Multistep allelic conversion in mouse pre-implantation embryos by AAV vectors

. 2024 Aug 29 ; 14 (1) : 20160. [epub] 20240829

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39215103

Grantová podpora
LM2018126 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO: 68378050 Akademie Věd České Republiky
LX22NPO5102 Národní ústav pro výzkum rakoviny

Odkazy

PubMed 39215103
PubMed Central PMC11364770
DOI 10.1038/s41598-024-70853-1
PII: 10.1038/s41598-024-70853-1
Knihovny.cz E-zdroje

Site-specific recombinases (SSRs) are critical for achieving precise spatiotemporal control of engineered alleles. These enzymes play a key role in facilitating the deletion or inversion of loci flanked by recombination sites, resulting in the activation or repression of endogenous genes, selection markers or reporter elements. However, multiple recombination in complex alleles can be laborious. To address this, a new and efficient method using AAV vectors has been developed to simplify the conversion of systems based on Cre, FLP, Dre and Vika recombinases. In this study, we present an effective method for ex vivo allele conversion using Cre, FLP (flippase), Dre, and Vika recombinases, employing adeno-associated viruses (AAV) as delivery vectors. AAVs enable efficient allele conversion with minimal toxicity in a reporter mouse line. Moreover, AAVs facilitate sequential allele conversion, essential for fully converting alleles with multiple recombination sites, typically found in conditional knockout mouse models. While simple allele conversions show a 100% efficiency rate, complex multiple conversions consistently achieve an 80% conversion rate. Overall, this strategy markedly reduces the need for animals and significantly speeds up the process of allele conversion, representing a significant improvement in genome engineering techniques.

Zobrazit více v PubMed

Coleman, J. L. J. et al. Rapid knockout and reporter mouse line generation and breeding colony establishment using EUCOMM conditional-ready embryonic stem cells: A case study. Front. Endocrinol. (Lausanne)6, 105 (2015). 10.3389/fendo.2015.00105 PubMed DOI PMC

Loulier, K. et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron81, 505–520 (2014). 10.1016/j.neuron.2013.12.016 PubMed DOI

Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature474, 337–344 (2011). 10.1038/nature10163 PubMed DOI PMC

Sket, T., Falcomatà, C. & Saur, D. Dual recombinase-based mouse models help decipher cancer biology and targets for therapy. Cancer Res.83, 2279–2282 (2023). 10.1158/0008-5472.CAN-22-2119 PubMed DOI PMC

Kim, H., Kim, M., Im, S. K. & Fang, S. Mouse Cre-LoxP system: General principles to determine tissue-specific roles of target genes. Lab. Anim. Res.34, 147–159 (2018). 10.5625/lar.2018.34.4.147 PubMed DOI PMC

Karimova, M. et al. A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination. Sci. Rep.8, 1–12 (2018). 10.1038/s41598-018-32802-7 PubMed DOI PMC

Karimova, M. et al. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res.41, e37 (2013). 10.1093/nar/gks1037 PubMed DOI PMC

Kouvaros, S. et al. A CRE/DRE dual recombinase transgenic mouse reveals synaptic zinc-mediated thalamocortical neuromodulation. SciAdv9, (2023). PubMed PMC

Wang, H. et al. Dual Cre and Dre recombinases mediate synchronized lineage tracing and cell subset ablation in vivo. J.Biol.Chem.298 (2022). PubMed PMC

Pettitt, S. J. et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods6, 493–495 (2009). 10.1038/nmeth.1342 PubMed DOI PMC

Jenickova, I. et al. Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods191, 87–94 (2021). 10.1016/j.ymeth.2020.07.005 PubMed DOI

Chen, S. et al. CRISPR-READI: Efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep.27, 3780-3789.e4 (2019). 10.1016/j.celrep.2019.05.103 PubMed DOI PMC

Mizuno, N. et al. Intra-embryo gene cassette knockin by CRISPR/Cas9-mediated genome editing with adeno-associated viral vector. iScience9, 286–297 (2018). 10.1016/j.isci.2018.10.030 PubMed DOI PMC

Kranz, A. et al. An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. Genesis48, 512–520 (2010). 10.1002/dvg.20641 PubMed DOI

Grieger, J. C., Choi, V. W. & Samulski, R. J. Production and characterization of adeno-associated viral vectors. Nat. Protoc.1, 1412–1428 (2006). 10.1038/nprot.2006.207 PubMed DOI

Aurnhammer, C. et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum. Gene Ther. Methods23, 18–28 (2012). 10.1089/hgtb.2011.034 PubMed DOI

Pandey, R. & Saluja, D. Hydrogen peroxide agarose gels for electrophoretic analysis of RNA. Anal. Biochem.534, 24–27 (2017). 10.1016/j.ab.2017.07.007 PubMed DOI

Luo, C. et al. Superovulation strategies for 6 commonly used mouse strains. J. Am. Assoc. Lab. Anim. Sci.50, 471 (2011). PubMed PMC

Takeo, T. & Nakagata, N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol. Reprod.85, 1066–1072 (2011). 10.1095/biolreprod.111.092536 PubMed DOI

Deyle, D. R. & Russell, D. W. Adeno-AssociatedVirusVectorIntegration. PubMed PMC

Wolter, J. M. et al. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature587, 281–284 (2020). 10.1038/s41586-020-2835-2 PubMed DOI PMC

Grainge, I. & Jayaram, M. The integrase family of recombinases: Organization and function of the active site. Mol. Microbiol.33, 449–456 (1999). 10.1046/j.1365-2958.1999.01493.x PubMed DOI

Ludwig, D. L., Stringer, J. R., Wight, D. C., Doetschman, T. C. & Duffy, J. J. FLP-mediated site-specific recombination in microinjected murine zygotes. Transgenic Res.5, 385–395 (1996). 10.1007/BF01980203 PubMed DOI

Wu, Y., Wang, C., Sun, H., LeRoith, D. & Yakar, S. High-efficient FLPo deleter mice in C57BL/6J background. PLoS One4, 8054 (2009).10.1371/journal.pone.0008054 PubMed DOI PMC

Luckow, B. et al. Microinjection of Cre recombinase protein into zygotes enables specific deletion of two eukaryotic selection cassettes and enhances the expression of a DsRed2 reporter gene in Ccr2/Ccr5 double-deficient mice. Genesis47, 545–558 (2009). 10.1002/dvg.20531 PubMed DOI

Collins, D. E., Reuter, J. D., Rush, H. G. & Villano, J. S. Viral vector biosafety in laboratory animal research. Comp. Med.67, 215 (2017). PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...