Progress on the development of Class A GPCR-biased ligands
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Review
Grant support
RRF-2.3.1-21-2022-00015
National Office of Research, Development and Innovation
FJC2021-047571-I
Ministerio de Ciencia e Innovación
PID2020-118511RB-I00
Ministerio de Ciencia e Innovación
PID2021-124010OB-100
Ministerio de Ciencia e Innovación
PID2021-126600OB-I00
Ministerio de Ciencia e Innovación
PID2021-127833OB-I00
Ministerio de Ciencia e Innovación
PID2022-139197OA-I00
Ministerio de Ciencia e Innovación
20 0264
Cancerfonden
R01 DA0455698
NIH HHS - United States
470002134
German Research Foundation
GRK 2158
German Research Foundation
PG-22-0379-H-01
Swedish Society for Medical Research
NAP 3.0
Hungarian Academy of Sciences
ED431B 2020/43
Consellería de Cultura, Educación e Ordenación Universitaria of the Galician Government
ED431G 2019/03
Centro Singular de Investigación de Galicia Accreditation 2019-2022
FJC2021-047571-I
MCIN/AEI/10.13039/501100011033/FEDER, UE
20 0264
Karolinska Institutet, the Swedish Cancer Society
2022-01398
Swedish Research Council
67985823
Czech Academy of Sciences
23-04670S
Grant Agency of Czech Republic
IJC 2019-042182-I
Juan de la Cierva Incorporación Programme
The Pew Charitable Trusts
CA18133
COST (European Cooperation in Science and Technology)
R01 DA0455698
NIH HHS - United States
PubMed
39261899
DOI
10.1111/bph.17301
Knihovny.cz E-resources
- Keywords
- G protein‐coupled receptors, GPCR modulators, biased signalling, functionally selective ligands,
- MeSH
- Humans MeSH
- Ligands MeSH
- Drug Discovery * MeSH
- Receptors, G-Protein-Coupled * metabolism agonists MeSH
- Signal Transduction drug effects MeSH
- Drug Development MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Ligands MeSH
- Receptors, G-Protein-Coupled * MeSH
Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.
Celtarys Research S L Santiago de Compostela Spain
Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
Institute for Pharmaceutical and Medicinal Chemistry University of Münster Münster Germany
Institute of Biomedicine Universitat de Barcelona Barcelona Spain
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Instituto de Química Médica Consejo Superior de Investigaciones Científicas Madrid Spain
School of Chemistry Universitat de Barcelona Barcelona Spain
See more in PubMed
Adhikari, P., Xie, B., Semeano, A., Bonifazi, A., Battiti, F. O., Newman, A. H., Yano, H., & Shi, L. (2021). Chirality of novel bitopic agonists determines unique pharmacology at the dopamine D3 receptor. Biomolecules, 11, 570. https://doi.org/10.3390/biom11040570
Alegre, K. O., Paknejad, N., Su, M., Lou, J. S., Huang, J., Jordan, K. D., Eng, E. T., Meyerson, J. R., Hite, R. K., & Huang, X. Y. (2021). Structural basis and mechanism of activation of two different families of G proteins by the same GPCR. Nature Structural & Molecular Biology, 28, 936–944. https://doi.org/10.1038/s41594-021-00679-2
Alexander, S. P. H., Battey, J., Benson, H. E., Benya, R. V., Bonner, T. I., Davenport, A. P., Singh, K. D., Eguchi, S., Harmar, A., Holliday, N., & Jensen, R. T. (2023). Class A orphans in GtoPdb v.2023.1. IUPHAR/BPS Guide to Pharmacology CITE, 2023, 1–46. https://doi.org/10.2218/gtopdb/F16/2023.1
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., al‐Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180(Suppl 2), S23–S144. https://doi.org/10.1111/bph.16177
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180(Suppl 2), S289–S373. https://doi.org/10.1111/bph.16181
Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., & Conner, A. C. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180(Suppl 2), S145–S222. https://doi.org/10.1111/bph.16181
Allen, J. A., Yost, J. M., Setola, V., Chen, X., Sassano, M. F., Chen, M., Peterson, S., Yadav, P. N., Huang, X. P., Feng, B., Jensen, N. H., Che, X., Bai, X., Frye, S. V., Wetsel, W. C., Caron, M. G., Javitch, J. A., Roth, B. L., & Jin, J. (2011). Discovery of β‐arrestin‐biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 108, 18488–18493. https://doi.org/10.1073/pnas.1104807108
Alonso, N., Monczor, F., Echeverría, E., Davio, C., Shayo, C., & Fernández, N. (2014). Signal transduction mechanism of biased ligands at histamine H2 receptors. The Biochemical Journal, 459, 117–126. https://doi.org/10.1042/BJ20131226
Alonso, N., Zappia, C. D., Cabrera, M., Davio, C. A., Shayo, C., Monczor, F., & Fernández, N. C. (2015). Physiological implications of biased signaling at histamine H2 receptors. Frontiers in Pharmacology, 6, 1–9. https://doi.org/10.3389/fphar.2015.00045
Al‐zoubi, R., Morales, P., & Reggio, P. H. (2019). Structural insights into CB1 receptor biased signaling. International Journal of Molecular Sciences, 20, 1837. https://doi.org/10.3390/ijms20081837
Araldi, D., Bonet, I. J. M., Green, P. G., & Levine, J. D. (2022). Contribution of G‐protein α‐subunits to analgesia, hyperalgesia, and hyperalgesic priming induced by subanalgesic and analgesic doses of fentanyl and morphine. The Journal of Neuroscience, 42, 1196–1210. https://doi.org/10.1523/JNEUROSCI.1982-21.2021
Arkless, K. L., Pan, D., Shankar‐Hari, M., Amison, R. T., Page, C. P., Rahman, K. M., & Pitchford, S. C. (2023). Stimulation of platelet P2Y 1 receptors by different endogenous nucleotides leads to functional selectivity via biased signalling. British Journal of Pharmacology, 1–16, 564–579. https://doi.org/10.1111/bph.16039
Bader, M., Alenina, N., Andrade‐Navarro, M. A., & Santos, R. A. (2014). MAS and its related G protein‐coupled receptors, Mrgprs. Pharmacological Reviews, 66, 1080–1105. https://doi.org/10.1124/pr.113.008136
Baltos, J.‐A., Gregory, K. J., White, P. J., Sexton, P. M., Christopoulos, A., & May, L. T. (2016). Quantification of adenosine A1 receptor biased agonism: Implications for drug discovery. Biochemical Pharmacology, 99, 101–112. https://doi.org/10.1016/j.bcp.2015.11.013
Baltos, J.‐A., Paoletta, S., Nguyen, A. T. N., Gregory, K. J., Tosh, D. K., Christopoulos, A., Jacobson, K. A., & May, L. T. (2016). Structure‐activity analysis of biased Agonism at the human adenosine A3 receptor. Molecular Pharmacology, 90, 12–22. https://doi.org/10.1124/mol.116.103283
Baltos, J.‐A., Vecchio, E. A., Harris, M. A., Qin, C. X., Ritchie, R. H., Christopoulos, A., White, P. J., & May, L. T. (2017). Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochemical Pharmacology, 135, 79–89. https://doi.org/10.1016/j.bcp.2017.03.014
Bartole, E., Littmann, T., Tanaka, M., Ozawa, T., Buschauer, A., & Bernhardt, G. (2019). UR‐DEBa176: A 2,4‐diaminopyrimidine‐type radioligand enabling binding studies at the human, mouse, and rat histamine H4 receptors. Journal of Medicinal Chemistry, 62, 8338–8356. https://doi.org/10.1021/acs.jmedchem.9b01342
Benkel, T., Zimmermann, M., Zeiner, J., Bravo, S., Merten, N., Lim, V. J. Y., Matthees, E. S. F., Drube, J., Miess‐Tanneberg, E., Malan, D., Szpakowska, M., Monteleone, S., Grimes, J., Koszegi, Z., Lanoiselée, Y., O'Brien, S., Pavlaki, N., Dobberstein, N., Inoue, A., … Kostenis, E. (2022). How carvedilol activates β2‐adrenoceptors. Nature Communications, 13, 7109. https://doi.org/10.1038/s41467-022-34765-w
Bermudez, M., & Bock, A. (2019). Does divergent binding pocket closure drive ligand bias for class A GPCRs? Trends in Pharmacological Sciences, 40, 236–239. https://doi.org/10.1016/j.tips.2019.02.005
Bermudez, M., Bock, A., Krebs, F., Holzgrabe, U., Mohr, K., Lohse, M. J., & Wolber, G. (2017). Ligand‐specific restriction of extracellular conformational dynamics constrains signaling of the M2 muscarinic receptor. ACS Chemical Biology, 12, 1743–1748. https://doi.org/10.1021/acschembio.7b00275
Bermudez, M., Nguyen, T. N., Omieczynski, C., & Wolber, G. (2019). Strategies for the discovery of biased GPCR ligands. Drug Discovery Today, 24, 1031–1037. https://doi.org/10.1016/j.drudis.2019.02.010
Blaine, A. T., Miao, Y., Yuan, J., Palant, S., Liu, R. J., Zhang, Z. Y., & van Rijn, R. M. (2022). Exploration of beta‐arrestin isoform signaling pathways in delta opioid receptor agonist‐induced convulsions. Frontiers in Pharmacology, 13, 914651. https://doi.org/10.3389/fphar.2022.914651
Bock, A., & Bermudez, M. (2021). Allosteric coupling and biased agonism in G protein‐coupled receptors. The FEBS Journal, 288, 2513–2528. https://doi.org/10.1111/febs.15783
Bock, A., Merten, N., Schrage, R., Dallanoce, C., Bätz, J., Klöckner, J., Schmitz, J., Matera, C., Simon, K., Kebig, A., Peters, L., Müller, A., Schrobang‐Ley, J., Tränkle, C., Hoffmann, C., de Amici, M., Holzgrabe, U., Kostenis, E., & Mohr, K. (2012). The allosteric vestibule of a seven transmembrane helical receptor controls G‐protein coupling. Nature Communications, 3, 1044. https://doi.org/10.1038/ncomms2028
Bonifazi, A., Yano, H., Guerrero, A. M., Kumar, V., Hoffman, A. F., Lupica, C. R., Shi, L., & Newman, A. H. (2019). Novel and potent dopamine D2 receptor Go‐protein biased agonists. ACS Pharmacology & Translational Science, 2, 52–65. https://doi.org/10.1021/acsptsci.8b00060
Burghi, V., Echeverría, E. B., Zappia, C. D., Díaz Nebreda, A., Ripoll, S., Gómez, N., Shayo, C., Davio, C. A., Monczor, F., & Fernández, N. C. (2021). Biased agonism at histamine H1 receptor: Desensitization, internalization and MAPK activation triggered by antihistamines. European Journal of Pharmacology, 896, 173913. https://doi.org/10.1016/j.ejphar.2021.173913
Byers, M. A., Calloway, P. A., Shannon, L., Cunningham, H. D., Smith, S., Li, F., Fassold, B. C., & Vines, C. M. (2008). Arrestin 3 mediates endocytosis of CCR7 following ligation of CCL19 but not CCL21. Journal of Immunology, 181, 4723–4732. https://doi.org/10.4049/jimmunol.181.7.4723
Cabanu, S., Pilar‐Cuéllar, F., Zubakina, P., Florensa‐Zanuy, E., Senserrich, J., Newman‐Tancredi, A., & Adell, A. (2022). Molecular signaling mechanisms for the antidepressant effects of NLX‐101, a selective cortical 5‐HT1A receptor biased agonist. Pharmaceuticals (Basel), 15, 337. https://doi.org/10.3390/ph15030337
Cao, C., Barros‐Álvarez, X., Zhang, S., Kim, K., Dämgen, M. A., Panova, O., Suomivuori, C. M., Fay, J. F., Zhong, X., Krumm, B. E., Gumpper, R. H., Seven, A. B., Robertson, M. J., Krogan, N. J., Hüttenhain, R., Nichols, D. E., Dror, R. O., Skiniotis, G., & Roth, B. L. (2022). Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron, 110, 3154–3167.e7. https://doi.org/10.1016/j.neuron.2022.08.006
Cao, D., Yu, J., Wang, H., Luo, Z., Liu, X., He, L., Qi, J., Fan, L., Tang, L., Chen, Z., & Li, J. (2022). Structure‐based discovery of nonhallucinogenic psychedelic analogs. Science (80‐.), 375, 403–411.
Carlin, J. L., Jain, S., Gizewski, E., Wan, T. C., Tosh, D. K., Xiao, C., Auchampach, J. A., Jacobson, K. A., Gavrilova, O., & Reitman, M. L. (2017). Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology, 114, 101–113. https://doi.org/10.1016/j.neuropharm.2016.11.026
Caroli, J., Mamyrbekov, A., Harpsøe, K., Gardizi, S., Dörries, L., Ghosh, E., Hauser, A. S., Kooistra, A. J., & Gloriam, D. E. (2023). A community biased signaling atlas. Nature Chemical Biology, 19, 531–535. https://doi.org/10.1038/s41589-023-01292-8
Cederblad, L., Rosengren, B., Ryberg, E., & Hermansson, N.‐O. (2016). AZD8797 is an allosteric non‐competitive modulator of the human CX3CR1 receptor. The Biochemical Journal, 473, 641–649. https://doi.org/10.1042/BJ20150520
Che, T., Dwivedi‐agnihotri, H., Shukla, A. K., & Roth, B. L. (2021). Biased ligands at opioid receptors: Current status and future directions. Science Signaling, 14(677), eaav0320.
Chen, S., Teng, X., & Zheng, S. (2023). Molecular basis for the selective G protein signaling of somatostatin receptors. Nature Chemical Biology, 19, 133–140. https://doi.org/10.1038/s41589-022-01130-3
Chen, X., Klöckner, J., Holze, J., Zimmermann, C., Seemann, W. K., Schrage, R., Bock, A., Mohr, K., Tränkle, C., Holzgrabe, U., & Decker, M. (2015). Rational design of partial agonists for the muscarinic m1 acetylcholine receptor. Journal of Medicinal Chemistry, 58, 560–576. https://doi.org/10.1021/jm500860w
Chen, Y., Mao, C., Gu, R., Zhao, R., Li, W., Ma, Z., Jia, Y., Yu, F., Luo, J., Fu, Y., Sun, J., & Kong, W. (2022). Nidogen‐2 is a novel endogenous ligand of LGR4 to inhibit vascular calcification. Circulation Research, 131, 1037–1054. https://doi.org/10.1161/CIRCRESAHA.122.321614
Cheng, J., McCorvy, J. D., Giguere, P. M., Zhu, H., Kenakin, T., Roth, B. L., & Kozikowski, A. P. (2016). Design and discovery of functionally selective serotonin 2C (5‐HT2C) receptor agonists. Journal of Medicinal Chemistry, 59, 9866–9880. https://doi.org/10.1021/acs.jmedchem.6b01194
Conibear, A. E., Asghar, J., Hill, R., Henderson, G., Borbely, E., Tekus, V., Helyes, Z., Palandri, J., Bailey, C., Starke, I., von Mentzer, B., Kendall, D., & Kelly, E. (2020). A novel G protein‐biased agonist at the δ opioid receptor with analgesic efficacy in models of chronic pain. The Journal of Pharmacology and Experimental Therapeutics, 372, 224–236. https://doi.org/10.1124/jpet.119.258640
Copik, A. J., Baldys, A., Nguyen, K., Sahdeo, S., Ho, H., Kosaka, A., Dietrich, P. J., Fitch, B., Raymond, J. R., Ford, A. P. D. W., Button, D., & Milla, M. E. (2015). Isoproterenol acts as a biased agonist of the alpha‐1A‐adrenoceptor that selectively activates the MAPK/ERK pathway. PLoS ONE, 10, e0115701. https://doi.org/10.1371/journal.pone.0115701
Corbisier, J., Galès, C., Huszagh, A., Parmentier, M., & Springael, J.‐Y. (2015). Biased signaling at chemokine receptors. The Journal of Biological Chemistry, 290, 9542–9554. https://doi.org/10.1074/jbc.M114.596098
Cotter, G., Davison, B. A., Butler, J., Collins, S. P., Ezekowitz, J. A., Felker, G. M., Filippatos, G., Levy, P. D., Metra, M., Ponikowski, P., Teerlink, J. R., Voors, A. A., Senger, S., Bharucha, D., Goin, K., Soergel, D. G., & Pang, P. S. (2018). Relationship between baseline systolic blood pressure and long‐term outcomes in acute heart failure patients treated with TRV027: An exploratory subgroup analysis of BLAST‐AHF. Clinical Research in Cardiology, 107, 170–181. https://doi.org/10.1007/s00392-017-1168-0
da Silva Junior, E. D., Sato, M., Merlin, J., Broxton, N., Hutchinson, D. S., Ventura, S., Evans, B. A., & Summers, R. J. (2017). Factors influencing biased agonism in recombinant cells expressing the human α1A‐adrenoceptor. British Journal of Pharmacology, 174, 2318–2333. https://doi.org/10.1111/bph.13837
de Neve, J., Barlow, T. M. A., Tourwé, D., Bihel, F., Simonin, F., & Ballet, S. (2021). Comprehensive overview of biased pharmacology at the opioid receptors: Biased ligands and bias factors. RSC Medicinal Chemistry, 12, 828–870. https://doi.org/10.1039/D1MD00041A
de Pascali, F., Ippolito, M., Wolfe, E., Komolov, K. E., Hopfinger, N., Lemenze, D., Kim, N., Armen, R. S., An, S. S., Scott, C. P., & Benovic, J. L. (2022). β2‐adrenoceptor agonist profiling reveals biased signalling phenotypes for the β2‐adrenoceptor with possible implications for the treatment of asthma. British Journal of Pharmacology, 179, 4692–4708. https://doi.org/10.1111/bph.15900
Denzinger, K., Nguyen, T. N., Noonan, T., Wolber, G., & Bermudez, M. (2020). Biased ligands differentially shape the conformation of the extracellular loop region in 5‐HT2B receptors. International Journal of Molecular Sciences, 21, 9728. https://doi.org/10.3390/ijms21249728
DeVree, B. T., Mahoney, J. P., Vélez‐Ruiz, G. A., Rasmussen, S. G. F., Kuszak, A. J., Edwald, E., Fung, J. J., Manglik, A., Masureel, M., Du, Y., Matt, R. A., Pardon, E., Steyaert, J., Kobilka, B. K., & Sunahara, R. K. (2016). Allosteric coupling from G protein to the agonist‐binding pocket in GPCRs. Nature, 535, 182–186. https://doi.org/10.1038/nature18324
DeWire, S. M., Yamashita, D. S., Rominger, D. H., Liu, G., Cowan, C. L., Graczyk, T. M., Chen, X. T., Pitis, P. M., Gotchev, D., Yuan, C., Koblish, M., Lark, M. W., & Violin, J. D. (2013). A G protein‐biased ligand at the μ‐opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. The Journal of Pharmacology and Experimental Therapeutics, 344, 708–717. https://doi.org/10.1124/jpet.112.201616
Dhopeshwarkar, A., & Mackie, K. (2016). Functional selectivity of CB2 cannabinoid receptor ligands at a canonical and noncanonical pathway. The Journal of Pharmacology and Experimental Therapeutics, 358, 342–351. https://doi.org/10.1124/jpet.116.232561
Duan, J., Liu, H., Zhao, F., Yuan, Q., Ji, Y., Cai, X., He, X., Li, X., Li, J., Wu, K., Gao, T., Zhu, S., Lin, S., Wang, M. W., Cheng, X., Yin, W., Jiang, Y., Yang, D., & Xu, H. E. (2023). GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature, 620, 676–681. https://doi.org/10.1038/s41586-023-06395-9
Dupuis, N., Laschet, C., Franssen, D., Szpakowska, M., Gilissen, J., Geubelle, P., Soni, A., Parent, A. S., Pirotte, B., Chevigné, A., Twizere, J. C., & Hanson, J. (2017). Activation of the orphan G protein‐coupled receptor GPR27 by surrogate ligands promotes β‐arrestin 2 recruitment. Molecular Pharmacology, 91, 595–608. https://doi.org/10.1124/mol.116.107714
Dupuis, N., Laschet, C., Franssen, D., Szpakowska, M., Gilissen, J., Geubelle, P., Soni, A., Parent, A.‐S., Pirotte, B., Chevigné, A., Twizere, J.‐C., & Hanson, J. (2022). Correction to “Activation of the orphan G protein‐coupled receptor GPR27 by surrogate ligands promotes β‐arrestin 2 recruitment”. Molecular Pharmacology, 101, 274. https://doi.org/10.1124/mol.116.107714err
Eglen, R. M. (2012). Overview of muscarinic receptor subtypes. In A. D. Fryer, A. Christopoulos, & N. M. Nathanson (Eds.), Handbook of Experimental Pharmacology (pp. 3–28). Springer.
Egyed, A., Domány‐Kovács, K., Koványi, B., Horti, F., Kurkó, D., Kiss, D. J., Pándy‐Szekeres, G., Greiner, I., & Keserű, G. M. (2020). Controlling receptor function from the extracellular vestibule of G‐protein coupled receptors. Chemical Communications, 56, 14167–14170. https://doi.org/10.1039/D0CC05532H
Egyed, A., Kiss, D. J., & Keserű, G. M. (2022). The impact of the secondary binding pocket on the pharmacology of class A GPCRs. Frontiers in Pharmacology, 13, 1–27. https://doi.org/10.3389/fphar.2022.847788
Ehrlich, A. T., Semache, M., Gross, F., da Fonte, D. F., Runtz, L., Colley, C., Mezni, A., le Gouill, C., Lukasheva, V., Hogue, M., Darcq, E., Bouvier, M., & Kieffer, B. L. (2019). Biased signaling of the mu opioid receptor revealed in native neurons. iScience, 14, 47–57. https://doi.org/10.1016/j.isci.2019.03.011
Eiger, D. S., Boldizsar, N., Honeycutt, C. C., Gardner, J., Kirchner, S., Hicks, C., Choi, I., Pham, U., Zheng, K., Warman, A., Smith, J. S., Zhang, J. Y., & Rajagopal, S. (2022). Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nature Communications, 13, 5846. https://doi.org/10.1038/s41467-022-33569-2
Eiger, D. S., Boldizsar, N., Honeycutt, C. C., Gardner, J., & Rajagopal, S. (2021). Biased agonism at chemokine receptors. Cellular Signalling, 78, 109862. https://doi.org/10.1016/j.cellsig.2020.109862
Eiger, D. S., Hicks, C., Gardner, J., Pham, U., & Rajagopal, S. (2023). Location bias: A “hidden variable” in GPCR pharmacology. BioEssays, 45, 1–12. https://doi.org/10.1002/bies.202300123
El Daibani, A., Paggi, J. M., Kim, K., Laloudakis, Y. D., Popov, P., Bernhard, S. M., Krumm, B. E., Olsen, R. H., Diberto, J., Carroll, F., & Katritch, V. (2023). Molecular mechanism of biased signaling at the kappa opioid receptor. Nature Communications, 141(14), 1–13.
el Khamlichi, C., Reverchon, F., Hervouet‐Coste, N., Robin, E., Chopin, N., Deau, E., Madouri, F., Guimpied, C., Colas, C., Menuet, A., Inoue, A., Bojarski, A. J., Guillaumet, G., Suzenet, F., Reiter, E., & Morisset‐Lopez, S. (2022). Serodolin, a β‐arrestin‐biased ligand of 5‐HT(7) receptor, attenuates pain‐related behaviors. Proceedings of the National Academy of Sciences of the United States of America, 119, e2118847119. https://doi.org/10.1073/pnas.2118847119
Faouzi, A., Wang, H., Zaidi, S. A., DiBerto, J. F., Che, T., Qu, Q., Robertson, M. J., Madasu, M. K., El Daibani, A., Varga, B. R., Zhang, T., Ruiz, C., Liu, S., Xu, J., Appourchaux, K., Slocum, S. T., Eans, S. O., Cameron, M. D., al‐Hasani, R., … Majumdar, S. (2023). Structure‐based design of bitopic ligands for the μ‐opioid receptor. Nature, 613, 767–774. https://doi.org/10.1038/s41586-022-05588-y
Ferrisi, R., Gado, F., Polini, B., Ricardi, C., Mohamed, K. A., Stevenson, L. A., Ortore, G., Rapposelli, S., Saccomanni, G., Pertwee, R. G., Laprairie, R. B., Manera, C., & Chiellini, G. (2022). Design, synthesis and biological evaluation of novel orthosteric‐allosteric ligands of the cannabinoid receptor type 2 (CB2R). Frontiers in Chemistry, 10, 1–17. https://doi.org/10.3389/fchem.2022.984069
Fisher, A., Brandeis, R., Karton, I., Pittel, Z., Gurwitz, D., Haring, R., Sapir, M., Levy, A., & Heldman, E. (1991). (+−)‐cis‐2‐methyl‐spiro(1,3‐oxathiolane‐5,3′)quinuclidine, an M1 selective cholinergic agonist, attenuates cognitive dysfunctions in an animal model of Alzheimer's disease. The Journal of Pharmacology and Experimental Therapeutics, 257, 392–403.
Friess, M. C., Kritikos, I., Schineis, P., Medina‐Sanchez, J. D., Gkountidi, A. O., Vallone, A., Sigmund, E. C., Schwitter, C., Vranova, M., Matti, C., Arasa, J., Saygili Demir, C., Bovay, E., Proulx, S. T., Tomura, M., Rot, A., Legler, D. F., Petrova, T. V., & Halin, C. (2022). Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de‐adhesion and passive transport by flow in inflamed afferent lymphatics. Cell Reports, 38, 110334. https://doi.org/10.1016/j.celrep.2022.110334
Gao, X., DeSantis, A. J., Enten, G. A., Weche, M. W., Marcet, J. E., & Majetschak, M. (2022). Heteromerization between α1B‐adrenoceptor and chemokine (C‐C motif) receptor 2 biases α1B‐adrenoceptor signaling: Implications for vascular function. FEBS Letters, 596, 2706–2716. https://doi.org/10.1002/1873-3468.14463
Gao, Z.‐G., Balasubramanian, R., Kiselev, E., Wei, Q., & Jacobson, K. A. (2014). Probing biased/partial agonism at the G protein‐coupled A2B adenosine receptor. Biochemical Pharmacology, 90, 297–306. https://doi.org/10.1016/j.bcp.2014.05.008
Gao, Z.‐G., & Jacobson, K. A. (2008). Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: Comparison with G protein‐dependent pathways. Pharmacological Research, 57, 303–311. https://doi.org/10.1016/j.phrs.2008.02.008
Gao, Z.‐G., Verzijl, D., Zweemer, A., Ye, K., Göblyös, A., IJzerman, A. P., & Jacobson, K. A. (2011). Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochemical Pharmacology, 82, 658–668. https://doi.org/10.1016/j.bcp.2011.06.017
Garai, S., Leo, L. M., Szczesniak, A. M., Hurst, D. P., Schaffer, P. C., Zagzoog, A., Black, T., Deschamps, J. R., Miess, E., Schulz, S., & Janero, D. R. (2021). Discovery of a biased allosteric modulator for cannabinoid 1 receptor: Preclinical anti‐glaucoma efficacy. Journal of Medicinal Chemistry, 64(12), 8104–8126. https://doi.org/10.1021/acs.jmedchem.1c00040
Garcia, C., Maurel‐Ribes, A., Nauze, M., N'Guyen, D., Martinez, L. O., Payrastre, B., Sénard, J. M., Galés, C., & Pons, V. (2019). Deciphering biased inverse agonism of cangrelor and ticagrelor at P2Y12 receptor. Cellular and Molecular Life Sciences, 76, 561–576. https://doi.org/10.1007/s00018-018-2960-3
Gillis, A., Gondin, A. B., Kliewer, A., Sanchez, J., Lim, H. D., Alamein, C., Manandhar, P., Santiago, M., Fritzwanker, S., Schmiedel, F., Katte, T. A., Reekie, T., Grimsey, N. L., Kassiou, M., Kellam, B., Krasel, C., Halls, M. L., Connor, M., Lane, J. R., … Canals, M. (2020). Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Science Signaling, 13, eaaz3140. https://doi.org/10.1126/scisignal.aaz3140
Głuch‐Lutwin, M., Sałaciak, K., Gawalska, A., Jamrozik, M., Sniecikowska, J., Newman‐Tancredi, A., Kołaczkowski, M., & Pytka, K. (2021). The selective 5‐HT1A receptor biased agonists, F15599 and F13714, show antidepressant‐like properties after a single administration in the mouse model of unpredictable chronic mild stress. Psychopharmacology, 238, 2249–2260. https://doi.org/10.1007/s00213-021-05849-0
Goth, C. K., Petäjä‐Repo, U. E., & Rosenkilde, M. M. (2020). G protein‐coupled receptors in the sweet spot: Glycosylation and other post‐translational modifications. ACS Pharmacology & Translational Science, 3, 237–245. https://doi.org/10.1021/acsptsci.0c00016
Griffith, J. W., Sokol, C. L., & Luster, A. D. (2014). Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annual Review of Immunology, 32, 659–702. https://doi.org/10.1146/annurev-immunol-032713-120145
Haney, M., Vallée, M., Fabre, S., Collins Reed, S., Zanese, M., Campistron, G., Arout, C. A., Foltin, R. W., Cooper, Z. D., Kearney‐Ramos, T., Metna, M., Justinova, Z., Schindler, C., Hebert‐Chatelain, E., Bellocchio, L., Cathala, A., Bari, A., Serrat, R., Finlay, D. B., … Piazza, P. V. (2023). Signaling‐specific inhibition of the CB1 receptor for cannabis use disorder: Phase 1 and phase 2a randomized trials. Nature Medicine, 29, 1487–1499. https://doi.org/10.1038/s41591-023-02381-w
Harris, J. A., Faust, B., Gondin, A. B., Dämgen, M. A., Suomivuori, C. M., Veldhuis, N. A., Cheng, Y., Dror, R. O., Thal, D. M., & Manglik, A. (2022). Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nature Chemical Biology, 18, 109–115. https://doi.org/10.1038/s41589-021-00890-8
Holze, J., Bermudez, M., Pfeil, E. M., Kauk, M., Bödefeld, T., Irmen, M., Matera, C., Dallanoce, C., de Amici, M., Holzgrabe, U., König, G. M., Tränkle, C., Wolber, G., Schrage, R., Mohr, K., Hoffmann, C., Kostenis, E., & Bock, A. (2020). Ligand‐specific allosteric coupling controls G‐protein‐coupled receptor signaling. ACS Pharmacology & Translational Science, 3, 859–867. https://doi.org/10.1021/acsptsci.0c00069
Hsiao, W. C., Hsin, K. Y., Wu, Z. W., Song, J. S., Yeh, Y. N., Chen, Y. F., Tsai, C. H., Chen, P. H., Shia, K. S., Chang, C. P., & Hung, M. S. (2023). Modulating the affinity and signaling bias of cannabinoid receptor 1 antagonists. Bioorganic Chemistry, 130, 106236. https://doi.org/10.1016/j.bioorg.2022.106236
Ibsen, M. S., Connor, M., & Glass, M. (2017). Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis and Cannabinoid Research, 2, 48–60. https://doi.org/10.1089/can.2016.0037
Ippolito, M., & Benovic, J. L. (2021). Biased agonism at β‐adrenergic receptors. Cellular Signalling, 80, 109905. https://doi.org/10.1016/j.cellsig.2020.109905
Ippolito, M., De Pascali, F., Inoue, A., & Benovic, J. L. (2022). Phenylalanine 193 in extracellular loop 2 of the β2‐adrenergic receptor coordinates β‐arrestin interaction. Molecular Pharmacology, 101, 87–94. https://doi.org/10.1124/molpharm.121.000332
Jacobson, K. A., & Gao, Z.‐G. (2006). Adenosine receptors as therapeutic targets. Nature Reviews. Drug Discovery, 5, 247–264. https://doi.org/10.1038/nrd1983
Jakubik, J., & El‐Fakahany, E. E. (2020). Current advances in allosteric modulation of muscarinic receptors. Biomolecules, 10, 325. https://doi.org/10.3390/biom10020325
Jones‐Tabah, J., Mohammad, H., Paulus, E. G., Clarke, P. B. S., & Hébert, T. E. (2021). The signaling and pharmacology of the dopamine D1 receptor. Frontiers in Cellular Neuroscience, 15, 806618. https://doi.org/10.3389/fncel.2021.806618
Jørgensen, A. S., Daugvilaite, V., de Filippo, K., Berg, C., Mavri, M., Benned‐Jensen, T., Juzenaite, G., Hjortø, G., Rankin, S., Våbenø, J., & Rosenkilde, M. M. (2021). Biased action of the CXCR4‐targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization. Communications Biology, 4, 569. https://doi.org/10.1038/s42003-021-02070-9
Jørgensen, A. S., Larsen, O., Uetz‐von Allmen, E., Lückmann, M., Legler, D. F., Frimurer, T. M., Veldkamp, C. T., Hjortø, G. M., & Rosenkilde, M. M. (2019). Biased signaling of CCL21 and CCL19 does not rely on N‐terminal differences, but markedly on the chemokine Core domains and extracellular loop 2 of CCR7. Frontiers in Immunology, 10, 2156. https://doi.org/10.3389/fimmu.2019.02156
Kaplan, A. L., Confair, D. N., Kim, K., Barros‐Álvarez, X., Rodriguiz, R. M., Yang, Y., Kweon, O. S., Che, T., McCorvy, J. D., Kamber, D. N., Phelan, J. P., Martins, L. C., Pogorelov, V. M., DiBerto, J. F., Slocum, S. T., Huang, X. P., Kumar, J. M., Robertson, M. J., Panova, O., … Ellman, J. A. (2022). Bespoke library docking for 5‐HT2A receptor agonists with antidepressant activity. Nature, 610, 582–591. https://doi.org/10.1038/s41586-022-05258-z
Karasawa, Y., Miyano, K., Fujii, H., Mizuguchi, T., Kuroda, Y., Nonaka, M., Komatsu, A., Ohshima, K., Yamaguchi, M., Yamaguchi, K., Iseki, M., Uezono, Y., & Hayashida, M. (2021). In vitro analyses of spinach‐derived opioid peptides, rubiscolins: Receptor selectivity and intracellular activities through G protein‐ and β‐arrestin‐mediated pathways. Molecules, 26, 6079. https://doi.org/10.3390/molecules26196079
Karasawa, Y., Miyano, K., Yamaguchi, M., Nonaka, M., Yamaguchi, K., Iseki, M., Kawagoe, I., & Uezono, Y. (2023). Therapeutic potential of orally administered rubiscolin‐6. International Journal of Molecular Sciences, 24, 9959. https://doi.org/10.3390/ijms24129959
Kawakami, K., Yanagawa, M., Hiratsuka, S., Yoshida, M., Ono, Y., Hiroshima, M., Ueda, M., Aoki, J., Sako, Y., & Inoue, A. (2022). Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β‐arrestin transducer bias. Nature Communications, 13, 487. https://doi.org/10.1038/s41467-022-28056-7
Kelly, E., Conibear, A., & Henderson, G. (2023). Biased agonism: Lessons from studies of opioid receptor agonists. Annual Review of Pharmacology and Toxicology, 63, 491–515. https://doi.org/10.1146/annurev-pharmtox-052120-091058
Kim, D., Tokmakova, A., Lujan, L. K., Strzelinski, H. R., Kim, N., Najari Beidokhti, M., Giulianotti, M. A., Mafi, A., Woo, J. A. A., An, S. S., Goddard, W. A. III, & Liggett, S. B. (2021). Identification and characterization of an atypical Gαs‐biased β2AR agonist that fails to evoke airway smooth muscle cell tachyphylaxis. Proceedings of the National Academy of Sciences of the United States of America, 118, e2026668118. https://doi.org/10.1073/pnas.2026668118
Kjær, V. M. S., Daugvilaite, V., Stepniewski, T. M., Madsen, C. M., Jørgensen, A. S., Bhuskute, K. R., Inoue, A., Ulven, T., Benned‐Jensen, T., Hjorth, S. A., Hjortø, G. M., Moo, E. V., Selent, J., & Rosenkilde, M. M. (2023). Migration mediated by the oxysterol receptor GPR183 depends on arrestin coupling but not receptor internalization. Science Signaling, 16, eabl4283. https://doi.org/10.1126/scisignal.abl4283
Kjaer, V. M. S., Ieremias, L., Daugvilaite, V., Lückmann, M., Frimurer, T. M., Ulven, T., Rosenkilde, M. M., & Våbenø, J. (2021). Discovery of GPR183 agonists based on an antagonist scaffold. ChemMedChem, 16, 2623–2627. https://doi.org/10.1002/cmdc.202100301
Kliewer, A., Gillis, A., Hill, R., Schmiedel, F., Bailey, C., Kelly, E., Henderson, G., Christie, M. J., & Schulz, S. (2020). Morphine‐induced respiratory depression is independent of β‐arrestin2 signalling. British Journal of Pharmacology, 177, 2923–2931. https://doi.org/10.1111/bph.15004
Kohout, T. A., Nicholas, S. L., Perry, S. J., Reinhart, G., Junger, S., & Struthers, R. S. (2004). Differential desensitization, receptor phosphorylation, β‐arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7*. The Journal of Biological Chemistry, 279, 23214–23222. https://doi.org/10.1074/jbc.M402125200
Kolb, P., Kenakin, T., Alexander, S. P. H., Bermudez, M., Bohn, L. M., Breinholt, C. S., Bouvier, M., Hill, S. J., Kostenis, E., Martemyanov, K. A., Neubig, R. R., Onaran, H. O., Rajagopal, S., Roth, B. L., Selent, J., Shukla, A. K., Sommer, M. E., & Gloriam, D. E. (2022). Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 179, 3651–3674. https://doi.org/10.1111/bph.15811
Krumm, B. E., DiBerto, J. F., Olsen, R. H. J., Kang, H. J., Slocum, S. T., Zhang, S., Strachan, R. T., Huang, X. P., Slosky, L. M., Pinkerton, A. B., Barak, L. S., Caron, M. G., Kenakin, T., Fay, J. F., & Roth, B. L. (2023). Neurotensin receptor allosterism revealed in complex with a biased allosteric modulator. Biochemistry, 62, 1233–1248. https://doi.org/10.1021/acs.biochem.3c00029
Kurko, D., Kapui, Z., Nagy, J., Lendvai, B., & Kolok, S. (2014). Analysis of functional selectivity through G protein‐dependent and ‐independent signaling pathways at the adrenergic α2C receptor. Brain Research Bulletin, 107, 89–101. https://doi.org/10.1016/j.brainresbull.2014.07.005
Kwag, R., Lee, J., Kim, D., Lee, H., Yeom, M., Woo, J., Cho, Y., Kim, H. J., Kim, J., Keum, G., Jeon, B., & Choo, H. (2021). Discovery of G protein‐biased antagonists against 5‐HT7R. Journal of Medicinal Chemistry, 64, 13766–13779. https://doi.org/10.1021/acs.jmedchem.1c01093
Langemeijer, E. V., Verzijl, D., Dekker, S. J., & Ijzerman, A. P. (2013). Functional selectivity of adenosine A1 receptor ligands? Purinergic Signal, 9, 91–100. https://doi.org/10.1007/s11302-012-9334-3
Laprairie, R. B., Stahl, E. L., & Bohn, L. M. (2017). Approaches to assess biased signaling at the CB1R receptor. Methods in Enzymology, 593, 259–279. https://doi.org/10.1016/bs.mie.2017.06.031
Larsen, O., Lückmann, M., van der Velden, W. J. C., Oliva‐Santiago, M., Brvar, M., Ulven, T., Frimurer, T. M., Karlshøj, S., & Rosenkilde, M. M. (2019). Selective allosteric modulation of N‐terminally cleaved, but not full length CCL3 in CCR1. ACS Pharmacology & Translational Science, 2, 429–441. https://doi.org/10.1021/acsptsci.9b00059
Larsen, O., van der Velden, W. J. C., Mavri, M., Schuermans, S., Rummel, P. C., Karlshøj, S., Gustavsson, M., Proost, P., Våbenø, J., & Rosenkilde, M. M. (2022). Identification of a conserved chemokine receptor motif that enables ligand discrimination. Science Signaling, 15, eabg7042. https://doi.org/10.1126/scisignal.abg7042
Lee, Y., Warne, T., Nehmé, R., Pandey, S., Dwivedi‐Agnihotri, H., Chaturvedi, M., Edwards, P. C., García‐Nafría, J., Leslie, A. G. W., Shukla, A. K., & Tate, C. G. (2020). Molecular basis of β‐arrestin coupling to formoterol‐bound β1‐adrenoceptor. Nature, 583, 862–866. https://doi.org/10.1038/s41586-020-2419-1
Leo, L. M., al‐Zoubi, R., Hurst, D. P., Stephan, A. P., Zhao, P., Tilley, D. G., Miess, E., Schulz, S., Abood, M. E., & Reggio, P. H. (2022). The NPXXY motif regulates β‐arrestin recruitment by the CB1 cannabinoid receptor. Cannabis and Cannabinoid Research, 1–18, 731–748. https://doi.org/10.1089/can.2021.0223
Li, H., Mirabel, R., Zimmerman, J., Ghiviriga, I., Phidd, D. K., Horenstein, N., & Urs, N. M. (2022). Structure–functional selectivity relationship studies on A‐86929 analogs and small aryl fragments toward the discovery of biased dopamine D1 receptor agonists. ACS Chemical Neuroscience, 13, 1818–1831. https://doi.org/10.1021/acschemneuro.2c00235
Li, H., Urs, N. M., & Horenstein, N. (2023). Computational insights into ligand‐induced G protein and β‐arrestin signaling of the dopamine D1 receptor. Journal of Computer‐Aided Molecular Design, 37, 227–244. https://doi.org/10.1007/s10822-023-00503-7
Lin, X., Chen, B., Wu, Y., Han, Y., Qi, A., Wang, J., Yang, Z., Wei, X., Zhao, T., Wu, L., Xie, X., Sun, J., Zheng, J., Zhao, S., & Xu, F. (2023). Cryo‐EM structures of orphan GPR21 signaling complexes. Nature Communications, 14, 216. https://doi.org/10.1038/s41467-023-35882-w
Liu, J., Tang, H., Xu, C., Zhou, S., Zhu, X., Li, Y., Prézeau, L., Xu, T., Pin, J. P., Rondard, P., Ji, W., & Liu, J. (2022). Biased signaling due to oligomerization of the G protein‐coupled platelet‐activating factor receptor. Nature Communications, 13, 6365. https://doi.org/10.1038/s41467-022-34056-4
Liu, Z., Iyer, M. R., Godlewski, G., Jourdan, T., Liu, J., Coffey, N. J., Zawatsky, C. N., Puhl, H. L., Wess, J., Meister, J., Liow, J. S., Innis, R. B., Hassan, S. A., Lee, Y. S., Kunos, G., & Cinar, R. (2021). Functional selectivity of a biased Cannabinoid‐1 receptor (CB1R) antagonist. ACS Pharmacology & Translational Science, 4, 1175–1187. https://doi.org/10.1021/acsptsci.1c00048
Lucy, D., Purvis, G. S. D., Zeboudj, L., Chatzopoulou, M., Recio, C., Bataille, C. J. R., Wynne, G. M., Greaves, D. R., & Russell, A. J. (2019). A biased agonist at immunometabolic receptor GPR84 causes distinct functional effects in macrophages. ACS Chemical Biology, 14, 2055–2064. https://doi.org/10.1021/acschembio.9b00533
Lüllmann, H., Ohnesorge, F. K., Schauwecker, G. C., & Wassermann, O. (1969). Inhibition of the actions of carbachol and DFP on guinea pig isolated atria by alkane‐bis‐ammonium compounds. European Journal of Pharmacology, 6, 241–247. https://doi.org/10.1016/0014-2999(69)90181-2
Mack, S. M., Gomes, I., Fakira, A. K., Lemos Duarte, M., Gupta, A., Fricker, L., & Devi, L. A. (2022). GPR83 engages endogenous peptides from two distinct precursors to elicit differential signaling. Molecular Pharmacology, 102, 29–38. https://doi.org/10.1124/molpharm.122.000487
Mallipeddi, S., Janero, D. R., Zvonok, N., & Makriyannis, A. (2017). Functional selectivity at G‐protein coupled receptors: Advancing cannabinoid receptors as drug targets. Biochemical Pharmacology, 128, 1–11. https://doi.org/10.1016/j.bcp.2016.11.014
Mallo‐Abreu, A., Reyes‐Resina, I., Azuaje, J., Franco, R., García‐Rey, A., Majellaro, M., Miranda‐Pastoriza, D., García‐Mera, X., Jespers, W., Gutiérrez‐de‐Terán, H., Navarro, G., & Sotelo, E. (2021). Potent and subtype‐selective dopamine D2 receptor biased partial agonists discovered via an Ugi‐based approach. Journal of Medicinal Chemistry, 64, 8710–8726. https://doi.org/10.1021/acs.jmedchem.1c00704
Mao, Q., Zhang, B., Tian, S., Qin, W., Chen, J., Huang, X. P., Xin, Y., Yang, H., Zhen, X. C., Shui, W., & Ye, N. (2022). Structural optimizations and bioevaluation of N‐H aporphine analogues as Gq‐biased and selective serotonin 5‐HT2C receptor agonists. Bioorganic Chemistry, 123, 105795. https://doi.org/10.1016/j.bioorg.2022.105795
Maroteaux, L. (2021). Gene structure, expression, and 5‐HT2B receptor signaling. In L. Maroteaux & L. Monassier (Eds.), 5‐HT2B receptors: From molecular biology to clinical applications (pp. 1–32). Springer International Publishing. https://doi.org/10.1007/978-3-030-55920-5_1
Masureel, M., Zou, Y., Picard, L. P., van der Westhuizen, E., Mahoney, J. P., Rodrigues, J. P. G. L. M., Mildorf, T. J., Dror, R. O., Shaw, D. E., Bouvier, M., Pardon, E., Steyaert, J., Sunahara, R. K., Weis, W. I., Zhang, C., & Kobilka, B. K. (2018). Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nature Chemical Biology, 14, 1059–1066. https://doi.org/10.1038/s41589-018-0145-x
Matthees, E. S. F., Filor, J. C., Jaiswal, N., Reichel, M., Youssef, N., Drube, J., Godbole, A., & Hoffmann, C. (2023). GRK specificity and Gβγ dependency determines a GPCRs potential in biased agonism. bioRxiv, 1, 1–22. https://doi.org/10.1101/2023.07.14.548990
McCorvy, J. D., Butler, K. V., Kelly, B., Rechsteiner, K., Karpiak, J., Betz, R. M., Kormos, B. L., Shoichet, B. K., Dror, R. O., Jin, J., & Roth, B. L. (2018). Structure‐inspired design of β‐arrestin‐biased ligands for aminergic GPCRs. Nature Chemical Biology, 14, 126–134. https://doi.org/10.1038/nchembio.2527
McCorvy, J. D., Wacker, D., Wang, S., Agegnehu, B., Liu, J., Lansu, K., Tribo, A. R., Olsen, R. H. J., Che, T., Jin, J., & Roth, B. L. (2018). Structural determinants of 5‐HT2B receptor activation and biased agonism. Nature Structural & Molecular Biology, 25, 787–796. https://doi.org/10.1038/s41594-018-0116-7
Milanos, L., Brox, R., Frank, T., Poklukar, G., Palmisano, R., Waibel, R., Einsiedel, J., Dürr, M., Ivanović‐Burmazović, I., Larsen, O., Hjortø, G. M., Rosenkilde, M. M., & Tschammer, N. (2016). Discovery and characterization of biased allosteric agonists of the chemokine receptor CXCR3. Journal of Medicinal Chemistry, 59, 2222–2243. https://doi.org/10.1021/acs.jmedchem.5b01965
Miles, T. F., Spiess, K., Jude, K. M., Tsutsumi, N., Burg, J. S., Ingram, J. R., Waghray, D., Hjorto, G. M., Larsen, O., Ploegh, H. L., Rosenkilde, M. M., & Garcia, K. C. (2018). Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. eLife, 7, e35850. https://doi.org/10.7554/eLife.35850
Mlost, J., Kostrzewa, M., Borczyk, M., Bryk, M., Chwastek, J., Korostyński, M., & Starowicz, K. (2021). CB2 agonism controls pain and subchondral bone degeneration induced by mono‐iodoacetate: Implications GPCR functional bias and tolerance development. Biomedicine & Pharmacotherapy, 136, 111283. https://doi.org/10.1016/j.biopha.2021.111283
Moniri, N. H., & Booth, R. G. (2004). Functional heterogeneity of histamine H1 receptors. Inflammation Research, 53, 71–72. https://doi.org/10.1007/s00011-003-0334-1
Morales, P., Bruix, M., & Jiménez, M. A. (2020). Structural insights into β‐arrestin/CB1 receptor interaction: NMR and CD studies on model peptides. International Journal of Molecular Sciences, 21, 8111. https://doi.org/10.3390/ijms21218111
Morales, P., Goya, P., & Jagerovic, N. (2018). Emerging strategies targeting CB2 cannabinoid receptor: Biased agonism and allosterism. Biochemical Pharmacology, 157, 8–17. https://doi.org/10.1016/j.bcp.2018.07.031
Morrow, G. B., Nicholas, R. A., & Kennedy, C. (2014). UTP is not a biased agonist at human P2Y11 receptors. Purinergic Signal, 10, 581–585. https://doi.org/10.1007/s11302-014-9418-3
Namkung, Y., LeGouill, C., Kumar, S., Cao, Y., Teixeira, L. B., Lukasheva, V., Giubilaro, J., Simões, S. C., Longpré, J. M., Devost, D., Hébert, T. E., Piñeyro, G., Leduc, R., Costa‐Neto, C. M., Bouvier, M., & Laporte, S. A. (2018). Functional selectivity profiling of the angiotensin II type 1 receptor using pathway‐wide BRET signaling sensors. Science Signaling, 11(559), eaat1631. https://doi.org/10.1126/scisignal.aat1631
Newman‐Tancredi, A., Depoortère, R. Y., Kleven, M. S., Kołaczkowski, M., & Zimmer, L. (2022). Translating biased agonists from molecules to medications: Serotonin 5‐HT1A receptor functional selectivity for CNS disorders. Pharmacology & Therapeutics, 229, 107937. https://doi.org/10.1016/j.pharmthera.2021.107937
Nijmeijer, S., Vischer, H. F., Rosethorne, E. M., Charlton, S. J., & Leurs, R. (2012). Analysis of multiple histamine H4 receptor compound classes uncovers Gαi protein‐ and β‐arrestin2‐biased ligands. Molecular Pharmacology, 82, 1174–1182. https://doi.org/10.1124/mol.112.080911
Nijmeijer, S., Vischer, H. F., Sirci, F., Schultes, S., Engelhardt, H., de Graaf, C., Rosethorne, E. M., Charlton, S. J., & Leurs, R. (2013). Detailed analysis of biased histamine H4 receptor signalling by JNJ 7777120 analogues. British Journal of Pharmacology, 170, 78–88. https://doi.org/10.1111/bph.12117
Nivedha, A., Tautermann, C. S., Bhattacharya, S., Lee, S., Casarosa, P., Kollak, I., Kiechle, T., & Vaidehi, N. (2018). Identifying functional hotspot residues for biased ligand design in G‐protein‐coupled receptors. Molecular Pharmacology, 93(4), 288–296. https://doi.org/10.1124/mol.117.110395
Nivedha, A. K., Lee, S., & Vaidehi, N. (2023). Biased agonists differentially modulate the receptor conformation ensembles in angiotensin II type 1 receptor. Journal of Molecular Graphics & Modelling, 118, 108365. https://doi.org/10.1016/j.jmgm.2022.108365
Olejarz‐Maciej, A., Mogilski, S., Karcz, T., Werner, T., Kamińska, K., Kupczyk, J., Honkisz‐Orzechowska, E., Latacz, G., Stark, H., Kieć‐Kononowicz, K., & Łażewska, D. (2023). Trisubstituted 1,3,5‐triazines as histamine H4 receptor antagonists with promising activity in vivo. Molecules, 28, 4199. https://doi.org/10.3390/molecules28104199
Olianas, M. C., & Onali, P. (1999). PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP. Life Sciences, 65, 2233–2240. https://doi.org/10.1016/S0024-3205(99)00488-9
Onyameh, E. K., Ofori, E., Bricker, B. A., Gonela, U. M., Eyunni, S. V., Kang, H. J., Voshavar, C., & Ablordeppey, S. Y. (2022). Design and discovery of a high affinity, selective and β‐arrestin biased 5‐HT7 receptor agonist. Medicinal Chemistry Research, 31, 274–283.
Pani, B., Ahn, S., Rambarat, P. K., Vege, S., Kahsai, A. W., Liu, A., Valan, B. N., Staus, D. P., Costa, T., & Lefkowitz, R. J. (2021). Unique positive cooperativity between the β‐arrestin‐biased β‐blocker carvedilol and a small molecule positive allosteric modulator of the β2‐adrenergic receptor. Molecular Pharmacology, 100, 513–525. https://doi.org/10.1124/molpharm.121.000363
Panula, P., Chazot, P. L., Cowart, M., Gutzmer, R., Leurs, R., Liu, W. L., Stark, H., Thurmond, R. L., & Haas, H. L. (2015). International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacological Reviews, 67, 601–655. https://doi.org/10.1124/pr.114.010249
Papay, R. S., Macdonald, J. D., Stauffer, S. R., & Perez, D. M. (2023). Characterization of a novel positive allosteric modulator of the α1A‐adrenergic receptor. Current Research in Pharmacology and Drug Discovery, 4, 100142. https://doi.org/10.1016/j.crphar.2022.100142
Park, H., Urs, A. N., Zimmerman, J., Liu, C., Wang, Q., & Urs, N. M. (2020). Structure–functional–selectivity relationship studies of novel apomorphine analogs to develop D1R/D2R biased ligands. ACS Medicinal Chemistry Letters, 11, 385–392. https://doi.org/10.1021/acsmedchemlett.9b00575
Park, S. M., Chen, M., Schmerberg, C. M., Dulman, R. S., Rodriguiz, R. M., Caron, M. G., Jin, J., & Wetsel, W. C. (2016). Effects of β‐arrestin‐biased dopamine D2 receptor ligands on schizophrenia‐like behavior in hypoglutamatergic mice. Neuropsychopharmacology, 41, 704–715. https://doi.org/10.1038/npp.2015.196
Patel, M., Finlay, D. B., & Glass, M. (2020). Biased agonism at the cannabinoid receptors—Evidence from synthetic cannabinoid receptor agonists. Cellular Signalling, 78, 109865. https://doi.org/10.1016/j.cellsig.2020.109865
Pavletić, P., Semeano, A., Yano, H., Bonifazi, A., Giorgioni, G., Piergentili, A., Quaglia, W., Sabbieti, M. G., Agas, D., Santoni, G., Pallini, R., Ricci‐Vitiani, L., Sabato, E., Vistoli, G., & del Bello, F. (2022). Highly potent and selective dopamine D4 receptor antagonists potentially useful for the treatment of glioblastoma. Journal of Medicinal Chemistry, 65, 12124–12139. https://doi.org/10.1021/acs.jmedchem.2c00840
Pera, T., Deshpande, D. A., Ippolito, M., Wang, B., Gavrila, A., Michael, J. V., Nayak, A. P., Tompkins, E., Farrell, E., Kroeze, W. K., & Roth, B. L. (2018). Biased signaling of the proton‐sensing receptor OGR1 by benzodiazepines. The FASEB Journal, 32, 862–874.
Pillaiyar, T., Köse, M., Sylvester, K., Weighardt, H., Thimm, D., Borges, G., Förster, I., von Kügelgen, I., & Müller, C. E. (2017). Diindolylmethane derivatives: Potent agonists of the immunostimulatory orphan G protein‐coupled receptor GPR84. Journal of Medicinal Chemistry, 60, 3636–3655. https://doi.org/10.1021/acs.jmedchem.6b01593
Pillaiyar, T., Rosato, F., Wozniak, M., Blavier, J., Charles, M., Laschet, C., Kronenberger, T., Müller, C. E., & Hanson, J. (2021). Structure‐activity relationships of agonists for the orphan G protein‐coupled receptor GPR27. European Journal of Medicinal Chemistry, 225, 113777. https://doi.org/10.1016/j.ejmech.2021.113777
Plouffe, B., Karamitri, A., Flock, T., Gallion, J. M., Houston, S., Daly, C. A., Bonnefond, A., Guillaume, J. L., le Gouill, C., Froguel, P., Lichtarge, O., Deupi, X., Jockers, R., & Bouvier, M. (2022). Structural elements directing G proteins and β‐arrestin interactions with the human melatonin type 2 receptor revealed by natural variants. ACS Pharmacology & Translational Science, 5, 89–101. https://doi.org/10.1021/acsptsci.1c00239
Pottie, E., Tosh, D. K., Gao, Z.‐G., Jacobson, K. A., & Stove, C. P. (2020). Assessment of biased agonism at the A3 adenosine receptor using β‐arrestin and miniGαi recruitment assays. Biochemical Pharmacology, 177, 113934. https://doi.org/10.1016/j.bcp.2020.113934
Poulie, C. B. M., Pottie, E., Simon, I. A., Harpsøe, K., D'Andrea, L., Komarov, I. V., Gloriam, D. E., Jensen, A. A., Stove, C. P., & Kristensen, J. L. (2022). Discovery of β‐arrestin‐biased 25CN‐NBOH‐derived 5‐HT2A receptor agonists. Journal of Medicinal Chemistry, 65, 12031–12043. https://doi.org/10.1021/acs.jmedchem.2c00702
Proudman, R. G. W., & Baker, J. G. (2021). The selectivity of α‐adrenoceptor agonists for the human α1A, α1B, and α1D‐adrenoceptors. Pharmacology Research & Perspectives, 9, 1–23.
Radoux‐Mergault, A., Oberhauser, L., Aureli, S., & Luigi, F. (2022). Subcellular location defines GPCR signal transduction. Science Advances, 9(16), eadf6059.
Rahman, S. N., McNaught‐Flores, D. A., Huppelschoten, Y., da Costa Pereira, D., Christopoulos, A., Leurs, R., & Langmead, C. J. (2023). Structural and molecular determinants for isoform bias at human histamine H3 receptor isoforms. ACS Chemical Neuroscience, 14, 645–656. https://doi.org/10.1021/acschemneuro.2c00425
Rajagopal, S., Ahn, S., Rominger, D. H., Gowen‐MacDonald, W., Lam, C. M., DeWire, S. M., Violin, J. D., & Lefkowitz, R. J. (2011). Quantifying ligand bias at seven‐transmembrane receptors. Molecular Pharmacology, 80, 367–377. https://doi.org/10.1124/mol.111.072801
Ramos‐Gonzalez, N., Groom, S., Sutcliffe, K. J., Bancroft, S., Bailey, C. P., Sessions, R. B., Henderson, G., & Kelly, E. (2023). Carfentanil is a β‐arrestin‐biased agonist at the μ opioid receptor. British Journal of Pharmacology, 180, 2341–2360. https://doi.org/10.1111/BPH.16084
Randáková, A., & Jakubík, J. (2021). Functionally selective and biased agonists of muscarinic receptors. Pharmacological Research, 169, 105641. https://doi.org/10.1016/j.phrs.2021.105641
Randáková, A., Nelic, D., Ungerová, D., Nwokoye, P., Su, Q., Doležal, V., el‐Fakahany, E. E., Boulos, J., & Jakubík, J. (2020). Novel M2‐selective, Gi‐biased agonists of muscarinic acetylcholine receptors. British Journal of Pharmacology, 177, 2073–2089. https://doi.org/10.1111/bph.14970
Reher, T. M., Brunskole, I., Neumann, D., & Seifert, R. (2012). Evidence for ligand‐specific conformations of the histamine H2‐receptor in human eosinophils and neutrophils. Biochemical Pharmacology, 84, 1174–1185. https://doi.org/10.1016/j.bcp.2012.08.014
Reinartz, M. T., Kälble, S., Littmann, T., Ozawa, T., Dove, S., Kaever, V., Wainer, I. W., & Seifert, R. (2015). Structure‐bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2‐adrenoceptor. Naunyn‐Schmiedeberg's Archives of Pharmacology, 388, 51–65. https://doi.org/10.1007/s00210-014-1054-5
Riddy, D. M., Cook, A. E., Diepenhorst, N. A., Bosnyak, S., Brady, R., Mannoury la Cour, C., Mocaer, E., Summers, R. J., Charman, W. N., Sexton, P. M., Christopoulos, A., & Langmead, C. J. (2017). Isoform‐specific biased agonism of histamine H3 receptor agonists. Molecular Pharmacology, 91, 87–99. https://doi.org/10.1124/mol.116.106153
Robbins, A. J., Che Bakri, N. A., Toke‐Bjolgerud, E., Edwards, A., Vikraman, A., Michalsky, C., Fossler, M., Lemm, N. M., Medhipour, S., Budd, W., Gravani, A., Hurley, L., Kapil, V., Jackson, A., Lonsdale, D., Latham, V., Laffan, M., Chapman, N., Cooper, N., … Owen, D. (2023). The effect of TRV027 on coagulation in COVID‐19: A pilot randomized, placebo‐controlled trial. British Journal of Clinical Pharmacology, 89, 1495–1501. https://doi.org/10.1111/bcp.15618
Rosethorne, E. M., & Charlton, S. J. (2011). Agonist‐biased signaling at the histamine H4 receptor: JNJ7777120 recruits β‐arrestin without activating G proteins. Molecular Pharmacology, 79, 749–757. https://doi.org/10.1124/mol.110.068395
Roy, S., Ganguly, A., Haque, M., & Ali, H. (2019). Angiogenic host defense peptide AG‐30/5C and bradykinin B(2) receptor antagonist Icatibant are G protein biased agonists for MRGPRX2 in mast cells. Journal of Immunology, 202, 1229–1238. https://doi.org/10.4049/jimmunol.1801227
Ryba, D. M., Li, J., Cowan, C. L., Russell, B., Wolska, B. M., & Solaro, R. J. (2017). Long‐term biased β‐arrestin signaling improves cardiac structure and function in dilated cardiomyopathy. Circulation, 135, 1056–1070. https://doi.org/10.1161/CIRCULATIONAHA.116.024482
Sałaciak, K., & Pytka, K. (2021). Biased agonism in drug discovery: Is there a future for biased 5‐HT1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacology & Therapeutics, 227, 107872. https://doi.org/10.1016/j.pharmthera.2021.107872
Sanchez‐Soto, M., Verma, R. K., Willette, B. K. A., Gonye, E. C., Moore, A. M., Moritz, A. E., Boateng, C. A., Yano, H., Free, R. B., Shi, L., & Sibley, D. R. (2020). A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Science Signaling, 13, 1–15. https://doi.org/10.1126/scisignal.aaw5885
Sarma, P., Carino, C. M. C., Seetharama, D., Pandey, S., Dwivedi‐Agnihotri, H., Rui, X., Cao, Y., Kawakami, K., Kumari, P., Chen, Y. C., Luker, K. E., Yadav, P. N., Luker, G. D., Laporte, S. A., Chen, X., Inoue, A., & Shukla, A. K. (2023). Molecular insights into intrinsic transducer‐coupling bias in the CXCR4‐CXCR7 system. Nature Communications, 14, 4808. https://doi.org/10.1038/s41467-023-40482-9
Schamiloglu, S., Lewis, E., Keeshen, C. M., Hergarden, A. C., Bender, K. J., & Whistler, J. L. (2023). Arrestin‐3 agonism at dopamine D3 receptors defines a subclass of second‐generation antipsychotics that promotes drug tolerance. Biological Psychiatry, 94, 531–542. https://doi.org/10.1016/j.biopsych.2023.03.006
Schmid, C. L., Kennedy, N. M., Ross, N. C., Lovell, K. M., Yue, Z., Morgenweck, J., Cameron, M. D., Bannister, T. D., & Bohn, L. M. (2017). Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell, 171, 1165–1175.e13. https://doi.org/10.1016/j.cell.2017.10.035
Schönegge, A.‐M., Gallion, J., Picard, L. P., Wilkins, A. D., le Gouill, C., Audet, M., Stallaert, W., Lohse, M. J., Kimmel, M., Lichtarge, O., & Bouvier, M. (2017). Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nature Communications, 8, 2169. https://doi.org/10.1038/s41467-017-02257-x
Seifert, R., Schneider, E. H., Dove, S., Brunskole, I., Neumann, D., Strasser, A., & Buschauer, A. (2011). Paradoxical stimulatory effects of the “standard” histamine H4‐receptor antagonist JNJ7777120: The H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. Molecular Pharmacology, 79, 631–638. https://doi.org/10.1124/mol.111.071266
Seyedabadi, M., Gharghabi, M., Gurevich, E. V., & Gurevich, V. V. (2022). Structural basis of GPCR coupling to distinct signal transducers: Implications for biased signaling. Trends in Biochemical Sciences, 47, 570–581. https://doi.org/10.1016/j.tibs.2022.03.009
Shao, Z., Shen, Q., Yao, B., Mao, C., Chen, L. N., Zhang, H., Shen, D. D., Zhang, C., Li, W., Du, X., Li, F., Ma, H., Chen, Z. H., Xu, H. E., Ying, S., Zhang, Y., & Shen, H. (2022). Identification and mechanism of G protein‐biased ligands for chemokine receptor CCR1. Nature Chemical Biology, 18, 264–271. https://doi.org/10.1038/s41589-021-00918-z
Shen, Y., McCorvy, J. D., Martini, M. L., Rodriguiz, R. M., Pogorelov, V. M., Ward, K. M., Wetsel, W. C., Liu, J., Roth, B. L., & Jin, J. (2019). D2 dopamine receptor G protein‐biased partial agonists based on cariprazine. Journal of Medicinal Chemistry, 62, 4755–4771. https://doi.org/10.1021/acs.jmedchem.9b00508
Shimizu, Y., Koyama, R., & Kawamoto, T. (2017). Rho kinase‐dependent desensitization of GPR39; a unique mechanism of GPCR downregulation. Biochemical Pharmacology, 140, 105–114. https://doi.org/10.1016/j.bcp.2017.06.115
Slosky, L. M., Bai, Y., Toth, K., Ray, C., Rochelle, L. K., Badea, A., Chandrasekhar, R., Pogorelov, V. M., Abraham, D. M., Atluri, N., Peddibhotla, S., Hedrick, M. P., Hershberger, P., Maloney, P., Yuan, H., Li, Z., Wetsel, W. C., Pinkerton, A. B., Barak, L. S., & Caron, M. G. (2020). β‐Arrestin‐biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell, 181, 1364–1379.e14. https://doi.org/10.1016/j.cell.2020.04.053
Soethoudt, M., Grether, U., Fingerle, J., Grim, T. W., Fezza, F., de Petrocellis, L., Ullmer, C., Rothenhäusler, B., Perret, C., van Gils, N., Finlay, D., MacDonald, C., Chicca, A., Gens, M. D., Stuart, J., de Vries, H., Mastrangelo, N., Xia, L., Alachouzos, G., … van der Stelt, M. (2017). Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off‐target activity. Nature Communications, 8, 13958. https://doi.org/10.1038/ncomms13958
Stanek, M., Picard, L. P., Schmidt, M. F., Kaindl, J. M., Hübner, H., Bouvier, M., Weikert, D., & Gmeiner, P. (2019). Hybridization of β‐adrenergic agonists and antagonists confers G protein bias. Journal of Medicinal Chemistry, 62, 5111–5131. https://doi.org/10.1021/acs.jmedchem.9b00349
Steen, A., Thiele, S., Guo, D., Hansen, L. S., Frimurer, T. M., & Rosenkilde, M. M. (2013). Biased and constitutive signaling in the CC‐chemokine receptor CCR5 by manipulating the interface between transmembrane helices 6 and 7*. The Journal of Biological Chemistry, 288, 12511–12521. https://doi.org/10.1074/jbc.M112.449587
Steinmüller, S. A. M., Fender, J., Deventer, M. H., Tutov, A., Lorenz, K., Stove, C. P., Hislop, J. N., & Decker, M. (2023). Visible‐light photoswitchable benzimidazole azo‐arenes as beta‐arrestin2‐biased selective cannabinoid 2 receptor agonists. Angewandte Chemie International Edition, 62, e202306176. https://doi.org/10.1002/anie.202306176
Strachan, R. T., Sun, J. P., Rominger, D. H., Violin, J. D., Ahn, S., Rojas Bie Thomsen, A., Zhu, X., Kleist, A., Costa, T., & Lefkowitz, R. J. (2014). Divergent transducer‐specific molecular efficacies generate biased agonism at a G protein‐coupled receptor (GPCR). The Journal of Biological Chemistry, 289, 14211–14224. https://doi.org/10.1074/jbc.M114.548131
Suomivuori, C.‐M., Latorraca, N. R., Wingler, L. M., Eismann, S., King, M. C., Kleinhenz, A. L. W., Skiba, M. A., Staus, D. P., Kruse, A. C., Lefkowitz, R. J., & Dror, R. O. (2020). Molecular mechanism of biased signaling in a prototypical G‐protein‐coupled receptor. Biophysical Journal, 118, 162A. https://doi.org/10.1016/j.bpj.2019.11.1000
Szpakowska, M., D'Uonnolo, G., Luís, R., Alonso Bartolomé, A., Thelen, M., Legler, D. F., & Chevigné, A. (2023). New pairings and deorphanization among the atypical chemokine receptor family—Physiological and clinical relevance. Frontiers in Immunology, 14, 1133394. https://doi.org/10.3389/fimmu.2023.1133394
Tan, L., Zhou, Q., Yan, W., Sun, J., Kozikowski, A. P., Zhao, S., Huang, X. P., & Cheng, J. (2020). Design and synthesis of bitopic 2‐phenylcyclopropylmethylamine (PCPMA) derivatives as selective dopamine D3 receptor ligands. Journal of Medicinal Chemistry, 63, 4579–4602. https://doi.org/10.1021/acs.jmedchem.9b01835
Teng, X., Chen, S., Nie, Y., Xiao, P., Yu, X., Shao, Z., & Zheng, S. (2022). Ligand recognition and biased agonism of the D1 dopamine receptor. Nature Communications, 13, 3186. https://doi.org/10.1038/s41467-022-30929-w
Tompkins, E., Mimic, B., Cuevas‐Mora, K., Schorsch, H., Shah, S. D., Deshpande, D. A., Benovic, J. L., Penn, R. B., & Pera, T. (2022). PD 102807 induces M3 mAChR‐dependent GRK‐/arrestin‐biased signaling in airway smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology, 67, 550–561. https://doi.org/10.1165/rcmb.2021-0320OC
Tropmann, K., Höring, C., Plank, N., & Pockes, S. (2020). Discovery of a G protein‐biased radioligand for the histamine H2 receptor with reversible binding properties. Journal of Medicinal Chemistry, 63, 13090–13102. https://doi.org/10.1021/acs.jmedchem.0c01494
Tropmann, K., Seibel‐Ehlert, U., Littmann, T., & Strasser, A. (2021). Shining light on the histamine H2 receptor: Synthesis of carbamoylguanidine‐type agonists as a pharmacological tool to study internalization. Bioorganic & Medicinal Chemistry Letters, 52, 128388. https://doi.org/10.1016/j.bmcl.2021.128388
Turu, G., Soltész‐Katona, E., Tóth, A. D., Juhász, C., Cserző, M., Misák, Á., Balla, A., Caron, M. G., & Hunyady, L. (2021). Biased coupling to β‐arrestin of two common variants of the CB2 cannabinoid receptor. Frontiers in Endocrinology (Lausanne), 12, 714561.
Vaidehi, N., & Bhattacharya, S. (2016). Allosteric communication pipelines in G‐protein‐coupled receptors. Current Opinion in Pharmacology, 30, 76–83. https://doi.org/10.1016/j.coph.2016.07.010
Valant, C., May, L. T., Aurelio, L., Chuo, C. H., White, P. J., Baltos, J. A., Sexton, P. M., Scammells, P. J., & Christopoulos, A. (2014). Separation of on‐target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 111, 4614–4619. https://doi.org/10.1073/pnas.1320962111
Vanheule, V., Metzemaekers, M., Janssens, R., Struyf, S., & Proost, P. (2018). How post‐translational modifications influence the biological activity of chemokines. Cytokine, 109, 29–51. https://doi.org/10.1016/j.cyto.2018.02.026
Vecchio, E. A., Chuo, C. H., Baltos, J. A., Ford, L., Scammells, P. J., Wang, B. H., Christopoulos, A., White, P. J., & May, L. T. (2016). The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti‐fibrotic signalling. Biochemical Pharmacology, 117, 46–56. https://doi.org/10.1016/j.bcp.2016.08.007
Venkatakrishnan, A. J., Deupi, X., Lebon, G., Heydenreich, F. M., Flock, T., Miljus, T., Balaji, S., Bouvier, M., Veprintsev, D. B., Tate, C. G., & Schertler, G. F. (2016). Diverse activation pathways in class a GPCRs converge near the G‐protein‐coupling region. Nature, 40, 383–388.
Verweij, E. W. E., al Araaj, B., Prabhata, W. R., Prihandoko, R., Nijmeijer, S., Tobin, A. B., Leurs, R., & Vischer, H. F. (2020). Differential role of serines and threonines in intracellular loop 3 and C‐terminal tail of the histamine H4 receptor in β‐arrestin and G protein‐coupled receptor kinase interaction, internalization, and signaling. ACS Pharmacology & Translational Science, 3, 321–333. https://doi.org/10.1021/acsptsci.0c00008
Verweij, E. W. E., Bosma, R., Gao, M., van den Bor, J., al Araaj, B., de Munnik, S. M., Ma, X., Leurs, R., & Vischer, H. F. (2022). BRET‐based biosensors to measure agonist efficacies in histamine H1 receptor‐mediated G protein activation, signaling and interactions with GRKs and β‐arrestins. International Journal of Molecular Sciences, 23, 3184. https://doi.org/10.3390/ijms23063184
Violin, J. D., DeWire, S. M., Yamashita, D., Rominger, D. H., Nguyen, L., Schiller, K., Whalen, E. J., Gowen, M., & Lark, M. W. (2010). Selectively engaging β‐arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. The Journal of Pharmacology and Experimental Therapeutics, 335, 572–579. https://doi.org/10.1124/jpet.110.173005
von Moo, E., Harpsøe, K., Hauser, A. S., Masuho, I., Bräuner‐Osborne, H., Gloriam, D. E., & Martemyanov, K. A. (2022). Ligand‐directed bias of G protein signaling at the dopamine D2 receptor. Cell Chemical Biology, 29, 226–238.e4. https://doi.org/10.1016/j.chembiol.2021.07.004
Wall, M. J., Hill, E., Huckstepp, R., Barkan, K., Deganutti, G., Leuenberger, M., Preti, B., Winfield, I., Carvalho, S., Suchankova, A., Wei, H., Safitri, D., Huang, X., Imlach, W., la Mache, C., Dean, E., Hume, C., Hayward, S., Oliver, J., … Frenguelli, B. G. (2022). Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression. Nature Communications, 13, 4150. https://doi.org/10.1038/s41467-022-31652-2
Wang, H., Hetzer, F., Huang, W., Qu, Q., Meyerowitz, J., Kaindl, J., Hübner, H., Skiniotis, G., Kobilka, B. K., & Gmeiner, P. (2022). Structure‐based evolution of G protein‐biased μ‐opioid receptor agonists. Angewandte Chemie International Edition, 61, e202200269. https://doi.org/10.1002/anie.202200269
Wang, J., Gareri, C., & Rockman, H. A. (2018). G‐protein‐coupled receptors in heart disease. Circulation Research, 123, 716–735. https://doi.org/10.1161/CIRCRESAHA.118.311403
Wang, J., Hanada, K., Staus, D. P., Makara, M. A., Dahal, G. R., Chen, Q., Ahles, A., Engelhardt, S., & Rockman, H. A. (2017). Gαi is required for carvedilol‐induced β1 adrenergic receptor β‐arrestin biased signaling. Nature Communications, 8, 1706. https://doi.org/10.1038/s41467-017-01855-z
Wang, J., Pani, B., Gokhan, I., Xiong, X., Kahsai, A. W., Jiang, H., Ahn, S., Lefkowitz, R. J., & Rockman, H. A. (2021). Β‐Arrestin–biased allosteric modulator potentiates carvedilol‐stimulated Β adrenergic receptor cardioprotection. Molecular Pharmacology, 100, 568–579. https://doi.org/10.1124/molpharm.121.000359
Wang, Y.‐Q., Lin, W. W., Wu, N., Wang, S. Y., Chen, M. Z., Lin, Z. H., Xie, X. Q., & Feng, Z. W. (2019). Structural insight into the serotonin (5‐HT) receptor family by molecular docking, molecular dynamics simulation and systems pharmacology analysis. Acta Pharmacologica Sinica, 40, 1138–1156. https://doi.org/10.1038/s41401-019-0217-9
Welihinda, A. A., Kaur, M., Greene, K., Zhai, Y., & Amento, E. P. (2016). The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cellular Signalling, 28, 552–560. https://doi.org/10.1016/j.cellsig.2016.02.010
Werner, K., Neumann, D., & Seifert, R. (2014). Analysis of the histamine H2‐receptor in human monocytes. Biochemical Pharmacology, 92, 369–379. https://doi.org/10.1016/j.bcp.2014.08.028
White, P. J., Webb, T. E., & Boarder, M. R. (2003). Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: Evidence for agonist‐specific signaling. Molecular Pharmacology, 63, 1356–1363. https://doi.org/10.1124/mol.63.6.1356
Wingler, L. M., Elgeti, M., Hilger, D., Latorraca, N. R., Lerch, M. T., Staus, D. P., Dror, R. O., Kobilka, B. K., Hubbell, W. L., & Lefkowitz, R. J. (2019). Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell, 176, 468–478.e11. https://doi.org/10.1016/j.cell.2018.12.005
Wingler, L. M., & Lefkowitz, R. J. (2020). Conformational basis of G protein‐coupled receptor signaling versatility. Trends in Cell Biology, 30, 736–747. https://doi.org/10.1016/j.tcb.2020.06.002
Wingler, L. M., McMahon, C., Staus, D. P., Lefkowitz, R. J., & Kruse, A. C. (2019). Distinctive activation mechanism for angiotensin receptor revealed by a synthetic Nanobody. Cell, 176, 479–490.e12. https://doi.org/10.1016/j.cell.2018.12.006
Wingler, L. M., Skiba, M. A., McMahon, C., Staus, D. P., Kleinhenz, A. L., Suomivuori, C. M., Latorraca, N. R., Dror, R. O., Lefkowitz, R. J., & Kruse, A. C. (2020). Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science (80‐.), 367, 888–892.
Wisler, J. W., DeWire, S. M., Whalen, E. J., Violin, J. D., Drake, M. T., Ahn, S., Shenoy, S. K., & Lefkowitz, R. J. (2007). A unique mechanism of beta‐blocker action: Carvedilol stimulates beta‐arrestin signaling. Proceedings of the National Academy of Sciences of the United States of America, 104, 16657–16662. https://doi.org/10.1073/pnas.0707936104
Woo, A. Y. H., Ge, X. Y., Pan, L., Xing, G., Mo, Y. M., Xing, R. J., Li, X. R., Zhang, Y. Y., Wainer, I. W., Cheng, M. S., & Xiao, R. P. (2019). Discovery of β‐arrestin‐biased β2‐adrenoceptor agonists from 2‐amino‐2‐phenylethanol derivatives. Acta Pharmacologica Sinica, 40, 1095–1105. https://doi.org/10.1038/s41401-018-0200-x
Wootten, D., Christopoulos, A., Marti‐Solano, M., Babu, M. M., & Sexton, P. M. (2018). Mechanisms of signalling and biased agonism in G protein‐coupled receptors. Nature Reviews. Molecular Cell Biology, 19, 638–653. https://doi.org/10.1038/s41580-018-0049-3
Wouters, E., Robertson, M. J., Meyrath, M., Szpakowska, M., Chevigné, A., Skiniotis, G., Stove, C., & Stove, C. (2019). Assessment of biased agonism among distinct synthetic cannabinoid receptor agonist scaffolds. ACS Pharmacology & Translational Science, 3(2), 285–295. https://doi.org/10.1021/acsptsci.9b00069
Xu, J., Cao, S., Hübner, H., Weikert, D., Chen, G., Lu, Q., Yuan, D., Gmeiner, P., Liu, Z., & Du, Y. (2022). Structural insights into ligand recognition, activation, and signaling of the α2Aadrenergic receptor. Science Advances, 8, 1–12.
Xu, J., Hu, Y., Kaindl, J., Risel, P., Hübner, H., Maeda, S., Niu, X., Li, H., Gmeiner, P., Jin, C., & Kobilka, B. K. (2019). Conformational complexity and dynamics in a muscarinic receptor revealed by NMR spectroscopy. Molecular Cell, 75, 53–65.e7. https://doi.org/10.1016/j.molcel.2019.04.028
Xu, J., Wang, Q., Hübner, H., Hu, Y., Niu, X., Wang, H., Maeda, S., Inoue, A., Tao, Y., Gmeiner, P., Du, Y., Jin, C., & Kobilka, B. K. (2023). Structural and dynamic insights into supra‐physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature Communications, 14, 376. https://doi.org/10.1038/s41467-022-35726-z
Xu, W., Bearoff, F., & Kortagere, S. (2022). G‐protein biased signaling agonists of dopamine D3 receptor promote distinct activation patterns of ERK1/2. Pharmacological Research, 179, 106223. https://doi.org/10.1016/j.phrs.2022.106223
Yang, Y. (2021). Functional selectivity of dopamine D1 receptor signaling: Retrospect and prospect. International Journal of Molecular Sciences, 22, 11914. https://doi.org/10.3390/ijms222111914
Yang, Y., Lee, S. M., Imamura, F., Gowda, K., Amin, S., & Mailman, R. B. (2021). D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Molecular Psychiatry, 26, 645–655. https://doi.org/10.1038/s41380-018-0312-1
Zagzoog, A., Brandt, A. L., Black, T., Kim, E. D., Burkart, R., Patel, M., Jin, Z., Nikolaeva, M., & Laprairie, R. B. (2021). Assessment of select synthetic cannabinoid receptor agonist bias and selectivity between the type 1 and type 2 cannabinoid receptor. Scientific Reports, 11, 10611. https://doi.org/10.1038/s41598-021-90167-w
Zhang, D., Liu, Y., Zaidi, S. A., Xu, L., Zhan, Y., Chen, A., Guo, J., Huang, X.‐. P., Roth, B. L., Katritch, V., Cherezov, V., & Zhang, H. (2023). Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists. The EMBO Journal, 42, e112940.
Zhang, G., Cheng, J., McCorvy, J. D., Lorello, P. J., Caldarone, B. J., Roth, B. L., & Kozikowski, A. P. (2017). Discovery of N‐substituted (2‐phenylcyclopropyl)methylamines as functionally selective serotonin 2C receptor agonists for potential use as antipsychotic medications. Journal of Medicinal Chemistry, 60, 6273–6288. https://doi.org/10.1021/acs.jmedchem.7b00584
Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., James, D., Wang, D., Nelson, G., Weierstall, U., Sawaya, M. R., Xu, Q., Messerschmidt, M., Williams, G. J., Boutet, S., Yefanov, O. M., White, T. A., Wang, C., Ishchenko, A., … Cherezov, V. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161, 833–844. https://doi.org/10.1016/j.cell.2015.04.011
Zheng, K., Smith, J. S., Eiger, D. S., Warman, A., Choi, I., Honeycutt, C. C., Boldizsar, N., Gundry, J. N., Pack, T. F., Inoue, A., Caron, M. G., & Rajagopal, S. (2022). Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β‐arrestin complexes. Science Signaling, 15, eabg5203. https://doi.org/10.1126/scisignal.abg5203
Zhou, Q., Yang, D., Wu, M., Guo, Y., Guo, W., Zhong, L., Cai, X., Dai, A., Jang, W., Shakhnovich, E. I., Liu, Z. J., Stevens, R. C., Lambert, N. A., Babu, M. M., Wang, M. W., & Zhao, S. (2019). Common activation mechanism of class a GPCRs. eLife, 8, 1–31. https://doi.org/10.7554/eLife.50279
Zhuang, Y., Wang, Y., He, B., He, X., Zhou, X. E., Guo, S., Rao, Q., Yang, J., Liu, J., Zhou, Q., Wang, X., Liu, M., Liu, W., Jiang, X., Yang, D., Jiang, H., Shen, J., Melcher, K., Chen, H., … Xu, H. E. (2022). Molecular recognition of morphine and fentanyl by the human μ‐opioid receptor. Cell, 185, 4361–4375.e19. https://doi.org/10.1016/j.cell.2022.09.041
Zhuang, Y., Xu, P., Mao, C., Wang, L., Krumm, B., Zhou, X. E., Huang, S., Liu, H., Cheng, X., Huang, X. P., Shen, D. D., Xu, T., Liu, Y. F., Wang, Y., Guo, J., Jiang, Y., Jiang, H., Melcher, K., Roth, B. L., … Xu, H. E. (2021). Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell, 184, 931–942.e18. https://doi.org/10.1016/j.cell.2021.01.027