Quantitative localisation of titanium in the framework of titanium silicalite-1 using anomalous X-ray powder diffraction

. 2024 Sep 05 ; 15 (1) : 7757. [epub] 20240905

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39237487
Odkazy

PubMed 39237487
PubMed Central PMC11377426
DOI 10.1038/s41467-024-51788-7
PII: 10.1038/s41467-024-51788-7
Knihovny.cz E-zdroje

One of the biggest obstacles to developing better zeolite-based catalysts is the lack of methods for quantitatively locating light heteroatoms on the T-sites in zeolites. Titanium silicalite-1 (TS-1) is a Ti-bearing zeolite-type catalyst commonly used in partial oxidation reactions with H2O2, such as aromatic hydroxylation and olefin epoxidation. The reaction mechanism is controlled by the configuration of titanium sites replacing silicon in the zeolite framework, but these sites remain unknown, hindering a fundamental understanding of the reaction. This study quantitatively determines heteroatoms within the zeolite-type framework using anomalous X-ray powder diffraction (AXRD) and the changes in the titanium X-ray scattering factor near the Ti K-edge (4.96 keV). Two TS-1 samples, each with approximately 2 Ti atoms per unit cell, were examined. Half of the titanium atoms are primarily split between sites T3 and T9, with the remainder dispersed among various T-sites within both MFI-type frameworks. One structure showed significant non-framework titanium in the micropores of a more distorted lattice. In both samples, isolated titanium atoms were more prevalent than dinuclear species, which could only potentially arise at site T9, but with a significant energy penalty and were not detected.

Zobrazit více v PubMed

Taramasso, M., Perego, G. & Notari, B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US patent 4,410,501 (1983).

Roffia, P., Padovan, M. & De Alberti, G. Catalytic process for preparing cyclohexanone-oxime. US patent 4,745,221 (1988).

Neri, C., Anfossi, B., Esposito, A. & Buonomo, F. Process for the epoxidation of olefinic compounds. US patent 4,833,260 21 (1984).

Bordiga, S. et al. The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy. Angew. Chem. Int. Ed.41, 4734–4737 (2002).10.1002/anie.200290032 PubMed DOI

Cavani, F. Liquid phase oxidation via heterogeneous catalysis. Organic synthesis and industrial applications. Edited by Mario G. Clerici and Oxana A. Kholdeeva. Angew. Chem. Int. Ed.53, 7707–7707 (2014).10.1002/anie.201404813 DOI

Baerlocher, C. & McCusker, L. B. Database of zeolite structures. http://www.iza-structure.org/databases/ (2008).

Gordon, C. P. et al. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature586, 708–713 (2020). 10.1038/s41586-020-2826-3 PubMed DOI

Parker, W. O. & Millini, R. Ti coordination in titanium silicalite-1. J. Am. Chem. Soc.128, 1450–1451 (2006). 10.1021/ja0576785 PubMed DOI

Lätsch, L. et al. NMR signatures and electronic structure of Ti sites in titanosilicalite-1 from solid-state 47/49Ti NMR spectroscopy. J. Am. Chem. Soc.145, 15018–15023 (2023). 10.1021/jacs.2c09867 PubMed DOI

Ricchiardi, G. et al. Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. J. Am. Chem. Soc.123, 11409–11419 (2001). 10.1021/ja010607v PubMed DOI

Su, J. et al. Amorphous Ti species in titanium silicalite-1: Structural features, chemical properties, and inactivation with sulfosalt. J. Catal.288, 1–7 (2012).10.1016/j.jcat.2011.12.006 DOI

Guo, Q., Feng, Z., Li, G., Fan, F. & Li, C. Finding the ‘missing components’ during the synthesis of TS-1 zeolite by UV resonance raman spectroscopy. J. Phys. Chem. C.117, 2844–2848 (2013).10.1021/jp310900a DOI

Signorile, M. et al. Titanium defective sites in TS-1: structural insights by combining spectroscopy and simulation. Angew. Chem. Int. Ed.59, 18145–18150 (2020).10.1002/anie.202005841 PubMed DOI

Signorile, M. et al. Effect of Ti speciation on catalytic performance of TS-1 in the hydrogen peroxide to propylene oxide reaction. J. Phys. Chem. C.122, 9021–9034 (2018).10.1021/acs.jpcc.8b01401 DOI

Signorile, M. et al. Computational assessment of relative sites stabilities and site-specific adsorptive properties of titanium silicalite-1. J. Phys. Chem. C.122, 1612–1621 (2018).10.1021/acs.jpcc.7b10104 DOI

Dong, J. et al. Toward a unified identification of Ti location in the MFI framework of high-Ti-loaded TS-1: combined EXAFS, XANES, and DFT study. J. Phys. Chem. C.120, 20114–20124 (2016).10.1021/acs.jpcc.6b05087 DOI

Ricchiardi, G., De Man, A. & Sauer, J. The effect of hydration on structure and location of Ti-sites in Ti- silicalite catalysts. A computational study. Phys. Chem. Chem. Phys.2, 2195–2204 (2000).10.1039/a909617e DOI

Deka, R. C. et al. Comparison of all sites for Ti substitution in zeolite TS-1 by an accurate embedded-cluster method. J. Phys. Chem. B109, 24304–24310 (2005). 10.1021/jp050056l PubMed DOI

Gale, J. D. A periodic density functional study of the location of titanium within TS-1. Solid State Sci.8, 234–240 (2006).10.1016/j.solidstatesciences.2006.02.011 DOI

Marra, G. L., Artioli, G., Fitch, A. N., Milanesio, M. & Lamberti, C. Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: an attempt to locate Ti in the MFI framework by low temperature XRD. Microporous Mesoporous Mater.40, 85–94 (2000).10.1016/S1387-1811(00)00244-4 DOI

Lamberti, C. et al. Structural characterization of Ti-Silicalite-1: a synchrotron radiation X-ray powder diffraction study. J. Catal.183, 222–231 (1999).10.1006/jcat.1999.2403 DOI

Lamberti, C. et al. Ti location in the MFI framework of Ti-silicalite-1: a neutron powder diffraction study. J. Am. Chem. Soc.123, 2204–2212 (2001). 10.1021/ja003657t PubMed DOI

Hijar, C. A. et al. The siting of Ti in TS-1 is non-random. Powder neutron diffraction studies and theoretical calculations of TS-1 and FeS-1. J. Phys. Chem. B104, 12157–12164 (2000).10.1021/jp002167k DOI

Henry, P. F., Weller, M. T. & Wilson, C. C. Structural investigation of TS-1: determination of the true nonrandom titanium framework substitution and silicon vacancy distribution from powder neutron diffraction studies using isotopes. J. Phys. Chem. B105, 7452–7458 (2001).10.1021/jp0107715 DOI

Cromer, D. T. & Liberman, D. Relativistic calculation of anomalous scattering factors for X rays. J. Chem. Phys.53, 1891–1898 (1970).10.1063/1.1674266 DOI

Grenier, S. & Joly, Y. Basics of resonant elastic X-ray scattering theory. J. Phys. Conf. Ser.519, 12001 (2014).10.1088/1742-6596/519/1/012001 DOI

Hendrickson, W. A. Anomalous diffraction in crystallographic phase evaluation. Q. Rev. Biophys.47, 49–93 (2014). 10.1017/S0033583514000018 PubMed DOI PMC

Finkelstein, K. D., Shen, Q. & Shastri, S. Resonant X-ray diffraction near the iron K edge in hematite (α-Fe2O3). Phys. Rev. Lett.69, 1612–1615 (1992). 10.1103/PhysRevLett.69.1612 PubMed DOI

Pinar, A. B. et al. Pinpointing and quantifying the aluminum distribution in zeolite catalysts using anomalous scattering at the Al absorption edge. J. Am. Chem. Soc.143, 17926–17930 (2021). 10.1021/jacs.1c06925 PubMed DOI

Goldbach, A., Saboungi, M. L., Iton, L. & Price, D. L. Stabilization of selenium in zeolites: an anomalous X-ray scattering study. Chem. Commun. 10.1039/a900253g(1999).

Pichon, C. et al. In situ characterisation by anomalous X-ray diffraction of the cationic distribution of dehydrated SrRbX zeolite. Stud. Surf. Sci. Catal.154, 1641–1648 (2004).10.1016/S0167-2991(04)80689-X DOI

Jones, R. H., Lightfoot, P. & Ormerod, R. M. The location of sorbed Kr in silicalite using resonant X-ray diffraction. J. Phys. Chem. Solids56, 1377–1381 (1995).10.1016/0022-3697(95)00073-9 DOI

Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science254, 51–58 (1991). 10.1126/science.1925561 PubMed DOI

Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z = 1-92.At. Data Nucl. Data Tables54, 181–342 (1993).10.1006/adnd.1993.1013 DOI

Evans, G. & Pettifer, R. F. CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J. Appl. Crystallogr.34, 82–86 (2001).10.1107/S0021889800014655 DOI

Beek et al. Untangling diffraction intensity: modulation enhanced diffraction on ZrO2 powder. J. Appl. Crystallogr.45, 738–747 (2012).10.1107/S0021889812018109 DOI

Owen, R. L., Holton, J. M., Schulze-Briese, C. & Garman, E. F. Determination of X-ray flux using silicon pin diodes. J. Synchrotron Radiat.16, 143–151 (2009). 10.1107/S0909049508040429 PubMed DOI PMC

Coelho, A. A. TOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr.51, 210–218 (2018).10.1107/S1600576718000183 DOI

Willmott, P. R. et al. The Materials Science beamline upgrade at the Swiss light source. J. Synchrotron Radiat.20, 667–682 (2013). 10.1107/S0909049513018475 PubMed DOI PMC

Millini, R., Previde Massara, E., Perego, G. & Bellussi, G. Framework composition of titanium silicalite-1. J. Catal.137, 497–503 (1992).10.1016/0021-9517(92)90176-I DOI

Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci.1, 54–75 (1986).

DiCiccio, T. J. & Efron, B. Bootstrap confidence intervals. Stat. Sci.11, 189–212 (1996).10.1214/ss/1032280214 DOI

Gamba, A., Tabacchi, G. & Fois, E. TS-1 from first principles. J. Phys. Chem. A113, 15006–15015 (2009). 10.1021/jp905110s PubMed DOI

Román-Román, E. I. & Zicovich-Wilson, C. M. The role of long-range van der Waals forces in the relative stability of SiO2-zeolites. Chem. Phys. Lett.619, 109–114 (2015).10.1016/j.cplett.2014.11.044 DOI

Zhang, K. Y. J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr. Sect. A46, 41–46 (1990).10.1107/S0108767389009311 DOI

Hutter, J., Iannuzzi, M., Schiffmann, F. & Vandevondele, J. Cp2k: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci.4, 15–25 (2014).10.1002/wcms.1159 DOI

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.77, 3865–3868 (1996). 10.1103/PhysRevLett.77.3865 PubMed DOI

Goedecker, S. & Teter, M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B - Condens. Matter Mater. Phys.54, 1703–1710 (1996).10.1103/PhysRevB.54.1703 PubMed DOI

Lippert, G., Hutter, J. & Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys.92, 477–488 (1997).10.1080/00268979709482119 DOI

VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys.127, 114105 (2007). 10.1063/1.2770708 PubMed DOI

VandeVondele, J. & Hutter, J. An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys.118, 4365–4369 (2003).10.1063/1.1543154 DOI

Van Koningsveld, H., Van Bekkum, H. & Jansen, J. C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM‐5 with improved framework accuracy. Acta Crystallogr. Sect. B43, 127–132 (1987).10.1107/S0108768187098173 DOI

Mustapha, S. et al. On the use of symmetry in configurational analysis for the simulation of disordered solids. J. Phys. Condens. Matter25, 105401–105417 (2013). 10.1088/0953-8984/25/10/105401 PubMed DOI

Dovesi, R. et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci.8, e1360 (2018).10.1002/wcms.1360 DOI

Vaughan, G. B. M. et al. ID15A at the ESRF-a beamline for high speed operando X-ray diffraction, diffraction tomography and total scattering. J. Synchrotron Rad.27, 515–528 (2020).10.1107/S1600577519016813 PubMed DOI PMC

Kieffer, J., Valls, V., Blanc, N. & Hennig, C. New tools for calibrating diffraction setups. J. Synchrotron Rad.27, 558–566 (2020).10.1107/S1600577520000776 PubMed DOI PMC

Juhás, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr.46, 560–566 (2013).10.1107/S0021889813005190 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...