Bisphenols in daily clothes from conventional and recycled material: evaluation of dermal exposure to potentially toxic substances

. 2024 Sep ; 31 (43) : 55663-55675. [epub] 20240906

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39240436

Grantová podpora
LM2023064 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39240436
PubMed Central PMC11415442
DOI 10.1007/s11356-024-34904-4
PII: 10.1007/s11356-024-34904-4
Knihovny.cz E-zdroje

Given the increasing concern about chemical exposure from textiles, our study examines the risks of dermal exposure to bisphenol A (BPA), bisphenol S (BPS), bisphenol B (BPB) and bisphenol F (BPF) from conventional and recycled textiles for adults, aiming to obtain new data, assess exposure, and evaluate the impact of washing on bisphenol levels. A total of 57 textile samples (33 from recycled and 24 from conventional material) were subjected to ultrasound-assisted extraction (UAE) followed by ultra-high performance liquid chromatography with tandem mass spectrometry analysis (UHPLC-MS/MS). The BPA and BPS concentrations varied widely (BPA: < 0.050 to 625 ng/g, BPS: 0.277-2,474 ng/g). The median BPA content in recycled textiles (13.5 ng/g) was almost twice as high as that of 7.66 ng/g in conventional textiles. BPS showed a median of 1.85 ng/g in recycled textiles and 3.42 ng/g in conventional textiles, indicating a shift from BPA to BPS in manufacturing practices. Simulated laundry experiments showed an overall reduction in bisphenols concentrations after washing. The study also assessed potential health implications via dermal exposure to dry and sweat-wet textiles compared to a tolerable daily intake (TDI) of 0.2 ng/kg bw/day for BPA set by the European Food Safety Authority (EFSA). Exposure from dry textiles remained below this threshold, while exposure from wet textiles often exceeded it, indicating an increased risk under conditions that simulate sweating or humidity. By finding the widespread presence of bisphenols in textiles, our study emphasises the importance of being aware of the potential risks associated with recycling materials as well as the benefits.

Zobrazit více v PubMed

Abraham A, Chakraborty P (2020) A review on sources and health impacts of bisphenol A. Rev Environ Health 35(2):201–210. 10.1515/reveh-2019-0034 PubMed

Berger K, Eskenazi B, Kogut K, Parra K, Lustig RH, Greenspan LC et al (2018) Association of Prenatal Urinary Concentrations of Phthalates and Bisphenol A and Pubertal Timing in Boys and Girls. Environ Health Perspect 126(9):097004. 10.1289/EHP3424 PubMed PMC

Catenza CJ, Farooq A, Shubear NS, Donkor KK (2021) A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere 268:129273. 10.1016/j.chemosphere.2020.129273 PubMed

Chailurkit L-o, Aekplakorn W, Ongphiphadhanakul B (2016) The Association of Serum Bisphenol A with Thyroid Autoimmunity. Int J Environ Res Public Health 13(11):1153. 10.3390/ijerph13111153 PubMed PMC

Chen Y, Wang Y, Ding G, Tian Y, Zhou Z, Wang X et al (2018) Association between bisphenol a exposure and idiopathic central precocious puberty (ICPP) among school-aged girls in Shanghai, China. Environ Int 115:410–416. 10.1016/j.envint.2018.02.041 PubMed

Commission Directive (EU) 2017/898 (2017) Amending, for the purpose of adopting specific limit values for chemicals used in toys, Appendix C to Annex II to Directive 2009/48/EC of the European Parliament and of the Council on the safety of toys, as regards bisphenol A. https://eur-lex.europa.eu/eli/dir/2017/898/oj. Accessed Jan to Mar 2024

Commission Implementing Regulation (EU) No 321/2011 (2011) Amending Regulation (EU) No 10/2011 as regards the restriction of use of bisphenol A in plastic infant feeding bottles. https://eur-lex.europa.eu/eli/reg_impl/2011/321/oj. Accessed Jan to Mar 2024

Dekant W, Völkel W (2008) Human exposure to bisphenol A by biomonitoring: Methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134. 10.1016/j.taap.2007.12.008 PubMed

den Braver-Sewradj SP, van Spronsen R, Hessel EVS (2020) Substitution of bisphenol A: a review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit Rev Toxicol 50(2):128–147. 10.1080/10408444.2019.1701986 PubMed

Dumitrascu MC, Mares C, Petca R-C, Sandru F, Popescu R-I, Mehedintu C, Petca A (2020) Carcinogenic effects of bisphenol A in breast and ovarian cancers (Review). Oncol Lett 20(6):282. 10.3892/ol.2020.12145 PubMed PMC

EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (2015) Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 13(1):3978. 10.2903/j.efsa.2015.3978

EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (2023) Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 21(4):e06857. 10.2903/j.efsa.2023.6857 PubMed PMC

European Chemicals Agency (2020) The use of bisphenol A and its alternatives in thermal paper in the EU during 2014–2022. https://data.europa.eu/doi/10.2823/592282. Accessed Jan to Mar 2024 DOI

European Commission Scientific Committee on Consumer Safety (2020) Final opinion on the safety of presence of BPA in clothing articles. https://health.ec.europa.eu/system/files/2022-08/sccs_o_240.pdf. Accessed Jan to Mar 2024

Freire C, Molina-Molina J-M, Iribarne-Durán LM, Jiménez-Díaz I, Vela-Soria F, Mustieles V et al (2019) Concentrations of bisphenol A and parabens in socks for infants and young children in Spain and their hormone-like activities. Environ Int 127:592–600. 10.1016/j.envint.2019.04.013 PubMed

Geens T, Aerts D, Berthot C, Bourguignon J-P, Goeyens L, Lecomte P et al (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740. 10.1016/j.fct.2012.07.059 PubMed

Herrero M, Souza MCO, González N, Marquès M, Barbosa F, Domingo JL et al (2023) Dermal exposure to bisphenols in pregnant women’s and baby clothes: Risk characterisation. Sci Total Environ 878:163122. 10.1016/j.scitotenv.2023.163122 PubMed

İyİgÜndoĞdu İ, ÜstÜndaĞ A, Duydu Y (2020) Toxicological Evaluation of Bisphenol A and Its Analogues. Turk J Pharm Sci 17(4):457–462. 10.4274/tjps.galenos.2019.58219 PubMed PMC

Jensen TK, Mustieles V, Bleses D, Frederiksen H, Trecca F, Schoeters G et al (2019) Prenatal bisphenol A exposure is associated with language development but not with ADHD-related behavior in toddlers from the Odense Child Cohort. Environ Res 170:398–405. 10.1016/j.envres.2018.12.055 PubMed

Kawa IA, Akbar M, Fatima Q, Mir SA, Jeelani H, Manzoor S, Rashid F (2021) Endocrine disrupting chemical Bisphenol A and its potential effects on female health. Diabetes Metab Syndr 15(3):803–811. 10.1016/j.dsx.2021.03.031 PubMed

Lee M-R, Park H, Sanghyuk B, Youn-Hee L, Jin Hee K, Soo-Hun C, Yun-Chul H (2014) Urinary bisphenol A concentrations are associated with abnormal liver function in the elderly: a repeated panel study. J Epidemiol Community Health 68(4):312. 10.1136/jech-2013-202548 PubMed

Leung Y-K, Govindarajah V, Cheong A, Veevers J, Song D, Gear R et al (2017) Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk. Endocr Relat Cancer 24(7):365–378. 10.1530/erc-17-0006 PubMed PMC

Li AJ, Kannan K (2018) Elevated Concentrations of Bisphenols, Benzophenones, and Antimicrobials in Pantyhose Collected from Six Countries. Environ Sci Technol 52(18):10812–10819. 10.1021/acs.est.8b03129 PubMed

Liu J, Martin JW (2017) Prolonged Exposure to Bisphenol A from Single Dermal Contact Events. Environ Sci Technol 51(17):9940–9949. 10.1021/acs.est.7b03093 PubMed

Liu J, Zhang L, Lu G, Jiang R, Yan Z, Li Y (2021) Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment – A review. Ecotoxicol Environ Saf 208:111481. 10.1016/j.ecoenv.2020.111481 PubMed

Lu S, Yu Y, Ren L, Zhang X, Liu G, Yu Y (2018) Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact. Sci Total Environ 621:1389–1396. 10.1016/j.scitotenv.2017.10.088 PubMed

Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X et al (2019) The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res 176:108575. 10.1016/j.envres.2019.108575 PubMed

Martínez MA, Rovira J, Prasad Sharma R, Nadal M, Schuhmacher M, Kumar V (2018) Comparing dietary and non-dietary source contribution of BPA and DEHP to prenatal exposure: A Catalonia (Spain) case study. Environ Res 166:25–34. 10.1016/j.envres.2018.05.008 PubMed

Mokra K, Kuźmińska-Surowaniec A, Woźniak K, Michałowicz J (2017) Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food Chem Toxicol 100:62–69. 10.1016/j.fct.2016.12.003 PubMed

Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, Wang S (2012) Prenatal Bisphenol A Exposure and Child Behavior in an Inner-City Cohort. Environ Health Perspect 120(8):1190–1194. 10.1289/ehp.1104492 PubMed PMC

Perera F, Nolte ELR, Wang Y, Margolis AE, Calafat AM, Wang S et al (2016) Bisphenol A exposure and symptoms of anxiety and depression among inner city children at 10–12 years of age. Environ Res 151:195–202. 10.1016/j.envres.2016.07.028 PubMed PMC

Pivnenko K, Pedersen GA, Eriksson E, Astrup TF (2015) Bisphenol A and its structural analogues in household waste paper. Waste Manag 44:39–47. 10.1016/j.wasman.2015.07.017 PubMed

Qiu W, Shao H, Lei P, Zheng C, Qiu C, Yang M, Zheng Y (2018) Immunotoxicity of bisphenol S and F are similar to that of bisphenol A during zebrafish early development. Chemosphere 194:1–8. 10.1016/j.chemosphere.2017.11.125 PubMed

Regulation (EC) No 1223/2009 (2009) Of the European Parliament and of the Council of 30 November 2009 on cosmetic products. https://eur-lex.europa.eu/eli/reg/2009/1223/oj. Accessed Jan to Mar 2024

Rochester JR, Bolden AL (2015) Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ Health Perspect 123(7):643–650. 10.1289/ehp.1408989 PubMed PMC

Shankar A, Teppala S (2011) Relationship between Urinary Bisphenol A Levels and Diabetes Mellitus. J Clin Endocrinol Metab 96(12):3822–3826. 10.1210/jc.2011-1682 PubMed PMC

Shankar A, Teppala S (2012) Urinary Bisphenol A and Hypertension in a Multiethnic Sample of US Adults. J Environ Public Health 2012:481641. 10.1155/2012/481641 PubMed PMC

Tse LA, Lee PMY, Ho WM, Lam AT, Lee MK, Ng SSM et al (2017) Bisphenol A and other environmental risk factors for prostate cancer in Hong Kong. Environ Int 107:1–7. 10.1016/j.envint.2017.06.012 PubMed

U. S. EPA (1988) Bisphenol A. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0356_summary.pdf#nameddest=rfd. Accessed Jan to Aug 2024

Verstraete SG, Wojcicki JM, Perito ER, Rosenthal P (2018) Bisphenol a increases risk for presumed non-alcoholic fatty liver disease in Hispanic adolescents in NHANES 2003–2010. Environ Health 17(1):12. 10.1186/s12940-018-0356-3 PubMed PMC

Vitku J, Sosvorova L, Chlupacova T, Hampl R, Hill M, Sobotka V et al (2015) Differences in bisphenol A and estrogen levels in the plasma and seminal plasma of men with different degrees of infertility. Physiol Res 64(Suppl 2):S303-311. 10.33549/physiolres.933090 PubMed

Wang L, Zhang Y, Liu Y, Gong X, Zhang T, Sun H (2019) Widespread Occurrence of Bisphenol A in Daily Clothes and Its High Exposure Risk in Humans. Environ Sci Technol 53(12):7095–7102. 10.1021/acs.est.9b02090 PubMed

Xue J, Liu W, Kannan K (2017) Bisphenols, Benzophenones, and Bisphenol A Diglycidyl Ethers in Textiles and Infant Clothing. Environ Sci Technol 51(9):5279–5286. 10.1021/acs.est.7b00701 PubMed

Zhang K-S, Chen H-Q, Chen Y-S, Qiu K-F, Zheng X-B, Li G-C et al (2014) Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway. Biomed Pharmacother 68(8):1037–1043. 10.1016/j.biopha.2014.09.003 PubMed

Zhang Y-F, Ren X-M, Li Y-Y, Yao X-F, Li C-H, Qin Z-F, Guo L-H (2018) Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environ Pollut 237:1072–1079. 10.1016/j.envpol.2017.11.027 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...