suffer from limitations such as labor-intensive protocols and high heterogeneity among organoids. To address these challenges, we present a microfluidic device designed to automate and streamline the formation and differentiation of cerebral organoids. The device utilizes microwells with two different shapes to promote the formation of a single aggregate per well and incorporates continuous medium flow for optimal nutrient exchange. In silico simulations supported the effectiveness of the microfluidic chip in replicating cellular microenvironments. Our results demonstrate that the microfluidic chip enables uniform growth of cerebral organoids, significantly reducing the hands-on time required for maintenance. Importantly, the performance of the microfluidic system is comparable to the standard 96-well plate format even when using half the amount of culture medium, and the resulting organoids exhibit substantially developed neuroepithelial buds and cortical structures. This study highlights the potential of custom-designed microfluidic technology in improving the efficiency of cerebral organoid culture.

Zobrazit více v PubMed

Alhaque, S., Themis, M., & Rashidi, H. (2018). Three‐dimensional cell culture: From evolution to revolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170216.

Wang, H. (2018). Modeling neurological diseases with human brain organoids. Frontiers in Synaptic Neuroscience, 10, 15.

Lancaster, M. A., Renner, M., Martin, C.‐A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., & Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379.

Field, A. R., Jacobs, F. M. J., Fiddes, I. T., Phillips, A. P. R., Reyes‐Ortiz, A. M., LaMontagne, E., Whitehead, L., Meng, V., Rosenkrantz, J. L., Olsen, M., Hauessler, M., Katzman, S., Salama, S. R., & Haussler, D. (2019). Structurally conserved primate LncRNAs are transiently expressed during human cortical differentiation and influence cell‐type‐specific genes. Stem Cell Reports, 12, 245–257.

Suong, D. N. A., Imamura, K., Inoue, I., Kabai, R., Sakamoto, S., Okumura, T., Kato, Y., Kondo, T., Yada, Y., Klein, W. L., Watanabe, A., & Inoue, H. (2021). Induction of inverted morphology in brain organoids by vertical‐mixing bioreactors. Communications Biology, 4, 1213.

Lozachmeur, G., Bramoulle, A., Aubert, A., Stüder, F., Moehlin, J., Madrange, L., Yates, F., Deslys, J.‐P., & Mendoza‐Parra, M. A. (2023). Three‐dimensional molecular cartography of human cerebral organoids revealed by double‐barcoded spatial transcriptomics. Cell Reports Methods, 3, 100573.

Hofer, M., & Lutolf, M. P. (2021). Engineering organoids. Nature Reviews Materials, 6, 402–420.

Manzoor, A. A., Romita, L., & Hwang, D. K. (2021). A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. Canadian Journal of Chemical Engineering, 99, 61–96.

Sivitilli, A. A., Gosio, J. T., Ghoshal, B., Evstratova, A., Trcka, D., Ghiasi, P., Hernandez, J. J., Beaulieu, J. M., Wrana, J. L., & Attisano, L. (2020). Robust production of uniform human cerebral organoids from pluripotent stem cells. Life Science Alliance, 3, e202000707.

Chen, C., Rengarajan, V., Kjar, A., & Huang, Y. (2021). A matrigel‐free method to generate matured human cerebral organoids using 3D‐printed microwell arrays. Bioactive Materials, 6, 1130–1139.

Karp, J. M., Yeh, J., Eng, G., Fukuda, J., Blumling, J., Suh, K.‐Y., Cheng, J., Mahdavi, A., Borenstein, J., Langer, R., & Khademhosseini, A. (2007). Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab on A Chip, 7, 786–794.

Eilenberger, C., Rothbauer, M., Selinger, F., Gerhartl, A., Jordan, C., Harasek, M., Schädl, B., Grillari, J., Weghuber, J., Neuhaus, W., Küpcü, S., & Ertl, P. (2021). A microfluidic multisize spheroid array for multiparametric screening of anticancer drugs and blood–brain barrier transport properties. Advancement of Science, 8, 2004856.

Eremeev, A. V., Lebedeva, O. S., Bogomiakova, M. E., Lagarkova, M. A., & Bogomazova, A. N. (2021). Cerebral organoids—challenges to establish a brain prototype. Cells, 10, 1790.

Giandomenico, S. L., Sutcliffe, M., & Lancaster, M. A. (2021). Generation and long‐term culture of advanced cerebral organoids for studying later stages of neural development. Nature Protocols, 16, 579–602.

Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., Yao, B., Hamersky, G. R., Jacob, F., Zhong, C., Yoon, K., Jeang, W., Lin, L., Li, Y., Thakor, J., Berg, D. A., Zhang, C., Kang, E., Chickering, M., & Ming, G. (2016). Brain‐region‐specific organoids using mini‐bioreactors for modeling ZIKV exposure. Cell, 165, 1238–1254.

Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442, 368–373.

Hamdallah, S. I., Zoqlam, R., Erfle, P., Blyth, M., Alkilany, A. M., Dietzel, A., & Qi, S. (2020). Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. International Journal of Pharmaceutics, 584, 119408.

Saorin, G., Caligiuri, I., & Rizzolio, F. (2023). Microfluidic organoids‐on‐a‐chip: The future of human models. Seminars in Cell & Developmental Biology, 144, 41–54.

Niculescu, A.‐G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences, 22, 2011.

Ma, J., Lee, S. M.‐Y., Yi, C., & Li, C.‐W. (2017). Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications – a review. Lab on A Chip, 17, 209.

Martins, J. P., Torrieri, G., & Santos, H. A. (2018). The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opinion on Drug Delivery, 15, 469–479.

Kašpar, O., Koyuncu, A. H., Pittermannová, A., Ulbrich, P., & Tokárová, V. (2019). Governing factors for preparation of silver nanoparticles using droplet‐based microfluidic device. Biomedical Microdevices, 21, 88.

Yin, H., & Marshall, D. (2012). Microfluidics for single cell analysis. Current Opinion in Biotechnology, 23, 110–119.

Coluccio, M. L., Perozziello, G., Malara, N., Parrotta, E., Zhang, P., Gentile, F., Limongi, T., Raj, P. M., Cuda, G., Candeloro, P., & Di Fabrizio, E. (2019). Microfluidic platforms for cell cultures and investigations. Microelectronic Engineering, 208, 14–28.

Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H., & Reiner, O. (2018). Human brain organoids on a chip reveal the physics of folding. Nature Physics, 14, 515–522.

Wang, Y., Wang, L., Zhu, Y., & Qin, J. (2018). Human brain organoid‐on‐a‐chip to model prenatal nicotine exposure. Lab on A Chip, 18, 851–860.

Berger, E., Magliaro, C., Paczia, N., Monzel, A. S., Antony, P., Linster, C. L., Bolognin, S., Ahluwalia, A., & Schwamborn, J. C. (2018). Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab on A Chip, 18, 3172–3183.

Cho, A.‐N., Jin, Y., An, Y., Kim, J., Choi, Y. S., Lee, J. S., Kim, J., Choi, W.‐Y., Koo, D.‐J., Yu, W., Chang, G.‐E., Kim, D.‐Y., Jo, S.‐H., Kim, J., Kim, S.‐Y., Kim, Y.‐G., Kim, J. Y., Choi, N., Cheong, E., & Cho, S.‐W. (2021). Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nature Communications, 12, 4730.

Heathman, T. R. J., Glyn, V. A. M., Picken, A., Rafiq, Q. A., Coopman, K., Nienow, A. W., Kara, B., & Hewitt, C. J. (2015). Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum‐free microcarrier process. Biotechnology and Bioengineering, 112, 1696–1707.

Kobayashi, S., Baba, H., Takeno, K., Miyazaki, T., Meir, A., & Urban, J. (2010). Physical limitations to tissue engineering of intervertabral disc cells. In D. Eberli (Ed.), Tissue engineering (pp. 247–279). InTech.

Thomson, J. A., Itskovitz‐Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

Nezvedová, M., Jha, D., Váňová, T., Gadara, D., Klímová, H., Raška, J., Opálka, L., Bohačiaková, D., & Spáčil, Z. (2023). Single cerebral organoid mass spectrometry of cell‐specific protein and glycosphingolipid traits. Analytical Chemistry, 95, 3160–3167.

Fedorova, V., Pospisilova, V., Vanova, T., Amruz Cerna, K., Abaffy, P., Sedmik, J., Raska, J., Vochyanova, S., Matusova, Z., Houserova, J., Valihrach, L., Hodny, Z., & Bohaciakova, D. (2023). Glioblastoma and cerebral organoids: Development and analysis of an in vitro model for glioblastoma migration. Molecular Oncology, 17, 647–663.

Bohaciakova, D., Renzova, T., Fedorova, V., Barak, M., Kunova Bosakova, M., Hampl, A., & Cajanek, L. (2017). An efficient method for generation of knockout human embryonic stem cells using CRISPR/Cas9 system. Stem Cells and Development, 26, 1521–1527.

Azizipour, N., Avazpour, R., Sawan, M., Rosenzweig, D. H., & Ajji, A. (2022). Uniformity of spheroids‐on‐a‐chip by surface treatment of PDMS microfluidic platforms. Sensors & Diagnostics, 1, 750–764.

Kim, K., Kim, S.‐H., Lee, G.‐H., & Park, J. Y. (2018). Fabrication of omega‐shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk. Biofabrication, 10, 045003.

Lopa, S., Piraino, F., Talò, G., Mainardi, V. L., Bersini, S., Pierro, M., Zagra, L., Rasponi, M., & Moretti, M. (2020). Microfluidic biofabrication of 3D multicellular spheroids by modulation of non‐geometrical parameters. Frontiers in Bioengineering and Biotechnology, 8, 366.

Rousset, N., Monet, F., & Gervais, T. (2017). Simulation‐assisted design of microfluidic sample traps for optimal trapping and culture of non‐adherent single cells, tissues, and spheroids. Scientific Reports, 7, 245.

Valdoz, J. C., Franks, N. A., Cribbs, C. G., Jacobs, D. J., Dodson, E. L., Knight, C. J., Poulson, P. D., Garfield, S. R., Johnson, B. C., Hemeyer, B. M., Sudo, M. T., Saunooke, J. A., Kartchner, B. C., Saxton, A., Vallecillo‐Zuniga, M. L., Santos, M., Chamberlain, B., Christensen, K. A., Nordin, G. P., & Van Ry, P. M. (2022). Soluble ECM promotes organotypic formation in lung alveolar model. Biomaterials, 283, 121464.

Guo, W., Chen, Z., Feng, Z., Li, H., Zhang, M., Zhang, H., & Cui, X. (2022). Fabrication of concave microwells and their applications in micro‐tissue engineering: A review. Micromachines, 13, 1555.

Mohamed, M. G. A., Kumar, H., Wang, Z., Martin, N., Mills, B., & Kim, K. (2019). Rapid and inexpensive fabrication of multi‐depth microfluidic device using high‐resolution LCD stereolithographic 3D printing. Journal of Manufacturing and Materials Processing, 3, 26.

Buentello, D. C., Koch, L. S., Santiago, G. T., Alvarez, M. M., & Broersen, K. (2022). Use of standard U‐bottom and V‐bottom well plates to generate neuroepithelial embryoid bodies. PLoS ONE, 17, e0262062.

Yakoub, A. M., & Sadek, M. (2018). Development and characterization of human cerebral organoids. Cell Transplantation, 27, 393–406.

Pellegrini, L., Bonfio, C., Chadwick, J., Begum, F., Skehel, M., & Lancaster, M. A. (2020). Human CNS barrier‐forming organoids with cerebrospinal fluid production. Science, 369, eaaz5626.

Hossain, Md. S., Bergstrom, D. J., & Chen, X. B. (2015). Modelling and simulation of the chondrocyte cell growth, glucose consumption and lactate production within a porous tissue scaffold inside a perfusion bioreactor. Biotechnology Reports, 5, 55–62.

Gao, C., Wang, F., Wang, Z., Zhang, J., & Yang, X. (2016). Asiatic acid inhibits lactate‐induced cardiomyocyte apoptosis through the regulation of the lactate signaling cascade. International Journal of Molecular Medicine, 38, 1823–1830.

Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L., & Carrondo, M. J. T. (2000). Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzyme and Microbial Technology, 27, 43–52.

Lochovsky, C., Yasotharan, S., & Günther, A. (2012). Bubbles no more: In‐plane trapping and removal of bubbles in microfluidic devices. Lab on A Chip, 12, 595–601.

Van Lintel, H., Mernier, G., & Renaud, P. (2012). High‐throughput micro‐debubblers for bubble removal with sub‐microliter dead volume. Micromachines, 3, 218–224.

Williams, M. J., Lee, N. K., Mylott, J. A., Mazzola, N., Ahmed, A., & Abhyankar, V. V. (2019). A low‐cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines, 10, 360.

Park, S., Cho, H., Kim, J., & Han, K.‐H. (2021). Lateral degassing method for disposable film‐chip microfluidic devices. Membranes, 11, 316.

Zheng, W., Wang, Z., Zhang, W., & Jiang, X. (2010). A simple PDMS‐based microfluidic channel design that removes bubbles for long‐term on‐chip culture of mammalian cells. Lab on A Chip, 10, 2906–2910.

Lancaster, M. A., Corsini, N. S., Wolfinger, S., Gustafson, E. H., Phillips, A. W., Burkard, T. R., Otani, T., Livesey, F. J., & Knoblich, J. A. (2017). Guided self‐organization and cortical plate formation in human brain organoids. Nature Biotechnology, 35, 659–666.

Lancaster, M. A., & Knoblich, J. A. (2014). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9, 2329–2340.

Sun, X.‐Y., Ju, X.‐C., Li, Y., Zeng, P.‐M., Wu, J., Zhou, Y.‐Y., Shen, L.‐B., Dong, J., Chen, Y.‐J., & Luo, Z.‐G. (2022). Generation of vascularized brain organoids to study neurovascular interactions. Elife, 11, e76707.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...