Seasonal and spatial variations of arsenic and its species in particulate matter in an urban environment of Brno, Czech Republic

. 2024 Sep ; 31 (43) : 55251-55262. [epub] 20240903

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39225932
Odkazy

PubMed 39225932
PubMed Central PMC11415447
DOI 10.1007/s11356-024-34645-4
PII: 10.1007/s11356-024-34645-4
Knihovny.cz E-zdroje

The present paper deals with an analysis of total arsenic concentration using ICP-MS/MS and an analysis of concentration of several arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonate (MMA), dimethylarsenite (DMA), and trimethylarsine oxide (TMAO), using HPLC-ICP-MS/MS in the PM10 fraction of airborne urban aerosol. The samples were collected during two campaigns, in the autumn of 2022 and in the winter of 2023, at three locations within the central European city of Brno, with the aim to evaluate the seasonal and spatial variations in the PM10 composition. The results confirmed only the seasonal variability in the content of the methylated arsenic species in PM10 influenced by biomethylation processes. To gain better understanding of the possible arsenic origin, a supplementary analysis of the total arsenic concentrations was performed in samples of different size fractions of particulate matter collected using ELPI + . Local emissions, including industrial activities and heating during the winter season, were suggested as the most likely predominant source contributing to the total As content in PM10.

Zobrazit více v PubMed

Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271. 10.1128/MMBR.66.2.250-271.2002 PubMed PMC

Cheng J, Karambelkar B, Xie Y (2022) leaflet: create interactive web maps with the JavaScript “Leaflet” Library. R Package Version 2(1):1

CHMI 2022 [WWW Document] (n.d.) URL https://www.chmi.cz/files/portal/docs/uoco/web_generator/plants/brno_mesto_CZ.html . Accessed 13 Nov 2023 (in Czech)

Cigánková H, Mikuška P, Hegrová J, Krajčovič J (2021) Comparison of oxidative potential of PM1 and PM2.5 urban aerosol and bioaccessibility of associated elements in three simulated lung fluids. Sci Total Environ 800:149502. 10.1016/J.SCITOTENV.2021.149502 PubMed

Costabile F, Birmili W, Klose S, Tuch T, Wehner B, Wiedensohler A, Franck U, König K, Sonntag A (2009) Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere. Atmos Chem Phys 9:3163–3195. 10.5194/acp-9-3163-2009

ČSN EN 12341(n.d.) Air quality - reference gravimetric method for the determination of the mass concentration of aerosol fractions of PM10 and PM2.5. Accessed 20 Nov 2023 (in Czech)

Cullen WR (2014) Chemical mechanism of arsenic biomethylation. Chem Res Toxicol 27:457–461. 10.1021/tx400441h PubMed

Cullen WR, Li H, Pergantis SA, Eigendorf GK, Mosi AA (1995) Arsenic biomethylation by the microorganism apiotrichum humicola in the presence of l-methionine-methyl-d3. Appl Organomet Chem 9:507–515. 10.1002/aoc.590090703

Data.Brno [WWW Document] (n.d.) URL https://datahub.brno.cz/. Accessed 12 Jul 2023 (in Czech)

DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe (2008) Off J Eur Union L152/1:1–44

Dousova B, Lhotka M, Buzek F, Cejkova B, Jackova I, Bednar V, Hajek P (2020) Environmental interaction of antimony and arsenic near busy traffic nodes. Sci Total Environ 702:134642. 10.1016/J.SCITOTENV.2019.134642 PubMed

Fomba KW, van Pinxteren D, Müller K, Spindler G, Herrmann H (2018) Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmos Environ 176:60–70. 10.1016/J.ATMOSENV.2017.12.024

Fowler D, Brimblecombe P, Burrows J, Heal MR, Grennfelt P, Stevenson DS, Jowett A, Nemitz E, Coyle M, Lui XJ, Chang YH, Fuller GW, Sutton MA, Klimont Z, Unsworth MH, Vieno M (2020) A chronology of global air quality. Philos Trans Royal Soc A-Math Phys Eng Sci 378. 10.1098/rsta.2019.0314 PubMed PMC

González-Castanedo Y, Sanchez-Rodas D, Sánchez de la Campa AM, Pandolfi M, Alastuey A, Cachorro VE, Querol X, de la Rosa JD (2015) Arsenic species in atmospheric particulate matter as tracer of the air quality of Doñana Natural Park (SW Spain). Chemosphere 119:1296–1303. 10.1016/J.CHEMOSPHERE.2014.09.093 PubMed

Goossens J, Jonckheere AC, Dupont LJ, Bullens DMA (2021) Air pollution and the airways: lessons from a century of human urbanization. Atmosphere (Basel) 12. 10.3390/atmos12070898

Haas K, Feldmann J (2000) Sampling of trace volatile metal(loid) compounds in ambient air using polymer bags: a convenient method. Anal Chem 72:4205–4211. 10.1021/ac000313c PubMed

Hao C, Xie X, Huang Y, Huang Z (2019) Study on influence of viaduct and noise barriers on the particulate matter dispersion in street canyons by CFD modeling. Atmos Pollut Res 10:1723–1735. 10.1016/J.APR.2019.07.003

Huang M, Chen X, Zhao Y, Yu Chan C, Wang W, Wang X, Wong MH (2014) Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environ Pollut 188:37–44. 10.1016/j.envpol.2014.01.001 PubMed

Intenzita dopravy - Intenzita vozidel / Vehicle traffic intensity | data.Brno [WWW Document] (n.d.) URL https://data.brno.cz/datasets/mestobrno::intenzita-dopravy-intenzita-vozidel-vehicle-traffic-intensity/explore?location=49.205377%2C16.596921%2C17.00. Accessed 10 Nov 2023. (in Czech)

Jakob R, Roth A, Haas K, Krupp EM, Raab A, Smichowski P, Gómez D, Feldmann J (2010) Atmospheric stability of arsines and the determination of their oxidative products in atmospheric aerosols (PM10): evidence of the widespread phenomena of biovolatilization of arsenic. J Environ Monit 12:409–416. 10.1039/B915867G PubMed

Jiao Y, Ren Y, Laroussi W, Robin C, De Filippis A, Bordier F, Rangognio J, Yahyaoui A, Favez O, Mellouki A (2023) Tracking changes in atmospheric particulate matter at a semi-urban site in Central France over the past decade. Sci Total Environ 885:163807. 10.1016/J.SCITOTENV.2023.163807 PubMed

Karagulian F, Belis CA, Dora CFC, Prüss-Ustün AM, Bonjour S, Adair-Rohani H, Amann M (2015) Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 120:475–483. 10.1016/J.ATMOSENV.2015.08.087

Lin Y, Zhang X, Sun Y, Cai Z, Fu FF (2022) Soluble arsenic species in total suspended particles and their health risk and origin implication: a case study in Taiyuan, China. Sci Total Environ 807. 10.1016/j.scitotenv.2021.150791 PubMed

Maeda S, Kusadome K, Arima H, Ohki A, Naka K (1992) Biomethylation of arsenic and its excretion by the alga Chlorella vulgaris. Appl Organomet Chem 6:407–413. 10.1002/aoc.590060416

Matthews JC, Navasumrit P, Wright MD, Chaisatra K, Chompoobut C, Arbon R, Khan MAH, Ruchirawat M, Shallcross DE (2022) Aerosol mass and size-resolved metal content in urban Bangkok, Thailand. Environ Sci Pollut Res 29:79025–79040. 10.1007/s11356-022-20806-w PubMed PMC

Mukai H, Ambe Y (1987) Determination of methylarsenic compounds in airborne particulate matter by gas chromatography with atomic absorption spectrometry. Anal Chim Acta 193:219–229. 10.1016/S0003-2670(00)86153-X

Mukai H, Ambe Y, Muku T, Takeshita K, Fukuma T (1986) Seasonal variation of methylarsenic compounds in airborne participate matter. Nature 324:239–241. 10.1038/324239a0

Noble SR, Hudson JG (2019) Effects of continental clouds on surface aitken and accumulation modes. J Geophys Res: Atmospheres 124:5479–5502. 10.1029/2019JD030297

Oliveira V, Gómez-Ariza JL, Sánchez-Rodas D (2005) Extraction procedures for chemical speciation of arsenic in atmospheric total suspended particles. Anal Bioanal Chem 382:335–340. 10.1007/s00216-005-3189-1 PubMed

OpenStreetMap [WWW Document] (n.d.) URL https://www.openstreetmap.org/copyright. Accessed 13 Jul 2023

Parris GE, Brinckman FE (1976) Reactions which relate to environmental mobility of arsenic and antimony. II. Oxidation of trimethylarsine and trimethylstibine. Environ Sci Technol 10:1128–1134. 10.1021/es60122a010 PubMed

Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh E, Ten Brink HM, Lutz M, Bruckmann P, Straehl P, Schneider J (2004) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38:6547–6555. 10.1016/J.ATMOSENV.2004.08.037

ŘSD ČR, Ředitelství silnic a dálnic ČR / Road and Motorway Directorate of Czech Republic [WWW Document] (n.d.) Sčítání dopravy 2020 / Transport Census 2020 (sč.úsek: 6–5042). URL https://scitani.rsd.cz/csd_2020/pages/intenzitytable/default.aspx?s=6-5042. Accessed 12 Jul 23. (in Czech)

Rabano ES, Castillo NT, Torre KJ, Solomon PA (1989) Speciation of arsenic in ambient aerosols collected in Los Angeles. JAPCA 39:76–80. 10.1080/08940630.1989.10466511 PubMed

Reid MS, Hoy KS, Schofield JRM et al (2020) Arsenic speciation analysis: a review with an emphasis on chromatographic separations. TrAC Trends Anal Chem 123:115770. 10.1016/J.TRAC.2019.115770

Sánchez-Rodas D, de la Campa AMS, Alsioufi L (2015) Analytical approaches for arsenic determination in air: a critical review. Anal Chim Acta 898:1–18. 10.1016/j.aca.2015.09.043 PubMed

Savage L, Carey M, Hossain M, Rafiqul Islam M, Mangala C. S. de Silva P, Williams PN, Meharg AA (2017) Elevated trimethylarsine oxide and inorganic arsenic in northern hemisphere summer monsoonal wet deposition. Environ Sci Technol 51:12210–12218. 10.1021/acs.est.7b04356 PubMed

Savage L, Carey M, Williams PN, Meharg AA (2018) Biovolatilization of arsenic as arsines from seawater. Environ Sci Technol 52:3968–3974. 10.1021/acs.est.7b06456 PubMed

Škáchová Hana, Stašová Lenka, Jandová Dagmar, Vlasáková Leona, Schreiberová Markéta (2022) Czech Hydrometeorological Institute monthly overview of air quality and dispersion conditions October 2022. Accessed 1 Nov 2023 (in Czech)

Škáchová Hana, Sedláková Klára, Stašová Lenka, Umlauf Vojtěch, Vlasáková Leona, Schreiberová Markéta (2023) Czech Hydrometeorological Institute monthly overview of air quality and dispersion conditions February 2023. Accessed 1 Nov 2023 (in Czech)

Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299. 10.1007/s002040000134 PubMed

Tanda S, Ličbinský R, Hegrová J, Faimon J, Goessler W (2019) Arsenic speciation in aerosols of a respiratory therapeutic cave: a first approach to study arsenicals in ultrafine particles. Sci Total Environ 651:1839–1848. 10.1016/J.SCITOTENV.2018.10.102 PubMed

Tanda S, Gingl K, Ličbinský R, Hegrová J, Goessler W (2020) Occurrence, seasonal variation, and size resolved distribution of arsenic species in atmospheric particulate matter in an urban area in Southeastern Austria. Environ Sci Technol 54:5532–5539. 10.1021/acs.est.9b07707 PubMed PMC

Tziaras T, Pergantis SA, Stephanou EG (2015) Investigating the occurrence and environmental significance of methylated arsenic species in atmospheric particles by overcoming analytical method limitations. Environ Sci Technol 49:11640–11648. 10.1021/acs.est.5b02328 PubMed

Watson JG, Chow JC, Chen L, Wang X, Diamond Bar CA (2010) Measurement system evaluation for fugitive dust emissions detection and quantification. Prepared by Desert Research Institute, Reno, NV. Accessed 5 Sep 2023

WHO global air quality guidelines (2021) Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO. Accessed 11 Jul 2023 PubMed

Xie J, Niu XD, Xie JJ, He KQ, Shi MD, Yu SJ, Yuan CG, Liu JF (2021) Distribution and chemical speciation of arsenic in different sized atmospheric particulate matters. J Environ Sci 108:1–7. 10.1016/J.JES.2021.02.010 PubMed

Yang M, Zhou M, Liu X, Li F, Chen M, Li H, Qian X, Li F, Zheng J (2021) Concentrations of total arsenic and arsenic species in PM2.5 in Nanjing, China: spatial variations and influences of local emission sources. Air Qual Atmos Health 14:271–281. 10.1007/s11869-020-00932-5

Ye J, Rensing C, Rosen BP, Zhu YG (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17:155–162. 10.1016/J.TPLANTS.2011.12.003 PubMed PMC

Zákon č. 201/2012 Sb (n.d.) o ochraně ovzduší / Air protection act No. č. 201/2012 Sb. (in Czech)We accidentaly deleted the last reference:Zákon č. 201/2012 Sb., o ochraně ovzduší / Air protection act No. č. 201/2012 Sb. Accessed 12 Jul 2023 (in Czech)

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...