Response of crop seed germination and primary root elongation to a binary mixture of diclofenac and naproxen
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39259420
DOI
10.1007/s10646-024-02797-1
PII: 10.1007/s10646-024-02797-1
Knihovny.cz E-zdroje
- Klíčová slova
- Leek, Lettuce, Maize, Non-steroidal anti-inflammatory drugs, Pea, Phytotoxicity tests,
- MeSH
- antiflogistika nesteroidní * toxicita MeSH
- diklofenak * toxicita MeSH
- hrách setý účinky léků růst a vývoj MeSH
- klíčení * účinky léků MeSH
- kořeny rostlin * účinky léků růst a vývoj MeSH
- kukuřice setá účinky léků růst a vývoj MeSH
- látky znečišťující půdu toxicita MeSH
- naproxen * toxicita MeSH
- salát (hlávkový) účinky léků růst a vývoj MeSH
- semena rostlinná * účinky léků růst a vývoj MeSH
- zemědělské plodiny účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní * MeSH
- diklofenak * MeSH
- látky znečišťující půdu MeSH
- naproxen * MeSH
Non-steroidal anti-inflammatory drugs, diclofenac (DCF) and naproxen (NPX), represent a group of environmental contaminants often detected in various water and soil samples. This work aimed to assess possible phytotoxic effects of DCF and NPX in concentrations 0.1, 1 and 10 mg/L, both individually and in binary mixtures, on the seed germination and primary root elongation of crops, monocots Allium porrum and Zea mays, and dicots Lactuca sativa and Pisum sativum. Results proved that the seed germination was affected by neither individual drugs nor their mixture. The response of primary root length in monocot and dicot species to the same treatment was different. The Inhibition index (%) comparing the root length of drug-treated plants to controls proved to be approximately 10% inhibition in the case of dicots lettuce and pea, and nearly 20% inhibition in monocot leek, but almost 20% stimulation in monocot maize. Assessment of the binary mixture effect confirmed neither synergistic nor antagonistic interaction of DCF and NPX on early plant development in the applied concentration range.
Zobrazit více v PubMed
An J, Zhou Q, Sun F, Zhang L (2009) Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.). J Hazard Mater 169(1):751–757. https://doi.org/10.1016/j.jhazmat.2009.04.011 DOI
Avelino AP, de Oliveira DFA, da Silva HA, de Macêdo CEC, Voigt EL (2017) Regulation of reserve mobilisation in sunflower during late seedling establishment in continuous darkness. Plant Biol 19:335–344. https://doi.org/10.1111/plb.12543 DOI
Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301. https://doi.org/10.1016/j.chemosphere.2015.10.137 DOI
Bartrons M, Peñuelas J (2017) Pharmaceuticals and personal care products in plants. Trends Plant Sci 22:194–203. https://doi.org/10.1016/j.tplants.2016.12.010 DOI
Bellver-Domingo A, Fuentes R, Hernandez-Sancho F (2017) Shadow prices of emerging pollutants in wastewater treatment plants: quantification of environmental externalities. J Environ Manag 203:439–447. https://doi.org/10.1016/j.jenvman.2017.08.025 DOI
Bo L, Feng L, Fu J, Li X, Li P, Zhang Y (2015) The fate of typical pharmaceuticals in wastewater treatment plants of Xi’an city in China. J Environ Chem Eng 3:2203–2211. https://doi.org/10.1016/j.jece.2015.08.001 DOI
Brandao FP, Pereira JL, Goncalves F, Nunes B (2014) The Impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea. Environ Toxicol 29:74–83. https://doi.org/10.1002/tox.20774 DOI
Calderón-Preciado D, Matamoros V, Biel C, Save R, Bayona JM (2013) Foliar sorption of emerging and priority contaminants under controlled conditions. J Hazard Mater 260:176–182. https://doi.org/10.1016/j.jhazmat.2013.05.016 DOI
Chan-Keb CA, Agraz-Hernández CM, Gutiérrez-Alcántara EJ et al. (2022) Acute phytotoxicity of four common pharmaceuticals on the germination and growth of Lactuca sativa L. Appl Ecol Env Res 20(5):3737–3746. https://doi.org/10.15666/aeer/2005_37373746 DOI
Cuthbert R, Taggart MA, Prakash V et al. (2011) Effectiveness of action in India to reduce exposure of Gyps vultures to the toxic veterinary drug diclofenac. PloS ONE 6:e19069. https://doi.org/10.1371/journal.pone.0019069 DOI
De Mastro F, Brunetti G, Traversa A, Cacace C, Cocozza C (2023) Investigation of the effect of twelve pharmaceuticals on germination and growth parameters of basil (Ocimum basilicum L.). Appl Sci 13:6759. https://doi.org/10.3390/app13116759 DOI
Dodgen LK, Li J, Parker D, Gan JJ (2013) Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. Environ Pollut 182:150–156. https://doi.org/10.1016/j.envpol.2013.06.038 DOI
Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M, Islas-Flores H, García-Medina S (2014) Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca. Environ Monit Assess 186(11):7259–7271. https://doi.org/10.1007/s10661-014-3925-0 DOI
González-Naranjo V, Boltes K (2014) Toxicity of ibuprofen and perfluorooctanoic acid for risk assessment of mixtures in aquatic and terrestrial environments. Int J Environ Sci Technol 11(6):1743–1750. https://doi.org/10.1007/s13762-013-0379-9 DOI
Han C, Yang P (2015) Studies on the molecular mechanisms of seed germination. Proteomics 15(10):1671–1679. https://doi.org/10.1002/pmic.201400375 DOI
Hillis DG, Fletcher J, Solomon KR, Sibley PK (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60(2):220–232. https://doi.org/10.1007/s00244-010-9624-0 DOI
Jureczko M, Kalka J (2020) Cytostatic pharmaceuticals as water contaminants. Eur J Pharmacol 866:172816. https://doi.org/10.1016/j.ejphar.2019.172816 DOI
Kalaji HM, Rastogi A (2017) Pharmaceutical compounds: an emerging pollutant (A review on plant-pharmaceuticals interaction). Chiang Mai J Sci 44(2):287–297
Katzung BG (2007) Farmacología Básica y Clínica (9th ed.). Manual Moderno, Mexico, ISBN: 9789707291645
Koopaei NN, Abdollahi M (2017) Health risks associated with the pharmaceuticals in wastewater. DARU J Pharm Sci 25:9. https://doi.org/10.1186/s40199-017-0176-y DOI
Kummerová M, Kmentová E (2004) Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere 56:387–393. https://doi.org/10.1016/j.chemosphere.2004.01.007 DOI
Kummerová M, Slovák L, Mazánková J, Holoubek I (1997) The effect of fluoranthene on the germination of plants. Toxicol Environ Chem 60(1–4):235–244. https://doi.org/10.1080/02772249709358467 DOI
Kummerová M, Zezulka Š, Babula P, Tříska J (2016) Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a plant Lemna minor. J Hazard Mater 302:351–361. https://doi.org/10.1016/j.jhazmat.2015.09.057 DOI
Lees K, Fitzsimons M, Snape J, Tappin A, Comber S (2016) Pharmaceuticals in soils of lower income countries: physico-chemical fate and risks from wastewater irrigation. Environ Int 94:712–723. https://doi.org/10.1016/j.envint.2016.06.018 DOI
Li L, Li T, Liu Y, Li L, Huang X, Xie J (2023) Effects of antibiotics stress on root development, seedling growth, antioxidant status and abscisic acid level in wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 252:114621. https://doi.org/10.1016/j.ecoenv.2023.114621 DOI
Linder G, Greene J, Ratsch H, Nwosu J, Smith S, Wilborn D (1989) Seed germination and root elongation toxicity tests in hazardous waste site evaluation: Methods development and applications. U.S Environmental Protection Agency Washington D.C, EPA/600/D-89/109 NTIS PB90113184. https://doi.org/10.1520/STP19062S
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C et al. (2019) Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci Total Environ 690:1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052 DOI
Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B (2014) Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol 48(16):9325–9333. https://doi.org/10.1021/es5017894 DOI
Margenat A, Matamoros V, Diez S, Cañameras N, Comas J, Bayona JM (2017) Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity. Sci Total Environ 599-600:1140–1148. https://doi.org/10.1016/j.scitotenv.2017.05.025 DOI
Mercado SAS, Galvis DGV (2023) Paracetamol ecotoxicological bioassay using the bioindicators Lens culinaris Med. and Pisum sativum L. Environ Sci Pollut Res 30:61965–61976. https://doi.org/10.1007/s11356-023-26475-7 DOI
Nassour C, Nabhani-Gebara S, Barton SJ, Barker J (2021) Aquatic ecotoxicology of anticancer drugs: a systematic review. Sci Total Environ 800:149598. https://doi.org/10.1016/j.scitotenv.2021.149598 DOI
Pan M, Chu LM (2016) Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotox. Environ Safe 126:228–237. https://doi.org/10.1016/j.ecoenv.2015.12.027 DOI
Pino MR, Muñiz S, Val J, Navarro E (2016) Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii. Environ Sci Pollut Res 23:22530–22541. https://doi.org/10.1007/s11356-016-7446-y DOI
Piotrowicz-Cieślak AI, Adomas B, Nalęcz-Jawecki G (2012) Phytotoxicity of sulfonamide soil pollutants to legume plant species. Fresen Environ Bull 21(5A):1316–1320
Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C (2019) Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. Sci Total Environ 673:102–109. https://doi.org/10.1016/j.scitotenv.2019.03.432 DOI
Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C (2016) Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds. Chemosphere 159:193–198. https://doi.org/10.1016/j.chemosphere.2016.06.002 DOI
Rodea-Palomares I, Petre AL, Boltes K, Legane´s F, Perdigón-Melón JA, Rosal R, Fernández-Pinas F (2010) Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Res 44(2):427–438. https://doi.org/10.1016/j.watres.2009.07.026 DOI
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL (2020) Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota—a review. Sci Total Environ 698:134057. https://doi.org/10.1016/j.scitotenv.2019.134057 DOI
Schmidt W, Redshaw CH (2015) Evaluation of biological endpoints in crop plants after exposure to non-steroidal anti-inflammatory drugs (NSAIDs): Implications for phytotoxicological assessment of novel contaminants. Ecotox Environ Saf 112:212–222. https://doi.org/10.1016/j.eco-env.2014.11.008 DOI
Shorina D, Philippova A, Kazak A, Pronkin N (2023) Physiological and biochemical changes induced by tetracycline in wheat. Pol J Environ Stud 32(1):241–247. https://doi.org/10.15244/pjoes/152240 DOI
Svobodníková L, Kummerová M, Zezulka Š, Babula P, Sendecká K (2020) Root response in Pisum sativum under naproxen stress: morpho-anatomical, cytological, and biochemical traits. Chemosphere 258:127411. https://doi.org/10.1016/j.chemosphere.2020.127411 DOI
Svobodníková L, Kummerová M, Zezulka Š, Babula P (2019) Possible use of a Nicotiana tabacum ‘Bright Yellow 2’ cell suspension as a model to assess phytotoxicity of pharmaceuticals (diclofenac). Ecotoxicol Environ Saf 182:109369. https://doi.org/10.1016/j.ecoenv.2019.109369 DOI
Svobodníková L, Kummerová M, Zezulka Š, Martinka M, Klemš M, Čáslavský J (2023) Pea root responses under naproxen stress: Changes in the formation of structural barriers in the primary root in context with changes of auxin and abscisic acid levels. Ecotoxicology 32(1):1–11. https://doi.org/10.1007/s10646-022-02613-8 DOI
Wang X, Sun C, Gao S, Wang L, Shuokui H (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721. https://doi.org/10.1016/S0045-6535(00)00520-8 DOI
Wieczerzak M, Kudlak B, Namiešnik J (2018) Impact of selected drugs and their binary mixtures on the germination of Sorghum bicolor (sorgo) seeds. Environ Sci Poll Res 25:18717–18727. https://doi.org/10.1007/s11356-018-2049-4 DOI
Wojcieszyńska D, Guzik U (2020) Naproxen in the environment: Its occurrence, toxicity to nontarget organisms and biodegradation. Appl Microbiol Biot 104(5):1849–1857. https://doi.org/10.1007/s00253-019-10343-x DOI
Yang L, Feng YX, Zhang H, Yu XZ (2021) Estimating the synergistic and antagonistic effects of dual antibiotics on plants through root elongation test. Ecotoxicology 30:1598–1609. https://doi.org/10.1007/s10646-020-02308-y DOI
Zezulka Š, Kummerová M, Babula P, Hájková M, Oravec M (2019) Sensitivity of physiological and biochemical endpoints in early ontogenetic stages of crops under diclofenac and paracetamol treatments. Environ Sci Pollut Res 26(4):3965–3979. https://doi.org/10.1007/s11356-018-3930-x DOI