FPGA based implementation of a perturbed Chen oscillator for secure embedded cryptosystems
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39261522
PubMed Central
PMC11390877
DOI
10.1038/s41598-024-71531-y
PII: 10.1038/s41598-024-71531-y
Knihovny.cz E-zdroje
- Klíčová slova
- Chaotic oscillator, Field programmable gate array (FPGA), NIST test, Nexys 4 FPGA board, Perturbated Chen oscillator (PCO), Pseudo-random number generator (PRNG), Xilinx system generator (XSG),
- Publikační typ
- časopisecké články MeSH
This paper introduces an enhancement to the Chen chaotic system by incorporating a constant perturbation term d to one of the state variables, aiming to improve the performance of pseudo-random number generators (PRNGs). The perturbation significantly enhances the system's chaotic properties, resulting in superior randomness and increased security. An FPGA-based realization of a perturbed Chen oscillator (PCO)-derived PRNG is presented, tailored for embedded cryptosystems and implemented on a Nexys 4 FPGA card featuring the XILINX Artix-7 XC7A100T-1CSG324C integrated chip. The Xilinx-based system generator (XSG) tool is utilized to generate a digital version of the new oscillator, minimizing resource utilization. Experimental results demonstrate that the PCO-generated data successfully passes the NIST and TestU01 test suites. Additionally, statistical tests with key sensitivity are performed, validating the suitability of the designed PRNG for cryptographic applications. This establishes the PCO as a straightforward and efficient tool for multimedia security.
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Electrical Engineering Department Faculty of Engineering Aswan University Aswan 81542 Egypt
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Technology and Applied Sciences Laboratory University of Douala Post Box 8698 Douala Cameroon
Zobrazit více v PubMed
Lorenz, E. N. A new approach to linear filtering and prediction problems. Determ. Nonperiod. Flow20, 130–141 (1963).
Xu, X., Wiercigroch, M. & Cartmell, M. Rotating orbits of a parametrically-excited pendulum. Chaos Solitons Fractals23(5), 1537–1548 (2005).10.1016/S0960-0779(04)00430-8 DOI
Lynch, S. & Steele, A. Controlling chaos in nonlinear optical resonators. Chaos Solitons Fractals11(5), 721–728 (2000).10.1016/S0960-0779(98)00179-9 DOI
Schuster, H. G. & Just, W. Deterministic Chaos: An Introduction (Wiley, 2006).
Li, Q. S. & Zhu, R. Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belousov-Zhabotinsky reaction. Chaos Solitons Fractals19(1), 195–201 (2004).10.1016/S0960-0779(03)00103-6 DOI
Swinney, H. L. & Gollub, J. P. Hydrodynamic Instabilities and the Transition to Turbulence (Springer Berlin Heidelberg, 1981).
May, R. M. Simple Mathematical Models with Very Complicated Dynamics, in The Theory of Chaotic Attractors 85–93 (Springer, 2004).
Daszkiewicz, M. Noncommutative Sprott systems and their jerk dynamics. Mod. Phys. Lett. A33(18), 1850100 (2018).10.1142/S0217732318501006 DOI
Selvam, A. G. M. & Vianny, D. A. Bifurcation and dynamical behaviour of a fractional order Lorenz-Chen-Lu like chaotic system with discretization. J. Phys. Conf. Ser.1377, 012002 (2019).10.1088/1742-6596/1377/1/012002 DOI
Elwakil, A. S. & Kennedy, M. P. Improved implementation of Chua’s chaotic oscillator using current feedback op amp. IEEE Trans. Circuits Syst. I Fund. Theory Appl.47(1), 76–79 (2000).10.1109/81.817395 DOI
Pehlivan, I. & Uyaroğlu, Y. Simplified chaotic diffusionless Lorentz attractor and its application to secure communication systems. IET Commun.1(5), 1015–1022 (2007).10.1049/iet-com:20070131 DOI
Osipov, G. V. et al. Phase synchronization effects in a lattice of nonidentical Rössler oscillators. Phys. Rev. E55(3), 2353 (1997).10.1103/PhysRevE.55.2353 DOI
Murali, K. & Lakshmanan, M. Transmission of signals by synchronization in a chaotic Van der Pol-Duffing oscillator. Phys. Rev. E48(3), R1624 (1993).10.1103/PhysRevE.48.R1624 PubMed DOI
Nguenjou, L. N. et al. A window of multistability in Genesio-Tesi chaotic system, synchronization and application for securing information. AEU-Int. J. Electron. Commun.99, 201–214 (2019).10.1016/j.aeue.2018.11.033 DOI
Hu, H., Liu, L. & Ding, N. Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun.184(3), 765–768 (2013).10.1016/j.cpc.2012.11.017 DOI
Öztürk, I. & Kılıç, R. A novel method for producing pseudo random numbers from differential equation-based chaotic systems. Nonlinear Dyn.80(3), 1147–1157 (2015).10.1007/s11071-015-1932-5 DOI
Hamza, R. A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl.35, 119–127 (2017).
Gupta, M. D. & Chauhan, R. K. Hardware efficient pseudo-random number generator using chen chaotic system on FPGA. J. Circuits Syst. Comput.31(03), 2250043 (2022).10.1142/S0218126622500438 DOI
Lei, W., Fu-Ping, W. & Zan-Ji, W. A novel chaos-based pseudo-random number generator. Acta Phys. Sin.55(8), 3964–3968 (2006).10.7498/aps.55.3964 DOI
Ergün, S. A. S. Ö. Truly random number generators based on a non-autonomous chaotic oscillator. AEU-Int. J. Electron. Commun.61(4), 235–242 (2007).10.1016/j.aeue.2006.05.006 DOI
Al-Musawi, W. A., Wali, W. A. & Al-Ibadi, M. A. A. Field-programmable gate array design of image encryption and decryption using Chua’s chaotic masking. Int. J. Electr. Comput. Eng. (IJECE)12(3), 2414 (2022).10.11591/ijece.v12i3.pp2414-2424 DOI
Chen, G. & Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. chaos9(07), 1465–1466 (1999).10.1142/S0218127499001024 DOI
Malvino, A. P., Bates, D. J. & Hoppe, P. E. Electronic Principles (Glencoe, 1993).
Sprott, J. C. A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos21(09), 2391–2394 (2011).10.1142/S021812741103009X DOI
Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (C. press, 2018).
Press, W. H. et al.Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007).
Soliman, N. S. et al. Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software. Chaos Solitons Fractals126, 292–307 (2019).10.1016/j.chaos.2019.05.028 DOI
Ramakrishnan, B. et al. Image encryption with a Josephson junction model embedded in FPGA. Multimed. Tools Appl.81, 1–25 (2022). 10.1007/s11042-022-12400-6 PubMed DOI
Press, W. H. et al.Numerical Recipes 3rd Edition: The Art of Scientific Computing (C.u. Press, 2007).
Koyuncu, I. The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng.58, 203–214 (2017).10.1016/j.compeleceng.2016.07.005 DOI
xilinx, Vivado Design Suite Tutorial Model-Based DSP Design Using System Generator. UG948 (v2020.1) (2020).
Digikey and employee, DAC DAC121S101 Pmod Controller (VHDL). https://forum.digikey.com/t/dac-dac121s101-pmod-controller-vhdl/13031 (Accessed 4 March 2021).
Diligent, PmodDA2™ Reference Manual. https://digilent.com/reference/_media/reference/pmod/pmodda2/pmodda2_rm.pdf (Accessed 24 May 2016).
Kingni, S. T. et al. Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation. Eur. Phys. J. B10.1140/epjb/e2020-100562-9 (2020).10.1140/epjb/e2020-100562-9 DOI
Merah, L. et al. Design and FPGA implementation of Lorenz chaotic system for information security issues. Appl. Math. Sci.7, 237–246 (2013).
Nguyen, N. T. et al. Designing a pseudo-random bit generator with a novel 5D-hyperchaotic system. IEEE Trans. Ind. Electron.69(6), 6101–6110 (2022).10.1109/TIE.2021.3088330 DOI
Adeyemi, V.-A. FPGA realization of the parameter-switching method in the Chen oscillator and application in image transmission. Symmetry13(6), 923 (2021).10.3390/sym13060923 DOI
Sambas, A. et al. A new hyperjerk system with a half line equilibrium: Multistability, period doubling reversals, antimonotonocity, electronic circuit, FPGA design, and an application to image encryption. IEEE Access12, 9177–9194 (2024).10.1109/ACCESS.2024.3351693 DOI
Hasan, F. S. Speech encryption using fixed point chaos based stream cipher (FPC-SC). Eng. Technol. J.34, 2152–2166 (2016).10.30684/etj.34.11A.19 DOI
Yu, F. et al. Design and FPGA implementation of a pseudo-random number generator based on a hopfield neural network under electromagnetic radiation. Front. Phys.9, 690651 (2021).10.3389/fphy.2021.690651 DOI
Bassham III, L. E. et al.Sp 800-22 rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (National Institute of Standards and Technology, 2010).
de la Fraga, L., Mancillas-López, C. & Tlelo-Cuautle, E. Designing an authenticated Hash function with a 2D chaotic map. Nonlinear Dyn.10.1007/s11071-021-06491-3 (2021).10.1007/s11071-021-06491-3 DOI
Adeyemi, V. et al. FPGA implementation of parameter-switching scheme to stabilize chaos in fractional spherical systems and usage in secure image transmission. Fractal Fract.7, 440 (2023).10.3390/fractalfract7060440 DOI
Ayemtsa Kuete, G. P. et al. Medical image crytosystem using a new 3-D map implemented in a microcontroller. Multimed. Tools Appl.10.1007/s11042-024-18460-0 (2024).10.1007/s11042-024-18460-0 DOI
Merah, L. et al. Real-time implementation of a chaos based cryptosystem on low-cost hardware. Iran. J. Sci. Technol. Trans. Electr. Eng.45(4), 1127–1150 (2021).10.1007/s40998-021-00433-w DOI
Flores-Vergara, A. et al. Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. Nonlinear Dyn.96(1), 497–516 (2019).10.1007/s11071-019-04802-3 DOI
Yao, W. et al. An image encryption algorithm based on a 3D chaotic Hopfield neural network and random row–column permutation. Front. Phys.10.3389/fphy.2023.1162887 (2023).10.3389/fphy.2023.1162887 DOI
Alvarez, G. & Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos16, 2129–2151 (2006).10.1142/S0218127406015970 DOI