Effect of caffeic acid and cobalt sulfate on potato (Solanum tuberosum L.) plants in the presence and absence of nanoparticles-coated urea
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39237669
PubMed Central
PMC11377432
DOI
10.1038/s41598-024-70998-z
PII: 10.1038/s41598-024-70998-z
Knihovny.cz E-zdroje
- Klíčová slova
- Solanum tuberosum L., Chlorophyll content, Growth attributes, N-fertilizer,
- MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza účinky léků MeSH
- kobalt farmakologie chemie MeSH
- kořeny rostlin účinky léků růst a vývoj MeSH
- kyseliny kávové * farmakologie chemie MeSH
- listy rostlin účinky léků MeSH
- močovina * farmakologie MeSH
- nanočástice * chemie MeSH
- Solanum tuberosum * účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- caffeic acid MeSH Prohlížeč
- chlorofyl MeSH
- kobalt MeSH
- kyseliny kávové * MeSH
- močovina * MeSH
Potatoes (Solanum tuberosum L.) are a significant food crop cultivated around the world. Caffeic acid (CA) can enhance plant growth by promoting antioxidant activity and stimulating root development, contributing to overall plant health and vigor. Cobalt sulfate (CoSO4) boosts plant growth by promoting nitrogen (N) fixation, healthier root development, and chlorophyll synthesis, enhancing photosynthesis and overall plant health. Nanoparticle-coated urea (NPCU) improves nutrient uptake, promoting plant growth efficiency and reducing environmental impact. This study investigates the effects of combining CA, CoSO4, and NPCU as amendments on potatoes with and without NPCU. Four treatments, control, 20 μM CA, 0.15 mg/L CoSO4, and 20 μM CA + 0.15 mg/L CoSO4 with and without NPCU, were applied in four replications using a completely randomized design. Results demonstrate that the combination of CA + CoSO4 with NPCU led to an increase in potato stem length (~ 6%), shoot dry weight (~ 15%), root dry weight (~ 9%), and leaf dry weight (~ 49%) compared to the control in nutrient stress. There was a significant rise in chlorophyll a (~ 27%), chlorophyll b (~ 37%), and total chlorophyll (~ 28%) over the control under nutrient stress also showed the potential of CA + CoSO4 with NPCU. In conclusion, the findings suggest that applying CA + CoSO4 with NPCU is a strategy for alleviating potato nutrient stress.
Department of Agronomy Abdul Walikhan University Mardan Mardan Pakistan
Department of Botany Hindu College Moradabad Bareilly 244001 India
Department of Environmental Sciences Woman University Multan Multan Punjab Pakistan
Pesticide Quality Control Laboratory Agriculture Complex Old Shujabad Road Multan Punjab Pakistan
Soil and Water Testing Laboratory Khanewal 58150 Punjab Pakistan
Zobrazit více v PubMed
Kumar, S. Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int. J. Food Sci. Agric4, 367–378 (2020).
Ameen, M. et al. Nutrient acquisition, transport and metabolism within the plant cells. In Sustainable plant nutrition 51–70 (Elsevier, 2023).
Lommen, W. J. M. Environmental conditions after planting affect the expression of differences in tuber formation of in vitro-derived potato plantlets from different ages and cultivars. Potato Res.67(1), 117–137 (2023).10.1007/s11540-023-09622-y DOI
Bethke, P. C. & Jansky, S. H. Genetic and environmental factors contributing to reproductive success and failure in potato. Am. J. Potato Res.98, 24–41 10.1007/s12230-020-09810-3 (2021).
Zarzyńska, K., Trawczyński, C. & Pietraszko, M. Environmental and agronomical factors limiting differences in potato yielding between organic and conventional production system. Agriculture13(4), 901 (2023).10.3390/agriculture13040901 DOI
Saeed, R. et al. Tea [Camellia sinensis (L.) kuntze] leaf compost ameliorates the adverse effects of salinity on growth of cluster beans (Cyamopsis tetragonoloba L.). Pak. J. Bot.48, 495–501 (2016).
Zafar-ul-Hye, M. et al. Rhizobacteria inoculation and caffeic acid alleviated drought stress in lentil plants. Sustainability13, 9603 (2021).10.3390/su13179603 DOI
El-Awadi, M. E. Investigations of growth promoting activity of some phenolic acids. Agric. Eng. Int. CIGR J.19, 53–60 (2017).
Bubna, G. A. et al. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). J. Plant Physiol.168, 1627–1633 (2011). 10.1016/j.jplph.2011.03.005 PubMed DOI
Vendrig, J. C. & Buffel, K. Growth-promoting activity of caffeic acid. Nature193, 1204–1204 (1962). 10.1038/1931204a0 PubMed DOI
Gad, N. Increasing the efficiency of nitrogen fertilization through cobalt application to pea plant. Res. J. Agric. Biol. Sci.2, 433–442 (2007).
Siam, H. S., Mahmoud, A. & Abdel Hady, M. Increasing the utilization efficiency of nitrogenous fertilizers by cobalt addition and its effect on growth, yield parameters and nutrients contents of cowpea plants. J. Appl. Sci. Res.8(2), 915-929 (2012).
Kandil, H. M., Farid, I. M. & el-Maghraby, A. M. Effect of cobalt level and nitrogen source on quantity and quality of soybean plant. J. Appl. Sci. Res.8(2), 915–929 (2013).
Hu, X., Wei, X., Ling, J. & Chen, J. Cobalt: an essential micronutrient for plant growth? Front Plant. Sci.12, 768523 (2021). 10.3389/fpls.2021.768523 PubMed DOI PMC
Xin, X., Judy, J. D., Sumerlin, B. B. & He, Z. Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. Environ. Chem.17, 413 (2020).10.1071/EN19254 DOI
Amin, S. et al. Zinc oxide nanoparticles coated urea enhances nitrogen efficiency and zinc bioavailability in wheat in alkaline calcareous soils. Environ. Sci. Pollut. Res.30, 70121–70130 (2023).10.1007/s11356-023-27209-5 PubMed DOI
Elhassani, C. E. et al. Lignin nanoparticles filled chitosan/polyvinyl alcohol polymer blend as a coating material of urea with a slow‐release property. J. Appl. Polym. Sci.140, (2023).
Shen, Y., Zhou, J. & Du, C. Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings9, 88 (2019).10.3390/coatings9020088 DOI
Beig, B. et al. Development and testing of zinc sulfate and zinc oxide nanoparticle-coated urea fertilizer to improve N and Zn use efficiency. Front. Plant Sci.13, (2023). PubMed PMC
Pramanik, A. et al. Nanocatalyst-based biofuel generation: an update challenges and future possibilities. Sustainability15, 6180 (2023).10.3390/su15076180 DOI
De Vrieze, M., Germanier, F., Vuille, N. & Weisskopf, L. Combining different potato-associated pseudomonas strains for improved biocontrol of phytophthora infestans. Front. Microbiol.9, 2573 (2018). 10.3389/fmicb.2018.02573 PubMed DOI PMC
Chourasia, K. N. et al. Salinity stress in potato: understanding physiological, biochemical and molecular responses. Life11, 545 (2021). 10.3390/life11060545 PubMed DOI PMC
Klimczyk, M., Siczek, A. & Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ.771, 145483 (2021). 10.1016/j.scitotenv.2021.145483 PubMed DOI
Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol.24, 1 (1949). 10.1104/pp.24.1.1 PubMed DOI PMC
Kirk, J. T. O. & Allen, R. L. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun.21, 523–530 (1965). 10.1016/0006-291X(65)90516-4 PubMed DOI
Nazar, R., Khan, M. I. R., Iqbal, N., Masood, A. & Khan, N. A. Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol. Plant.152, 331–344 (2014). 10.1111/ppl.12173 PubMed DOI
Yemm, E. W. & Willis, A J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J.57, 508–514 (1954). PubMed PMC
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254 (1976). 10.1016/0003-2697(76)90527-3 PubMed DOI
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil39, 205–207 (1973).10.1007/BF00018060 DOI
Hori, M. et al. Changes in the hepatic glutathione peroxidase redox system produced by coplanar polychlorinated biphenyls in Ah-responsive and-less-responsive strains of mice: Mechanism and implications for toxicity. Environ. Toxicol. Pharmacol.3, 267–275 (1997). 10.1016/S1382-6689(97)00025-2 PubMed DOI
Dhindsa, R. S., Plumb-Dhindsa, P. L. & Reid, D. M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant56, 453–457 (1982).10.1111/j.1399-3054.1982.tb04539.x DOI
Cakmak, I. & Horst, W. J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant83, 463–468 (1991).10.1111/j.1399-3054.1991.tb00121.x DOI
Mills, H. A. & Jones, J. B. Jr. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide. Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. (Micro-Macro Publishing, Inc., USA, 1991).
Miller, R. Nitric-perchloric acid wet digestion in an open vessel. In Handbook of Reference Methods for Plant Analysis (ed. Kalra, Y.) 57–62 (CRC Press, Washington, D.C., 1997). 10.1201/9781420049398.ch6.
Estefan, G., Sommer, R. & Ryan, J. Methods of Soil, Plant , and Water Analysis : A Manual for the West Asia and North Africa Region. (International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon, 2013).
Donald, A. H. & Hanson, D. Determination of potassium and sodium by flame emmision spectrophotometery. In Handbook of Reference Methods for Plant Analysis (ed. Kalra, Y.) 153–155 (CRC Press, Washington, D.C., 1998).
Pratt, P. F. Potassium. in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (ed. Norman, A. G.) 1022–1030 (John Wiley & Sons, Ltd, Madison, WI, USA, 2016). 10.2134/agronmonogr9.2.c20.
Steel, R. G., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach (McGraw Hill Book International Co., 1997).
OriginLab Corporation. OriginPro. (OriginLab, Northampton, MA, USA., 2021).
Abenavoli, M. R., Lupini, A., Oliva, S. & Sorgonà, A. Allelochemical effects on net nitrate uptake and plasma membrane H+-ATPase activity in maize seedlings. Biol. Plant54, 149–153 (2010).10.1007/s10535-010-0024-0 DOI
Zafar-ul-Hye, M., Nawaz, M. S., Asghar, H., Waqas, M. & Mahmood, F. Caffeic acid helps to mitigate adverse effects of soil salinity and other abiotic stresses in legume. J. Genet. Genomes4, 1-6 (2020).
Perchlik, M. & Tegeder, M. Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol.175, 235–247 (2017). 10.1104/pp.17.00608 PubMed DOI PMC
Kielland, K. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology75, 2373–2383 (1994).10.2307/1940891 DOI
Gad, N. Interactive effect of salinity and cobalt on tomato plants. II. Some physiological parameters as affected by cobalt and salinity. Res. J. Agric. Biol. Sci.1, 270–276 (2005).
Gad, N., Moez, A. & Kandil, H. Response of Okra (Hibiscus esculentus) growth and productivity to cobalt and humic acid rates. Int. J. Chem. Tech. Res.8, 1782–1791 (2015).
Gad, N. Role and importance of cobalt nutrition on groundnut (Arachis hypogaea) production. World Appl. Sci. J.20(3), 359–367 (2012).
Gad, N. Role of cobalt on cowpea growth and yield under different levels of nitrogen. World Appl. Sci. J.22(4), 470-478 (2013).
Singh, A., Tiwari, S., Pandey, J., Lata, C. & Singh, I. K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol.337, 57–70 (2021). 10.1016/j.jbiotec.2021.06.022 PubMed DOI
Guha, T., Gopal, G., Mukherjee, A. & Kundu, R. Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution. Environ. Pollut.292, 118301 (2022). 10.1016/j.envpol.2021.118301 PubMed DOI
Dimkpa, C. O. et al. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant. Sci.11, 168 (2020). 10.3389/fpls.2020.00168 PubMed DOI PMC
Beig, B. et al. Development and testing of zinc sulfate and zinc oxide nanoparticle-coated urea fertilizer to improve N and Zn use efficiency. Front. Plant Sci.13, 1058219 (2023). 10.3389/fpls.2022.1058219 PubMed DOI PMC