FPGA based implementation of a perturbed Chen oscillator for secure embedded cryptosystems

. 2024 Sep 11 ; 14 (1) : 21262. [epub] 20240911

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39261522
Odkazy

PubMed 39261522
PubMed Central PMC11390877
DOI 10.1038/s41598-024-71531-y
PII: 10.1038/s41598-024-71531-y
Knihovny.cz E-zdroje

This paper introduces an enhancement to the Chen chaotic system by incorporating a constant perturbation term d to one of the state variables, aiming to improve the performance of pseudo-random number generators (PRNGs). The perturbation significantly enhances the system's chaotic properties, resulting in superior randomness and increased security. An FPGA-based realization of a perturbed Chen oscillator (PCO)-derived PRNG is presented, tailored for embedded cryptosystems and implemented on a Nexys 4 FPGA card featuring the XILINX Artix-7 XC7A100T-1CSG324C integrated chip. The Xilinx-based system generator (XSG) tool is utilized to generate a digital version of the new oscillator, minimizing resource utilization. Experimental results demonstrate that the PCO-generated data successfully passes the NIST and TestU01 test suites. Additionally, statistical tests with key sensitivity are performed, validating the suitability of the designed PRNG for cryptographic applications. This establishes the PCO as a straightforward and efficient tool for multimedia security.

Zobrazit více v PubMed

Lorenz, E. N. A new approach to linear filtering and prediction problems. Determ. Nonperiod. Flow20, 130–141 (1963).

Xu, X., Wiercigroch, M. & Cartmell, M. Rotating orbits of a parametrically-excited pendulum. Chaos Solitons Fractals23(5), 1537–1548 (2005).10.1016/S0960-0779(04)00430-8 DOI

Lynch, S. & Steele, A. Controlling chaos in nonlinear optical resonators. Chaos Solitons Fractals11(5), 721–728 (2000).10.1016/S0960-0779(98)00179-9 DOI

Schuster, H. G. & Just, W. Deterministic Chaos: An Introduction (Wiley, 2006).

Li, Q. S. & Zhu, R. Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belousov-Zhabotinsky reaction. Chaos Solitons Fractals19(1), 195–201 (2004).10.1016/S0960-0779(03)00103-6 DOI

Swinney, H. L. & Gollub, J. P. Hydrodynamic Instabilities and the Transition to Turbulence (Springer Berlin Heidelberg, 1981).

May, R. M. Simple Mathematical Models with Very Complicated Dynamics, in The Theory of Chaotic Attractors 85–93 (Springer, 2004).

Daszkiewicz, M. Noncommutative Sprott systems and their jerk dynamics. Mod. Phys. Lett. A33(18), 1850100 (2018).10.1142/S0217732318501006 DOI

Selvam, A. G. M. & Vianny, D. A. Bifurcation and dynamical behaviour of a fractional order Lorenz-Chen-Lu like chaotic system with discretization. J. Phys. Conf. Ser.1377, 012002 (2019).10.1088/1742-6596/1377/1/012002 DOI

Elwakil, A. S. & Kennedy, M. P. Improved implementation of Chua’s chaotic oscillator using current feedback op amp. IEEE Trans. Circuits Syst. I Fund. Theory Appl.47(1), 76–79 (2000).10.1109/81.817395 DOI

Pehlivan, I. & Uyaroğlu, Y. Simplified chaotic diffusionless Lorentz attractor and its application to secure communication systems. IET Commun.1(5), 1015–1022 (2007).10.1049/iet-com:20070131 DOI

Osipov, G. V. et al. Phase synchronization effects in a lattice of nonidentical Rössler oscillators. Phys. Rev. E55(3), 2353 (1997).10.1103/PhysRevE.55.2353 DOI

Murali, K. & Lakshmanan, M. Transmission of signals by synchronization in a chaotic Van der Pol-Duffing oscillator. Phys. Rev. E48(3), R1624 (1993).10.1103/PhysRevE.48.R1624 PubMed DOI

Nguenjou, L. N. et al. A window of multistability in Genesio-Tesi chaotic system, synchronization and application for securing information. AEU-Int. J. Electron. Commun.99, 201–214 (2019).10.1016/j.aeue.2018.11.033 DOI

Hu, H., Liu, L. & Ding, N. Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun.184(3), 765–768 (2013).10.1016/j.cpc.2012.11.017 DOI

Öztürk, I. & Kılıç, R. A novel method for producing pseudo random numbers from differential equation-based chaotic systems. Nonlinear Dyn.80(3), 1147–1157 (2015).10.1007/s11071-015-1932-5 DOI

Hamza, R. A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl.35, 119–127 (2017).

Gupta, M. D. & Chauhan, R. K. Hardware efficient pseudo-random number generator using chen chaotic system on FPGA. J. Circuits Syst. Comput.31(03), 2250043 (2022).10.1142/S0218126622500438 DOI

Lei, W., Fu-Ping, W. & Zan-Ji, W. A novel chaos-based pseudo-random number generator. Acta Phys. Sin.55(8), 3964–3968 (2006).10.7498/aps.55.3964 DOI

Ergün, S. A. S. Ö. Truly random number generators based on a non-autonomous chaotic oscillator. AEU-Int. J. Electron. Commun.61(4), 235–242 (2007).10.1016/j.aeue.2006.05.006 DOI

Al-Musawi, W. A., Wali, W. A. & Al-Ibadi, M. A. A. Field-programmable gate array design of image encryption and decryption using Chua’s chaotic masking. Int. J. Electr. Comput. Eng. (IJECE)12(3), 2414 (2022).10.11591/ijece.v12i3.pp2414-2424 DOI

Chen, G. & Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. chaos9(07), 1465–1466 (1999).10.1142/S0218127499001024 DOI

Malvino, A. P., Bates, D. J. & Hoppe, P. E. Electronic Principles (Glencoe, 1993).

Sprott, J. C. A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos21(09), 2391–2394 (2011).10.1142/S021812741103009X DOI

Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (C. press, 2018).

Press, W. H. et al.Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007).

Soliman, N. S. et al. Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software. Chaos Solitons Fractals126, 292–307 (2019).10.1016/j.chaos.2019.05.028 DOI

Ramakrishnan, B. et al. Image encryption with a Josephson junction model embedded in FPGA. Multimed. Tools Appl.81, 1–25 (2022). 10.1007/s11042-022-12400-6 PubMed DOI

Press, W. H. et al.Numerical Recipes 3rd Edition: The Art of Scientific Computing (C.u. Press, 2007).

Koyuncu, I. The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng.58, 203–214 (2017).10.1016/j.compeleceng.2016.07.005 DOI

xilinx, Vivado Design Suite Tutorial Model-Based DSP Design Using System Generator. UG948 (v2020.1) (2020).

Digikey and employee, DAC DAC121S101 Pmod Controller (VHDL). https://forum.digikey.com/t/dac-dac121s101-pmod-controller-vhdl/13031 (Accessed 4 March 2021).

Diligent, PmodDA2™ Reference Manual. https://digilent.com/reference/_media/reference/pmod/pmodda2/pmodda2_rm.pdf (Accessed 24 May 2016).

Kingni, S. T. et al. Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation. Eur. Phys. J. B10.1140/epjb/e2020-100562-9 (2020).10.1140/epjb/e2020-100562-9 DOI

Merah, L. et al. Design and FPGA implementation of Lorenz chaotic system for information security issues. Appl. Math. Sci.7, 237–246 (2013).

Nguyen, N. T. et al. Designing a pseudo-random bit generator with a novel 5D-hyperchaotic system. IEEE Trans. Ind. Electron.69(6), 6101–6110 (2022).10.1109/TIE.2021.3088330 DOI

Adeyemi, V.-A. FPGA realization of the parameter-switching method in the Chen oscillator and application in image transmission. Symmetry13(6), 923 (2021).10.3390/sym13060923 DOI

Sambas, A. et al. A new hyperjerk system with a half line equilibrium: Multistability, period doubling reversals, antimonotonocity, electronic circuit, FPGA design, and an application to image encryption. IEEE Access12, 9177–9194 (2024).10.1109/ACCESS.2024.3351693 DOI

Hasan, F. S. Speech encryption using fixed point chaos based stream cipher (FPC-SC). Eng. Technol. J.34, 2152–2166 (2016).10.30684/etj.34.11A.19 DOI

Yu, F. et al. Design and FPGA implementation of a pseudo-random number generator based on a hopfield neural network under electromagnetic radiation. Front. Phys.9, 690651 (2021).10.3389/fphy.2021.690651 DOI

Bassham III, L. E. et al.Sp 800-22 rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (National Institute of Standards and Technology, 2010).

de la Fraga, L., Mancillas-López, C. & Tlelo-Cuautle, E. Designing an authenticated Hash function with a 2D chaotic map. Nonlinear Dyn.10.1007/s11071-021-06491-3 (2021).10.1007/s11071-021-06491-3 DOI

Adeyemi, V. et al. FPGA implementation of parameter-switching scheme to stabilize chaos in fractional spherical systems and usage in secure image transmission. Fractal Fract.7, 440 (2023).10.3390/fractalfract7060440 DOI

Ayemtsa Kuete, G. P. et al. Medical image crytosystem using a new 3-D map implemented in a microcontroller. Multimed. Tools Appl.10.1007/s11042-024-18460-0 (2024).10.1007/s11042-024-18460-0 DOI

Merah, L. et al. Real-time implementation of a chaos based cryptosystem on low-cost hardware. Iran. J. Sci. Technol. Trans. Electr. Eng.45(4), 1127–1150 (2021).10.1007/s40998-021-00433-w DOI

Flores-Vergara, A. et al. Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. Nonlinear Dyn.96(1), 497–516 (2019).10.1007/s11071-019-04802-3 DOI

Yao, W. et al. An image encryption algorithm based on a 3D chaotic Hopfield neural network and random row–column permutation. Front. Phys.10.3389/fphy.2023.1162887 (2023).10.3389/fphy.2023.1162887 DOI

Alvarez, G. & Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos16, 2129–2151 (2006).10.1142/S0218127406015970 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...