• This record comes from PubMed

Progress on the development of Class A GPCR-biased ligands

. 2025 Jul ; 182 (14) : 3249-3300. [epub] 20240911

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Review

Grant support
RRF-2.3.1-21-2022-00015 National Office of Research, Development and Innovation
FJC2021-047571-I Ministerio de Ciencia e Innovación
PID2020-118511RB-I00 Ministerio de Ciencia e Innovación
PID2021-124010OB-100 Ministerio de Ciencia e Innovación
PID2021-126600OB-I00 Ministerio de Ciencia e Innovación
PID2021-127833OB-I00 Ministerio de Ciencia e Innovación
PID2022-139197OA-I00 Ministerio de Ciencia e Innovación
20 0264 Cancerfonden
R01 DA0455698 NIH HHS - United States
470002134 German Research Foundation
GRK 2158 German Research Foundation
PG-22-0379-H-01 Swedish Society for Medical Research
NAP 3.0 Hungarian Academy of Sciences
ED431B 2020/43 Consellería de Cultura, Educación e Ordenación Universitaria of the Galician Government
ED431G 2019/03 Centro Singular de Investigación de Galicia Accreditation 2019-2022
FJC2021-047571-I MCIN/AEI/10.13039/501100011033/FEDER, UE
20 0264 Karolinska Institutet, the Swedish Cancer Society
2022-01398 Swedish Research Council
67985823 Czech Academy of Sciences
23-04670S Grant Agency of Czech Republic
IJC 2019-042182-I Juan de la Cierva Incorporación Programme
The Pew Charitable Trusts
CA18133 COST (European Cooperation in Science and Technology)
R01 DA0455698 NIH HHS - United States

Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.

Celtarys Research S L Santiago de Compostela Spain

Center for Research in Biological Chemistry and Molecular Materials University of Santiago de Compostela Santiago de Compostela Spain

CiberNed Network Center for Neurodegenerative Diseases National Spanish Health Institute Carlos 3 Madrid Spain

Department of Biochemistry and Physiology Faculty of Pharmacy and Food Science Universitat de Barcelona Barcelona Spain

Department of Pharmacology and Cancer Biology Duke University School of Medicine Durham North Carolina USA

Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

Heinrich Heine University Düsseldorf Institut fuer Pharmazeutische und Medizinische Chemie Duesseldorf Germany

Institute for Pharmaceutical and Medicinal Chemistry University of Münster Münster Germany

Institute of Biomedicine Universitat de Barcelona Barcelona Spain

Institute of Physiology Czech Academy of Sciences Prague Czech Republic

Instituto de Química Médica Consejo Superior de Investigaciones Científicas Madrid Spain

Laboratory of Medicinal Chemistry Faculty of Pharmacy and Food Sciences Universitat de Barcelona Barcelona Spain

Laboratory of Molecular Pharmacology Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory Research Centre for Natural Sciences Budapest Hungary

Molecular Neurobiology Laboratory Department of Biochemistry and Molecular Biology Universitat de Barcelona Barcelona Spain

School of Chemistry Universitat de Barcelona Barcelona Spain

See more in PubMed

Adhikari, P., Xie, B., Semeano, A., Bonifazi, A., Battiti, F. O., Newman, A. H., Yano, H., & Shi, L. (2021). Chirality of novel bitopic agonists determines unique pharmacology at the dopamine D3 receptor. Biomolecules, 11, 570. https://doi.org/10.3390/biom11040570

Alegre, K. O., Paknejad, N., Su, M., Lou, J. S., Huang, J., Jordan, K. D., Eng, E. T., Meyerson, J. R., Hite, R. K., & Huang, X. Y. (2021). Structural basis and mechanism of activation of two different families of G proteins by the same GPCR. Nature Structural & Molecular Biology, 28, 936–944. https://doi.org/10.1038/s41594-021-00679-2

Alexander, S. P. H., Battey, J., Benson, H. E., Benya, R. V., Bonner, T. I., Davenport, A. P., Singh, K. D., Eguchi, S., Harmar, A., Holliday, N., & Jensen, R. T. (2023). Class A orphans in GtoPdb v.2023.1. IUPHAR/BPS Guide to Pharmacology CITE, 2023, 1–46. https://doi.org/10.2218/gtopdb/F16/2023.1

Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., al‐Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180(Suppl 2), S23–S144. https://doi.org/10.1111/bph.16177

Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180(Suppl 2), S289–S373. https://doi.org/10.1111/bph.16181

Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., & Conner, A. C. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180(Suppl 2), S145–S222. https://doi.org/10.1111/bph.16181

Allen, J. A., Yost, J. M., Setola, V., Chen, X., Sassano, M. F., Chen, M., Peterson, S., Yadav, P. N., Huang, X. P., Feng, B., Jensen, N. H., Che, X., Bai, X., Frye, S. V., Wetsel, W. C., Caron, M. G., Javitch, J. A., Roth, B. L., & Jin, J. (2011). Discovery of β‐arrestin‐biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 108, 18488–18493. https://doi.org/10.1073/pnas.1104807108

Alonso, N., Monczor, F., Echeverría, E., Davio, C., Shayo, C., & Fernández, N. (2014). Signal transduction mechanism of biased ligands at histamine H2 receptors. The Biochemical Journal, 459, 117–126. https://doi.org/10.1042/BJ20131226

Alonso, N., Zappia, C. D., Cabrera, M., Davio, C. A., Shayo, C., Monczor, F., & Fernández, N. C. (2015). Physiological implications of biased signaling at histamine H2 receptors. Frontiers in Pharmacology, 6, 1–9. https://doi.org/10.3389/fphar.2015.00045

Al‐zoubi, R., Morales, P., & Reggio, P. H. (2019). Structural insights into CB1 receptor biased signaling. International Journal of Molecular Sciences, 20, 1837. https://doi.org/10.3390/ijms20081837

Araldi, D., Bonet, I. J. M., Green, P. G., & Levine, J. D. (2022). Contribution of G‐protein α‐subunits to analgesia, hyperalgesia, and hyperalgesic priming induced by subanalgesic and analgesic doses of fentanyl and morphine. The Journal of Neuroscience, 42, 1196–1210. https://doi.org/10.1523/JNEUROSCI.1982-21.2021

Arkless, K. L., Pan, D., Shankar‐Hari, M., Amison, R. T., Page, C. P., Rahman, K. M., & Pitchford, S. C. (2023). Stimulation of platelet P2Y 1 receptors by different endogenous nucleotides leads to functional selectivity via biased signalling. British Journal of Pharmacology, 1–16, 564–579. https://doi.org/10.1111/bph.16039

Bader, M., Alenina, N., Andrade‐Navarro, M. A., & Santos, R. A. (2014). MAS and its related G protein‐coupled receptors, Mrgprs. Pharmacological Reviews, 66, 1080–1105. https://doi.org/10.1124/pr.113.008136

Baltos, J.‐A., Gregory, K. J., White, P. J., Sexton, P. M., Christopoulos, A., & May, L. T. (2016). Quantification of adenosine A1 receptor biased agonism: Implications for drug discovery. Biochemical Pharmacology, 99, 101–112. https://doi.org/10.1016/j.bcp.2015.11.013

Baltos, J.‐A., Paoletta, S., Nguyen, A. T. N., Gregory, K. J., Tosh, D. K., Christopoulos, A., Jacobson, K. A., & May, L. T. (2016). Structure‐activity analysis of biased Agonism at the human adenosine A3 receptor. Molecular Pharmacology, 90, 12–22. https://doi.org/10.1124/mol.116.103283

Baltos, J.‐A., Vecchio, E. A., Harris, M. A., Qin, C. X., Ritchie, R. H., Christopoulos, A., White, P. J., & May, L. T. (2017). Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochemical Pharmacology, 135, 79–89. https://doi.org/10.1016/j.bcp.2017.03.014

Bartole, E., Littmann, T., Tanaka, M., Ozawa, T., Buschauer, A., & Bernhardt, G. (2019). UR‐DEBa176: A 2,4‐diaminopyrimidine‐type radioligand enabling binding studies at the human, mouse, and rat histamine H4 receptors. Journal of Medicinal Chemistry, 62, 8338–8356. https://doi.org/10.1021/acs.jmedchem.9b01342

Benkel, T., Zimmermann, M., Zeiner, J., Bravo, S., Merten, N., Lim, V. J. Y., Matthees, E. S. F., Drube, J., Miess‐Tanneberg, E., Malan, D., Szpakowska, M., Monteleone, S., Grimes, J., Koszegi, Z., Lanoiselée, Y., O'Brien, S., Pavlaki, N., Dobberstein, N., Inoue, A., … Kostenis, E. (2022). How carvedilol activates β2‐adrenoceptors. Nature Communications, 13, 7109. https://doi.org/10.1038/s41467-022-34765-w

Bermudez, M., & Bock, A. (2019). Does divergent binding pocket closure drive ligand bias for class A GPCRs? Trends in Pharmacological Sciences, 40, 236–239. https://doi.org/10.1016/j.tips.2019.02.005

Bermudez, M., Bock, A., Krebs, F., Holzgrabe, U., Mohr, K., Lohse, M. J., & Wolber, G. (2017). Ligand‐specific restriction of extracellular conformational dynamics constrains signaling of the M2 muscarinic receptor. ACS Chemical Biology, 12, 1743–1748. https://doi.org/10.1021/acschembio.7b00275

Bermudez, M., Nguyen, T. N., Omieczynski, C., & Wolber, G. (2019). Strategies for the discovery of biased GPCR ligands. Drug Discovery Today, 24, 1031–1037. https://doi.org/10.1016/j.drudis.2019.02.010

Blaine, A. T., Miao, Y., Yuan, J., Palant, S., Liu, R. J., Zhang, Z. Y., & van Rijn, R. M. (2022). Exploration of beta‐arrestin isoform signaling pathways in delta opioid receptor agonist‐induced convulsions. Frontiers in Pharmacology, 13, 914651. https://doi.org/10.3389/fphar.2022.914651

Bock, A., & Bermudez, M. (2021). Allosteric coupling and biased agonism in G protein‐coupled receptors. The FEBS Journal, 288, 2513–2528. https://doi.org/10.1111/febs.15783

Bock, A., Merten, N., Schrage, R., Dallanoce, C., Bätz, J., Klöckner, J., Schmitz, J., Matera, C., Simon, K., Kebig, A., Peters, L., Müller, A., Schrobang‐Ley, J., Tränkle, C., Hoffmann, C., de Amici, M., Holzgrabe, U., Kostenis, E., & Mohr, K. (2012). The allosteric vestibule of a seven transmembrane helical receptor controls G‐protein coupling. Nature Communications, 3, 1044. https://doi.org/10.1038/ncomms2028

Bonifazi, A., Yano, H., Guerrero, A. M., Kumar, V., Hoffman, A. F., Lupica, C. R., Shi, L., & Newman, A. H. (2019). Novel and potent dopamine D2 receptor Go‐protein biased agonists. ACS Pharmacology & Translational Science, 2, 52–65. https://doi.org/10.1021/acsptsci.8b00060

Burghi, V., Echeverría, E. B., Zappia, C. D., Díaz Nebreda, A., Ripoll, S., Gómez, N., Shayo, C., Davio, C. A., Monczor, F., & Fernández, N. C. (2021). Biased agonism at histamine H1 receptor: Desensitization, internalization and MAPK activation triggered by antihistamines. European Journal of Pharmacology, 896, 173913. https://doi.org/10.1016/j.ejphar.2021.173913

Byers, M. A., Calloway, P. A., Shannon, L., Cunningham, H. D., Smith, S., Li, F., Fassold, B. C., & Vines, C. M. (2008). Arrestin 3 mediates endocytosis of CCR7 following ligation of CCL19 but not CCL21. Journal of Immunology, 181, 4723–4732. https://doi.org/10.4049/jimmunol.181.7.4723

Cabanu, S., Pilar‐Cuéllar, F., Zubakina, P., Florensa‐Zanuy, E., Senserrich, J., Newman‐Tancredi, A., & Adell, A. (2022). Molecular signaling mechanisms for the antidepressant effects of NLX‐101, a selective cortical 5‐HT1A receptor biased agonist. Pharmaceuticals (Basel), 15, 337. https://doi.org/10.3390/ph15030337

Cao, C., Barros‐Álvarez, X., Zhang, S., Kim, K., Dämgen, M. A., Panova, O., Suomivuori, C. M., Fay, J. F., Zhong, X., Krumm, B. E., Gumpper, R. H., Seven, A. B., Robertson, M. J., Krogan, N. J., Hüttenhain, R., Nichols, D. E., Dror, R. O., Skiniotis, G., & Roth, B. L. (2022). Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron, 110, 3154–3167.e7. https://doi.org/10.1016/j.neuron.2022.08.006

Cao, D., Yu, J., Wang, H., Luo, Z., Liu, X., He, L., Qi, J., Fan, L., Tang, L., Chen, Z., & Li, J. (2022). Structure‐based discovery of nonhallucinogenic psychedelic analogs. Science (80‐.), 375, 403–411.

Carlin, J. L., Jain, S., Gizewski, E., Wan, T. C., Tosh, D. K., Xiao, C., Auchampach, J. A., Jacobson, K. A., Gavrilova, O., & Reitman, M. L. (2017). Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology, 114, 101–113. https://doi.org/10.1016/j.neuropharm.2016.11.026

Caroli, J., Mamyrbekov, A., Harpsøe, K., Gardizi, S., Dörries, L., Ghosh, E., Hauser, A. S., Kooistra, A. J., & Gloriam, D. E. (2023). A community biased signaling atlas. Nature Chemical Biology, 19, 531–535. https://doi.org/10.1038/s41589-023-01292-8

Cederblad, L., Rosengren, B., Ryberg, E., & Hermansson, N.‐O. (2016). AZD8797 is an allosteric non‐competitive modulator of the human CX3CR1 receptor. The Biochemical Journal, 473, 641–649. https://doi.org/10.1042/BJ20150520

Che, T., Dwivedi‐agnihotri, H., Shukla, A. K., & Roth, B. L. (2021). Biased ligands at opioid receptors: Current status and future directions. Science Signaling, 14(677), eaav0320.

Chen, S., Teng, X., & Zheng, S. (2023). Molecular basis for the selective G protein signaling of somatostatin receptors. Nature Chemical Biology, 19, 133–140. https://doi.org/10.1038/s41589-022-01130-3

Chen, X., Klöckner, J., Holze, J., Zimmermann, C., Seemann, W. K., Schrage, R., Bock, A., Mohr, K., Tränkle, C., Holzgrabe, U., & Decker, M. (2015). Rational design of partial agonists for the muscarinic m1 acetylcholine receptor. Journal of Medicinal Chemistry, 58, 560–576. https://doi.org/10.1021/jm500860w

Chen, Y., Mao, C., Gu, R., Zhao, R., Li, W., Ma, Z., Jia, Y., Yu, F., Luo, J., Fu, Y., Sun, J., & Kong, W. (2022). Nidogen‐2 is a novel endogenous ligand of LGR4 to inhibit vascular calcification. Circulation Research, 131, 1037–1054. https://doi.org/10.1161/CIRCRESAHA.122.321614

Cheng, J., McCorvy, J. D., Giguere, P. M., Zhu, H., Kenakin, T., Roth, B. L., & Kozikowski, A. P. (2016). Design and discovery of functionally selective serotonin 2C (5‐HT2C) receptor agonists. Journal of Medicinal Chemistry, 59, 9866–9880. https://doi.org/10.1021/acs.jmedchem.6b01194

Conibear, A. E., Asghar, J., Hill, R., Henderson, G., Borbely, E., Tekus, V., Helyes, Z., Palandri, J., Bailey, C., Starke, I., von Mentzer, B., Kendall, D., & Kelly, E. (2020). A novel G protein‐biased agonist at the δ opioid receptor with analgesic efficacy in models of chronic pain. The Journal of Pharmacology and Experimental Therapeutics, 372, 224–236. https://doi.org/10.1124/jpet.119.258640

Copik, A. J., Baldys, A., Nguyen, K., Sahdeo, S., Ho, H., Kosaka, A., Dietrich, P. J., Fitch, B., Raymond, J. R., Ford, A. P. D. W., Button, D., & Milla, M. E. (2015). Isoproterenol acts as a biased agonist of the alpha‐1A‐adrenoceptor that selectively activates the MAPK/ERK pathway. PLoS ONE, 10, e0115701. https://doi.org/10.1371/journal.pone.0115701

Corbisier, J., Galès, C., Huszagh, A., Parmentier, M., & Springael, J.‐Y. (2015). Biased signaling at chemokine receptors. The Journal of Biological Chemistry, 290, 9542–9554. https://doi.org/10.1074/jbc.M114.596098

Cotter, G., Davison, B. A., Butler, J., Collins, S. P., Ezekowitz, J. A., Felker, G. M., Filippatos, G., Levy, P. D., Metra, M., Ponikowski, P., Teerlink, J. R., Voors, A. A., Senger, S., Bharucha, D., Goin, K., Soergel, D. G., & Pang, P. S. (2018). Relationship between baseline systolic blood pressure and long‐term outcomes in acute heart failure patients treated with TRV027: An exploratory subgroup analysis of BLAST‐AHF. Clinical Research in Cardiology, 107, 170–181. https://doi.org/10.1007/s00392-017-1168-0

da Silva Junior, E. D., Sato, M., Merlin, J., Broxton, N., Hutchinson, D. S., Ventura, S., Evans, B. A., & Summers, R. J. (2017). Factors influencing biased agonism in recombinant cells expressing the human α1A‐adrenoceptor. British Journal of Pharmacology, 174, 2318–2333. https://doi.org/10.1111/bph.13837

de Neve, J., Barlow, T. M. A., Tourwé, D., Bihel, F., Simonin, F., & Ballet, S. (2021). Comprehensive overview of biased pharmacology at the opioid receptors: Biased ligands and bias factors. RSC Medicinal Chemistry, 12, 828–870. https://doi.org/10.1039/D1MD00041A

de Pascali, F., Ippolito, M., Wolfe, E., Komolov, K. E., Hopfinger, N., Lemenze, D., Kim, N., Armen, R. S., An, S. S., Scott, C. P., & Benovic, J. L. (2022). β2‐adrenoceptor agonist profiling reveals biased signalling phenotypes for the β2‐adrenoceptor with possible implications for the treatment of asthma. British Journal of Pharmacology, 179, 4692–4708. https://doi.org/10.1111/bph.15900

Denzinger, K., Nguyen, T. N., Noonan, T., Wolber, G., & Bermudez, M. (2020). Biased ligands differentially shape the conformation of the extracellular loop region in 5‐HT2B receptors. International Journal of Molecular Sciences, 21, 9728. https://doi.org/10.3390/ijms21249728

DeVree, B. T., Mahoney, J. P., Vélez‐Ruiz, G. A., Rasmussen, S. G. F., Kuszak, A. J., Edwald, E., Fung, J. J., Manglik, A., Masureel, M., Du, Y., Matt, R. A., Pardon, E., Steyaert, J., Kobilka, B. K., & Sunahara, R. K. (2016). Allosteric coupling from G protein to the agonist‐binding pocket in GPCRs. Nature, 535, 182–186. https://doi.org/10.1038/nature18324

DeWire, S. M., Yamashita, D. S., Rominger, D. H., Liu, G., Cowan, C. L., Graczyk, T. M., Chen, X. T., Pitis, P. M., Gotchev, D., Yuan, C., Koblish, M., Lark, M. W., & Violin, J. D. (2013). A G protein‐biased ligand at the μ‐opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. The Journal of Pharmacology and Experimental Therapeutics, 344, 708–717. https://doi.org/10.1124/jpet.112.201616

Dhopeshwarkar, A., & Mackie, K. (2016). Functional selectivity of CB2 cannabinoid receptor ligands at a canonical and noncanonical pathway. The Journal of Pharmacology and Experimental Therapeutics, 358, 342–351. https://doi.org/10.1124/jpet.116.232561

Duan, J., Liu, H., Zhao, F., Yuan, Q., Ji, Y., Cai, X., He, X., Li, X., Li, J., Wu, K., Gao, T., Zhu, S., Lin, S., Wang, M. W., Cheng, X., Yin, W., Jiang, Y., Yang, D., & Xu, H. E. (2023). GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature, 620, 676–681. https://doi.org/10.1038/s41586-023-06395-9

Dupuis, N., Laschet, C., Franssen, D., Szpakowska, M., Gilissen, J., Geubelle, P., Soni, A., Parent, A. S., Pirotte, B., Chevigné, A., Twizere, J. C., & Hanson, J. (2017). Activation of the orphan G protein‐coupled receptor GPR27 by surrogate ligands promotes β‐arrestin 2 recruitment. Molecular Pharmacology, 91, 595–608. https://doi.org/10.1124/mol.116.107714

Dupuis, N., Laschet, C., Franssen, D., Szpakowska, M., Gilissen, J., Geubelle, P., Soni, A., Parent, A.‐S., Pirotte, B., Chevigné, A., Twizere, J.‐C., & Hanson, J. (2022). Correction to “Activation of the orphan G protein‐coupled receptor GPR27 by surrogate ligands promotes β‐arrestin 2 recruitment”. Molecular Pharmacology, 101, 274. https://doi.org/10.1124/mol.116.107714err

Eglen, R. M. (2012). Overview of muscarinic receptor subtypes. In A. D. Fryer, A. Christopoulos, & N. M. Nathanson (Eds.), Handbook of Experimental Pharmacology (pp. 3–28). Springer.

Egyed, A., Domány‐Kovács, K., Koványi, B., Horti, F., Kurkó, D., Kiss, D. J., Pándy‐Szekeres, G., Greiner, I., & Keserű, G. M. (2020). Controlling receptor function from the extracellular vestibule of G‐protein coupled receptors. Chemical Communications, 56, 14167–14170. https://doi.org/10.1039/D0CC05532H

Egyed, A., Kiss, D. J., & Keserű, G. M. (2022). The impact of the secondary binding pocket on the pharmacology of class A GPCRs. Frontiers in Pharmacology, 13, 1–27. https://doi.org/10.3389/fphar.2022.847788

Ehrlich, A. T., Semache, M., Gross, F., da Fonte, D. F., Runtz, L., Colley, C., Mezni, A., le Gouill, C., Lukasheva, V., Hogue, M., Darcq, E., Bouvier, M., & Kieffer, B. L. (2019). Biased signaling of the mu opioid receptor revealed in native neurons. iScience, 14, 47–57. https://doi.org/10.1016/j.isci.2019.03.011

Eiger, D. S., Boldizsar, N., Honeycutt, C. C., Gardner, J., Kirchner, S., Hicks, C., Choi, I., Pham, U., Zheng, K., Warman, A., Smith, J. S., Zhang, J. Y., & Rajagopal, S. (2022). Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nature Communications, 13, 5846. https://doi.org/10.1038/s41467-022-33569-2

Eiger, D. S., Boldizsar, N., Honeycutt, C. C., Gardner, J., & Rajagopal, S. (2021). Biased agonism at chemokine receptors. Cellular Signalling, 78, 109862. https://doi.org/10.1016/j.cellsig.2020.109862

Eiger, D. S., Hicks, C., Gardner, J., Pham, U., & Rajagopal, S. (2023). Location bias: A “hidden variable” in GPCR pharmacology. BioEssays, 45, 1–12. https://doi.org/10.1002/bies.202300123

El Daibani, A., Paggi, J. M., Kim, K., Laloudakis, Y. D., Popov, P., Bernhard, S. M., Krumm, B. E., Olsen, R. H., Diberto, J., Carroll, F., & Katritch, V. (2023). Molecular mechanism of biased signaling at the kappa opioid receptor. Nature Communications, 141(14), 1–13.

el Khamlichi, C., Reverchon, F., Hervouet‐Coste, N., Robin, E., Chopin, N., Deau, E., Madouri, F., Guimpied, C., Colas, C., Menuet, A., Inoue, A., Bojarski, A. J., Guillaumet, G., Suzenet, F., Reiter, E., & Morisset‐Lopez, S. (2022). Serodolin, a β‐arrestin‐biased ligand of 5‐HT(7) receptor, attenuates pain‐related behaviors. Proceedings of the National Academy of Sciences of the United States of America, 119, e2118847119. https://doi.org/10.1073/pnas.2118847119

Faouzi, A., Wang, H., Zaidi, S. A., DiBerto, J. F., Che, T., Qu, Q., Robertson, M. J., Madasu, M. K., El Daibani, A., Varga, B. R., Zhang, T., Ruiz, C., Liu, S., Xu, J., Appourchaux, K., Slocum, S. T., Eans, S. O., Cameron, M. D., al‐Hasani, R., … Majumdar, S. (2023). Structure‐based design of bitopic ligands for the μ‐opioid receptor. Nature, 613, 767–774. https://doi.org/10.1038/s41586-022-05588-y

Ferrisi, R., Gado, F., Polini, B., Ricardi, C., Mohamed, K. A., Stevenson, L. A., Ortore, G., Rapposelli, S., Saccomanni, G., Pertwee, R. G., Laprairie, R. B., Manera, C., & Chiellini, G. (2022). Design, synthesis and biological evaluation of novel orthosteric‐allosteric ligands of the cannabinoid receptor type 2 (CB2R). Frontiers in Chemistry, 10, 1–17. https://doi.org/10.3389/fchem.2022.984069

Fisher, A., Brandeis, R., Karton, I., Pittel, Z., Gurwitz, D., Haring, R., Sapir, M., Levy, A., & Heldman, E. (1991). (+−)‐cis‐2‐methyl‐spiro(1,3‐oxathiolane‐5,3′)quinuclidine, an M1 selective cholinergic agonist, attenuates cognitive dysfunctions in an animal model of Alzheimer's disease. The Journal of Pharmacology and Experimental Therapeutics, 257, 392–403.

Friess, M. C., Kritikos, I., Schineis, P., Medina‐Sanchez, J. D., Gkountidi, A. O., Vallone, A., Sigmund, E. C., Schwitter, C., Vranova, M., Matti, C., Arasa, J., Saygili Demir, C., Bovay, E., Proulx, S. T., Tomura, M., Rot, A., Legler, D. F., Petrova, T. V., & Halin, C. (2022). Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de‐adhesion and passive transport by flow in inflamed afferent lymphatics. Cell Reports, 38, 110334. https://doi.org/10.1016/j.celrep.2022.110334

Gao, X., DeSantis, A. J., Enten, G. A., Weche, M. W., Marcet, J. E., & Majetschak, M. (2022). Heteromerization between α1B‐adrenoceptor and chemokine (C‐C motif) receptor 2 biases α1B‐adrenoceptor signaling: Implications for vascular function. FEBS Letters, 596, 2706–2716. https://doi.org/10.1002/1873-3468.14463

Gao, Z.‐G., Balasubramanian, R., Kiselev, E., Wei, Q., & Jacobson, K. A. (2014). Probing biased/partial agonism at the G protein‐coupled A2B adenosine receptor. Biochemical Pharmacology, 90, 297–306. https://doi.org/10.1016/j.bcp.2014.05.008

Gao, Z.‐G., & Jacobson, K. A. (2008). Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: Comparison with G protein‐dependent pathways. Pharmacological Research, 57, 303–311. https://doi.org/10.1016/j.phrs.2008.02.008

Gao, Z.‐G., Verzijl, D., Zweemer, A., Ye, K., Göblyös, A., IJzerman, A. P., & Jacobson, K. A. (2011). Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochemical Pharmacology, 82, 658–668. https://doi.org/10.1016/j.bcp.2011.06.017

Garai, S., Leo, L. M., Szczesniak, A. M., Hurst, D. P., Schaffer, P. C., Zagzoog, A., Black, T., Deschamps, J. R., Miess, E., Schulz, S., & Janero, D. R. (2021). Discovery of a biased allosteric modulator for cannabinoid 1 receptor: Preclinical anti‐glaucoma efficacy. Journal of Medicinal Chemistry, 64(12), 8104–8126. https://doi.org/10.1021/acs.jmedchem.1c00040

Garcia, C., Maurel‐Ribes, A., Nauze, M., N'Guyen, D., Martinez, L. O., Payrastre, B., Sénard, J. M., Galés, C., & Pons, V. (2019). Deciphering biased inverse agonism of cangrelor and ticagrelor at P2Y12 receptor. Cellular and Molecular Life Sciences, 76, 561–576. https://doi.org/10.1007/s00018-018-2960-3

Gillis, A., Gondin, A. B., Kliewer, A., Sanchez, J., Lim, H. D., Alamein, C., Manandhar, P., Santiago, M., Fritzwanker, S., Schmiedel, F., Katte, T. A., Reekie, T., Grimsey, N. L., Kassiou, M., Kellam, B., Krasel, C., Halls, M. L., Connor, M., Lane, J. R., … Canals, M. (2020). Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Science Signaling, 13, eaaz3140. https://doi.org/10.1126/scisignal.aaz3140

Głuch‐Lutwin, M., Sałaciak, K., Gawalska, A., Jamrozik, M., Sniecikowska, J., Newman‐Tancredi, A., Kołaczkowski, M., & Pytka, K. (2021). The selective 5‐HT1A receptor biased agonists, F15599 and F13714, show antidepressant‐like properties after a single administration in the mouse model of unpredictable chronic mild stress. Psychopharmacology, 238, 2249–2260. https://doi.org/10.1007/s00213-021-05849-0

Goth, C. K., Petäjä‐Repo, U. E., & Rosenkilde, M. M. (2020). G protein‐coupled receptors in the sweet spot: Glycosylation and other post‐translational modifications. ACS Pharmacology & Translational Science, 3, 237–245. https://doi.org/10.1021/acsptsci.0c00016

Griffith, J. W., Sokol, C. L., & Luster, A. D. (2014). Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annual Review of Immunology, 32, 659–702. https://doi.org/10.1146/annurev-immunol-032713-120145

Haney, M., Vallée, M., Fabre, S., Collins Reed, S., Zanese, M., Campistron, G., Arout, C. A., Foltin, R. W., Cooper, Z. D., Kearney‐Ramos, T., Metna, M., Justinova, Z., Schindler, C., Hebert‐Chatelain, E., Bellocchio, L., Cathala, A., Bari, A., Serrat, R., Finlay, D. B., … Piazza, P. V. (2023). Signaling‐specific inhibition of the CB1 receptor for cannabis use disorder: Phase 1 and phase 2a randomized trials. Nature Medicine, 29, 1487–1499. https://doi.org/10.1038/s41591-023-02381-w

Harris, J. A., Faust, B., Gondin, A. B., Dämgen, M. A., Suomivuori, C. M., Veldhuis, N. A., Cheng, Y., Dror, R. O., Thal, D. M., & Manglik, A. (2022). Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nature Chemical Biology, 18, 109–115. https://doi.org/10.1038/s41589-021-00890-8

Holze, J., Bermudez, M., Pfeil, E. M., Kauk, M., Bödefeld, T., Irmen, M., Matera, C., Dallanoce, C., de Amici, M., Holzgrabe, U., König, G. M., Tränkle, C., Wolber, G., Schrage, R., Mohr, K., Hoffmann, C., Kostenis, E., & Bock, A. (2020). Ligand‐specific allosteric coupling controls G‐protein‐coupled receptor signaling. ACS Pharmacology & Translational Science, 3, 859–867. https://doi.org/10.1021/acsptsci.0c00069

Hsiao, W. C., Hsin, K. Y., Wu, Z. W., Song, J. S., Yeh, Y. N., Chen, Y. F., Tsai, C. H., Chen, P. H., Shia, K. S., Chang, C. P., & Hung, M. S. (2023). Modulating the affinity and signaling bias of cannabinoid receptor 1 antagonists. Bioorganic Chemistry, 130, 106236. https://doi.org/10.1016/j.bioorg.2022.106236

Ibsen, M. S., Connor, M., & Glass, M. (2017). Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis and Cannabinoid Research, 2, 48–60. https://doi.org/10.1089/can.2016.0037

Ippolito, M., & Benovic, J. L. (2021). Biased agonism at β‐adrenergic receptors. Cellular Signalling, 80, 109905. https://doi.org/10.1016/j.cellsig.2020.109905

Ippolito, M., De Pascali, F., Inoue, A., & Benovic, J. L. (2022). Phenylalanine 193 in extracellular loop 2 of the β2‐adrenergic receptor coordinates β‐arrestin interaction. Molecular Pharmacology, 101, 87–94. https://doi.org/10.1124/molpharm.121.000332

Jacobson, K. A., & Gao, Z.‐G. (2006). Adenosine receptors as therapeutic targets. Nature Reviews. Drug Discovery, 5, 247–264. https://doi.org/10.1038/nrd1983

Jakubik, J., & El‐Fakahany, E. E. (2020). Current advances in allosteric modulation of muscarinic receptors. Biomolecules, 10, 325. https://doi.org/10.3390/biom10020325

Jones‐Tabah, J., Mohammad, H., Paulus, E. G., Clarke, P. B. S., & Hébert, T. E. (2021). The signaling and pharmacology of the dopamine D1 receptor. Frontiers in Cellular Neuroscience, 15, 806618. https://doi.org/10.3389/fncel.2021.806618

Jørgensen, A. S., Daugvilaite, V., de Filippo, K., Berg, C., Mavri, M., Benned‐Jensen, T., Juzenaite, G., Hjortø, G., Rankin, S., Våbenø, J., & Rosenkilde, M. M. (2021). Biased action of the CXCR4‐targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization. Communications Biology, 4, 569. https://doi.org/10.1038/s42003-021-02070-9

Jørgensen, A. S., Larsen, O., Uetz‐von Allmen, E., Lückmann, M., Legler, D. F., Frimurer, T. M., Veldkamp, C. T., Hjortø, G. M., & Rosenkilde, M. M. (2019). Biased signaling of CCL21 and CCL19 does not rely on N‐terminal differences, but markedly on the chemokine Core domains and extracellular loop 2 of CCR7. Frontiers in Immunology, 10, 2156. https://doi.org/10.3389/fimmu.2019.02156

Kaplan, A. L., Confair, D. N., Kim, K., Barros‐Álvarez, X., Rodriguiz, R. M., Yang, Y., Kweon, O. S., Che, T., McCorvy, J. D., Kamber, D. N., Phelan, J. P., Martins, L. C., Pogorelov, V. M., DiBerto, J. F., Slocum, S. T., Huang, X. P., Kumar, J. M., Robertson, M. J., Panova, O., … Ellman, J. A. (2022). Bespoke library docking for 5‐HT2A receptor agonists with antidepressant activity. Nature, 610, 582–591. https://doi.org/10.1038/s41586-022-05258-z

Karasawa, Y., Miyano, K., Fujii, H., Mizuguchi, T., Kuroda, Y., Nonaka, M., Komatsu, A., Ohshima, K., Yamaguchi, M., Yamaguchi, K., Iseki, M., Uezono, Y., & Hayashida, M. (2021). In vitro analyses of spinach‐derived opioid peptides, rubiscolins: Receptor selectivity and intracellular activities through G protein‐ and β‐arrestin‐mediated pathways. Molecules, 26, 6079. https://doi.org/10.3390/molecules26196079

Karasawa, Y., Miyano, K., Yamaguchi, M., Nonaka, M., Yamaguchi, K., Iseki, M., Kawagoe, I., & Uezono, Y. (2023). Therapeutic potential of orally administered rubiscolin‐6. International Journal of Molecular Sciences, 24, 9959. https://doi.org/10.3390/ijms24129959

Kawakami, K., Yanagawa, M., Hiratsuka, S., Yoshida, M., Ono, Y., Hiroshima, M., Ueda, M., Aoki, J., Sako, Y., & Inoue, A. (2022). Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β‐arrestin transducer bias. Nature Communications, 13, 487. https://doi.org/10.1038/s41467-022-28056-7

Kelly, E., Conibear, A., & Henderson, G. (2023). Biased agonism: Lessons from studies of opioid receptor agonists. Annual Review of Pharmacology and Toxicology, 63, 491–515. https://doi.org/10.1146/annurev-pharmtox-052120-091058

Kim, D., Tokmakova, A., Lujan, L. K., Strzelinski, H. R., Kim, N., Najari Beidokhti, M., Giulianotti, M. A., Mafi, A., Woo, J. A. A., An, S. S., Goddard, W. A. III, & Liggett, S. B. (2021). Identification and characterization of an atypical Gαs‐biased β2AR agonist that fails to evoke airway smooth muscle cell tachyphylaxis. Proceedings of the National Academy of Sciences of the United States of America, 118, e2026668118. https://doi.org/10.1073/pnas.2026668118

Kjær, V. M. S., Daugvilaite, V., Stepniewski, T. M., Madsen, C. M., Jørgensen, A. S., Bhuskute, K. R., Inoue, A., Ulven, T., Benned‐Jensen, T., Hjorth, S. A., Hjortø, G. M., Moo, E. V., Selent, J., & Rosenkilde, M. M. (2023). Migration mediated by the oxysterol receptor GPR183 depends on arrestin coupling but not receptor internalization. Science Signaling, 16, eabl4283. https://doi.org/10.1126/scisignal.abl4283

Kjaer, V. M. S., Ieremias, L., Daugvilaite, V., Lückmann, M., Frimurer, T. M., Ulven, T., Rosenkilde, M. M., & Våbenø, J. (2021). Discovery of GPR183 agonists based on an antagonist scaffold. ChemMedChem, 16, 2623–2627. https://doi.org/10.1002/cmdc.202100301

Kliewer, A., Gillis, A., Hill, R., Schmiedel, F., Bailey, C., Kelly, E., Henderson, G., Christie, M. J., & Schulz, S. (2020). Morphine‐induced respiratory depression is independent of β‐arrestin2 signalling. British Journal of Pharmacology, 177, 2923–2931. https://doi.org/10.1111/bph.15004

Kohout, T. A., Nicholas, S. L., Perry, S. J., Reinhart, G., Junger, S., & Struthers, R. S. (2004). Differential desensitization, receptor phosphorylation, β‐arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7*. The Journal of Biological Chemistry, 279, 23214–23222. https://doi.org/10.1074/jbc.M402125200

Kolb, P., Kenakin, T., Alexander, S. P. H., Bermudez, M., Bohn, L. M., Breinholt, C. S., Bouvier, M., Hill, S. J., Kostenis, E., Martemyanov, K. A., Neubig, R. R., Onaran, H. O., Rajagopal, S., Roth, B. L., Selent, J., Shukla, A. K., Sommer, M. E., & Gloriam, D. E. (2022). Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 179, 3651–3674. https://doi.org/10.1111/bph.15811

Krumm, B. E., DiBerto, J. F., Olsen, R. H. J., Kang, H. J., Slocum, S. T., Zhang, S., Strachan, R. T., Huang, X. P., Slosky, L. M., Pinkerton, A. B., Barak, L. S., Caron, M. G., Kenakin, T., Fay, J. F., & Roth, B. L. (2023). Neurotensin receptor allosterism revealed in complex with a biased allosteric modulator. Biochemistry, 62, 1233–1248. https://doi.org/10.1021/acs.biochem.3c00029

Kurko, D., Kapui, Z., Nagy, J., Lendvai, B., & Kolok, S. (2014). Analysis of functional selectivity through G protein‐dependent and ‐independent signaling pathways at the adrenergic α2C receptor. Brain Research Bulletin, 107, 89–101. https://doi.org/10.1016/j.brainresbull.2014.07.005

Kwag, R., Lee, J., Kim, D., Lee, H., Yeom, M., Woo, J., Cho, Y., Kim, H. J., Kim, J., Keum, G., Jeon, B., & Choo, H. (2021). Discovery of G protein‐biased antagonists against 5‐HT7R. Journal of Medicinal Chemistry, 64, 13766–13779. https://doi.org/10.1021/acs.jmedchem.1c01093

Langemeijer, E. V., Verzijl, D., Dekker, S. J., & Ijzerman, A. P. (2013). Functional selectivity of adenosine A1 receptor ligands? Purinergic Signal, 9, 91–100. https://doi.org/10.1007/s11302-012-9334-3

Laprairie, R. B., Stahl, E. L., & Bohn, L. M. (2017). Approaches to assess biased signaling at the CB1R receptor. Methods in Enzymology, 593, 259–279. https://doi.org/10.1016/bs.mie.2017.06.031

Larsen, O., Lückmann, M., van der Velden, W. J. C., Oliva‐Santiago, M., Brvar, M., Ulven, T., Frimurer, T. M., Karlshøj, S., & Rosenkilde, M. M. (2019). Selective allosteric modulation of N‐terminally cleaved, but not full length CCL3 in CCR1. ACS Pharmacology & Translational Science, 2, 429–441. https://doi.org/10.1021/acsptsci.9b00059

Larsen, O., van der Velden, W. J. C., Mavri, M., Schuermans, S., Rummel, P. C., Karlshøj, S., Gustavsson, M., Proost, P., Våbenø, J., & Rosenkilde, M. M. (2022). Identification of a conserved chemokine receptor motif that enables ligand discrimination. Science Signaling, 15, eabg7042. https://doi.org/10.1126/scisignal.abg7042

Lee, Y., Warne, T., Nehmé, R., Pandey, S., Dwivedi‐Agnihotri, H., Chaturvedi, M., Edwards, P. C., García‐Nafría, J., Leslie, A. G. W., Shukla, A. K., & Tate, C. G. (2020). Molecular basis of β‐arrestin coupling to formoterol‐bound β1‐adrenoceptor. Nature, 583, 862–866. https://doi.org/10.1038/s41586-020-2419-1

Leo, L. M., al‐Zoubi, R., Hurst, D. P., Stephan, A. P., Zhao, P., Tilley, D. G., Miess, E., Schulz, S., Abood, M. E., & Reggio, P. H. (2022). The NPXXY motif regulates β‐arrestin recruitment by the CB1 cannabinoid receptor. Cannabis and Cannabinoid Research, 1–18, 731–748. https://doi.org/10.1089/can.2021.0223

Li, H., Mirabel, R., Zimmerman, J., Ghiviriga, I., Phidd, D. K., Horenstein, N., & Urs, N. M. (2022). Structure–functional selectivity relationship studies on A‐86929 analogs and small aryl fragments toward the discovery of biased dopamine D1 receptor agonists. ACS Chemical Neuroscience, 13, 1818–1831. https://doi.org/10.1021/acschemneuro.2c00235

Li, H., Urs, N. M., & Horenstein, N. (2023). Computational insights into ligand‐induced G protein and β‐arrestin signaling of the dopamine D1 receptor. Journal of Computer‐Aided Molecular Design, 37, 227–244. https://doi.org/10.1007/s10822-023-00503-7

Lin, X., Chen, B., Wu, Y., Han, Y., Qi, A., Wang, J., Yang, Z., Wei, X., Zhao, T., Wu, L., Xie, X., Sun, J., Zheng, J., Zhao, S., & Xu, F. (2023). Cryo‐EM structures of orphan GPR21 signaling complexes. Nature Communications, 14, 216. https://doi.org/10.1038/s41467-023-35882-w

Liu, J., Tang, H., Xu, C., Zhou, S., Zhu, X., Li, Y., Prézeau, L., Xu, T., Pin, J. P., Rondard, P., Ji, W., & Liu, J. (2022). Biased signaling due to oligomerization of the G protein‐coupled platelet‐activating factor receptor. Nature Communications, 13, 6365. https://doi.org/10.1038/s41467-022-34056-4

Liu, Z., Iyer, M. R., Godlewski, G., Jourdan, T., Liu, J., Coffey, N. J., Zawatsky, C. N., Puhl, H. L., Wess, J., Meister, J., Liow, J. S., Innis, R. B., Hassan, S. A., Lee, Y. S., Kunos, G., & Cinar, R. (2021). Functional selectivity of a biased Cannabinoid‐1 receptor (CB1R) antagonist. ACS Pharmacology & Translational Science, 4, 1175–1187. https://doi.org/10.1021/acsptsci.1c00048

Lucy, D., Purvis, G. S. D., Zeboudj, L., Chatzopoulou, M., Recio, C., Bataille, C. J. R., Wynne, G. M., Greaves, D. R., & Russell, A. J. (2019). A biased agonist at immunometabolic receptor GPR84 causes distinct functional effects in macrophages. ACS Chemical Biology, 14, 2055–2064. https://doi.org/10.1021/acschembio.9b00533

Lüllmann, H., Ohnesorge, F. K., Schauwecker, G. C., & Wassermann, O. (1969). Inhibition of the actions of carbachol and DFP on guinea pig isolated atria by alkane‐bis‐ammonium compounds. European Journal of Pharmacology, 6, 241–247. https://doi.org/10.1016/0014-2999(69)90181-2

Mack, S. M., Gomes, I., Fakira, A. K., Lemos Duarte, M., Gupta, A., Fricker, L., & Devi, L. A. (2022). GPR83 engages endogenous peptides from two distinct precursors to elicit differential signaling. Molecular Pharmacology, 102, 29–38. https://doi.org/10.1124/molpharm.122.000487

Mallipeddi, S., Janero, D. R., Zvonok, N., & Makriyannis, A. (2017). Functional selectivity at G‐protein coupled receptors: Advancing cannabinoid receptors as drug targets. Biochemical Pharmacology, 128, 1–11. https://doi.org/10.1016/j.bcp.2016.11.014

Mallo‐Abreu, A., Reyes‐Resina, I., Azuaje, J., Franco, R., García‐Rey, A., Majellaro, M., Miranda‐Pastoriza, D., García‐Mera, X., Jespers, W., Gutiérrez‐de‐Terán, H., Navarro, G., & Sotelo, E. (2021). Potent and subtype‐selective dopamine D2 receptor biased partial agonists discovered via an Ugi‐based approach. Journal of Medicinal Chemistry, 64, 8710–8726. https://doi.org/10.1021/acs.jmedchem.1c00704

Mao, Q., Zhang, B., Tian, S., Qin, W., Chen, J., Huang, X. P., Xin, Y., Yang, H., Zhen, X. C., Shui, W., & Ye, N. (2022). Structural optimizations and bioevaluation of N‐H aporphine analogues as Gq‐biased and selective serotonin 5‐HT2C receptor agonists. Bioorganic Chemistry, 123, 105795. https://doi.org/10.1016/j.bioorg.2022.105795

Maroteaux, L. (2021). Gene structure, expression, and 5‐HT2B receptor signaling. In L. Maroteaux & L. Monassier (Eds.), 5‐HT2B receptors: From molecular biology to clinical applications (pp. 1–32). Springer International Publishing. https://doi.org/10.1007/978-3-030-55920-5_1

Masureel, M., Zou, Y., Picard, L. P., van der Westhuizen, E., Mahoney, J. P., Rodrigues, J. P. G. L. M., Mildorf, T. J., Dror, R. O., Shaw, D. E., Bouvier, M., Pardon, E., Steyaert, J., Sunahara, R. K., Weis, W. I., Zhang, C., & Kobilka, B. K. (2018). Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nature Chemical Biology, 14, 1059–1066. https://doi.org/10.1038/s41589-018-0145-x

Matthees, E. S. F., Filor, J. C., Jaiswal, N., Reichel, M., Youssef, N., Drube, J., Godbole, A., & Hoffmann, C. (2023). GRK specificity and Gβγ dependency determines a GPCRs potential in biased agonism. bioRxiv, 1, 1–22. https://doi.org/10.1101/2023.07.14.548990

McCorvy, J. D., Butler, K. V., Kelly, B., Rechsteiner, K., Karpiak, J., Betz, R. M., Kormos, B. L., Shoichet, B. K., Dror, R. O., Jin, J., & Roth, B. L. (2018). Structure‐inspired design of β‐arrestin‐biased ligands for aminergic GPCRs. Nature Chemical Biology, 14, 126–134. https://doi.org/10.1038/nchembio.2527

McCorvy, J. D., Wacker, D., Wang, S., Agegnehu, B., Liu, J., Lansu, K., Tribo, A. R., Olsen, R. H. J., Che, T., Jin, J., & Roth, B. L. (2018). Structural determinants of 5‐HT2B receptor activation and biased agonism. Nature Structural & Molecular Biology, 25, 787–796. https://doi.org/10.1038/s41594-018-0116-7

Milanos, L., Brox, R., Frank, T., Poklukar, G., Palmisano, R., Waibel, R., Einsiedel, J., Dürr, M., Ivanović‐Burmazović, I., Larsen, O., Hjortø, G. M., Rosenkilde, M. M., & Tschammer, N. (2016). Discovery and characterization of biased allosteric agonists of the chemokine receptor CXCR3. Journal of Medicinal Chemistry, 59, 2222–2243. https://doi.org/10.1021/acs.jmedchem.5b01965

Miles, T. F., Spiess, K., Jude, K. M., Tsutsumi, N., Burg, J. S., Ingram, J. R., Waghray, D., Hjorto, G. M., Larsen, O., Ploegh, H. L., Rosenkilde, M. M., & Garcia, K. C. (2018). Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. eLife, 7, e35850. https://doi.org/10.7554/eLife.35850

Mlost, J., Kostrzewa, M., Borczyk, M., Bryk, M., Chwastek, J., Korostyński, M., & Starowicz, K. (2021). CB2 agonism controls pain and subchondral bone degeneration induced by mono‐iodoacetate: Implications GPCR functional bias and tolerance development. Biomedicine & Pharmacotherapy, 136, 111283. https://doi.org/10.1016/j.biopha.2021.111283

Moniri, N. H., & Booth, R. G. (2004). Functional heterogeneity of histamine H1 receptors. Inflammation Research, 53, 71–72. https://doi.org/10.1007/s00011-003-0334-1

Morales, P., Bruix, M., & Jiménez, M. A. (2020). Structural insights into β‐arrestin/CB1 receptor interaction: NMR and CD studies on model peptides. International Journal of Molecular Sciences, 21, 8111. https://doi.org/10.3390/ijms21218111

Morales, P., Goya, P., & Jagerovic, N. (2018). Emerging strategies targeting CB2 cannabinoid receptor: Biased agonism and allosterism. Biochemical Pharmacology, 157, 8–17. https://doi.org/10.1016/j.bcp.2018.07.031

Morrow, G. B., Nicholas, R. A., & Kennedy, C. (2014). UTP is not a biased agonist at human P2Y11 receptors. Purinergic Signal, 10, 581–585. https://doi.org/10.1007/s11302-014-9418-3

Namkung, Y., LeGouill, C., Kumar, S., Cao, Y., Teixeira, L. B., Lukasheva, V., Giubilaro, J., Simões, S. C., Longpré, J. M., Devost, D., Hébert, T. E., Piñeyro, G., Leduc, R., Costa‐Neto, C. M., Bouvier, M., & Laporte, S. A. (2018). Functional selectivity profiling of the angiotensin II type 1 receptor using pathway‐wide BRET signaling sensors. Science Signaling, 11(559), eaat1631. https://doi.org/10.1126/scisignal.aat1631

Newman‐Tancredi, A., Depoortère, R. Y., Kleven, M. S., Kołaczkowski, M., & Zimmer, L. (2022). Translating biased agonists from molecules to medications: Serotonin 5‐HT1A receptor functional selectivity for CNS disorders. Pharmacology & Therapeutics, 229, 107937. https://doi.org/10.1016/j.pharmthera.2021.107937

Nijmeijer, S., Vischer, H. F., Rosethorne, E. M., Charlton, S. J., & Leurs, R. (2012). Analysis of multiple histamine H4 receptor compound classes uncovers Gαi protein‐ and β‐arrestin2‐biased ligands. Molecular Pharmacology, 82, 1174–1182. https://doi.org/10.1124/mol.112.080911

Nijmeijer, S., Vischer, H. F., Sirci, F., Schultes, S., Engelhardt, H., de Graaf, C., Rosethorne, E. M., Charlton, S. J., & Leurs, R. (2013). Detailed analysis of biased histamine H4 receptor signalling by JNJ 7777120 analogues. British Journal of Pharmacology, 170, 78–88. https://doi.org/10.1111/bph.12117

Nivedha, A., Tautermann, C. S., Bhattacharya, S., Lee, S., Casarosa, P., Kollak, I., Kiechle, T., & Vaidehi, N. (2018). Identifying functional hotspot residues for biased ligand design in G‐protein‐coupled receptors. Molecular Pharmacology, 93(4), 288–296. https://doi.org/10.1124/mol.117.110395

Nivedha, A. K., Lee, S., & Vaidehi, N. (2023). Biased agonists differentially modulate the receptor conformation ensembles in angiotensin II type 1 receptor. Journal of Molecular Graphics & Modelling, 118, 108365. https://doi.org/10.1016/j.jmgm.2022.108365

Olejarz‐Maciej, A., Mogilski, S., Karcz, T., Werner, T., Kamińska, K., Kupczyk, J., Honkisz‐Orzechowska, E., Latacz, G., Stark, H., Kieć‐Kononowicz, K., & Łażewska, D. (2023). Trisubstituted 1,3,5‐triazines as histamine H4 receptor antagonists with promising activity in vivo. Molecules, 28, 4199. https://doi.org/10.3390/molecules28104199

Olianas, M. C., & Onali, P. (1999). PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP. Life Sciences, 65, 2233–2240. https://doi.org/10.1016/S0024-3205(99)00488-9

Onyameh, E. K., Ofori, E., Bricker, B. A., Gonela, U. M., Eyunni, S. V., Kang, H. J., Voshavar, C., & Ablordeppey, S. Y. (2022). Design and discovery of a high affinity, selective and β‐arrestin biased 5‐HT7 receptor agonist. Medicinal Chemistry Research, 31, 274–283.

Pani, B., Ahn, S., Rambarat, P. K., Vege, S., Kahsai, A. W., Liu, A., Valan, B. N., Staus, D. P., Costa, T., & Lefkowitz, R. J. (2021). Unique positive cooperativity between the β‐arrestin‐biased β‐blocker carvedilol and a small molecule positive allosteric modulator of the β2‐adrenergic receptor. Molecular Pharmacology, 100, 513–525. https://doi.org/10.1124/molpharm.121.000363

Panula, P., Chazot, P. L., Cowart, M., Gutzmer, R., Leurs, R., Liu, W. L., Stark, H., Thurmond, R. L., & Haas, H. L. (2015). International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacological Reviews, 67, 601–655. https://doi.org/10.1124/pr.114.010249

Papay, R. S., Macdonald, J. D., Stauffer, S. R., & Perez, D. M. (2023). Characterization of a novel positive allosteric modulator of the α1A‐adrenergic receptor. Current Research in Pharmacology and Drug Discovery, 4, 100142. https://doi.org/10.1016/j.crphar.2022.100142

Park, H., Urs, A. N., Zimmerman, J., Liu, C., Wang, Q., & Urs, N. M. (2020). Structure–functional–selectivity relationship studies of novel apomorphine analogs to develop D1R/D2R biased ligands. ACS Medicinal Chemistry Letters, 11, 385–392. https://doi.org/10.1021/acsmedchemlett.9b00575

Park, S. M., Chen, M., Schmerberg, C. M., Dulman, R. S., Rodriguiz, R. M., Caron, M. G., Jin, J., & Wetsel, W. C. (2016). Effects of β‐arrestin‐biased dopamine D2 receptor ligands on schizophrenia‐like behavior in hypoglutamatergic mice. Neuropsychopharmacology, 41, 704–715. https://doi.org/10.1038/npp.2015.196

Patel, M., Finlay, D. B., & Glass, M. (2020). Biased agonism at the cannabinoid receptors—Evidence from synthetic cannabinoid receptor agonists. Cellular Signalling, 78, 109865. https://doi.org/10.1016/j.cellsig.2020.109865

Pavletić, P., Semeano, A., Yano, H., Bonifazi, A., Giorgioni, G., Piergentili, A., Quaglia, W., Sabbieti, M. G., Agas, D., Santoni, G., Pallini, R., Ricci‐Vitiani, L., Sabato, E., Vistoli, G., & del Bello, F. (2022). Highly potent and selective dopamine D4 receptor antagonists potentially useful for the treatment of glioblastoma. Journal of Medicinal Chemistry, 65, 12124–12139. https://doi.org/10.1021/acs.jmedchem.2c00840

Pera, T., Deshpande, D. A., Ippolito, M., Wang, B., Gavrila, A., Michael, J. V., Nayak, A. P., Tompkins, E., Farrell, E., Kroeze, W. K., & Roth, B. L. (2018). Biased signaling of the proton‐sensing receptor OGR1 by benzodiazepines. The FASEB Journal, 32, 862–874.

Pillaiyar, T., Köse, M., Sylvester, K., Weighardt, H., Thimm, D., Borges, G., Förster, I., von Kügelgen, I., & Müller, C. E. (2017). Diindolylmethane derivatives: Potent agonists of the immunostimulatory orphan G protein‐coupled receptor GPR84. Journal of Medicinal Chemistry, 60, 3636–3655. https://doi.org/10.1021/acs.jmedchem.6b01593

Pillaiyar, T., Rosato, F., Wozniak, M., Blavier, J., Charles, M., Laschet, C., Kronenberger, T., Müller, C. E., & Hanson, J. (2021). Structure‐activity relationships of agonists for the orphan G protein‐coupled receptor GPR27. European Journal of Medicinal Chemistry, 225, 113777. https://doi.org/10.1016/j.ejmech.2021.113777

Plouffe, B., Karamitri, A., Flock, T., Gallion, J. M., Houston, S., Daly, C. A., Bonnefond, A., Guillaume, J. L., le Gouill, C., Froguel, P., Lichtarge, O., Deupi, X., Jockers, R., & Bouvier, M. (2022). Structural elements directing G proteins and β‐arrestin interactions with the human melatonin type 2 receptor revealed by natural variants. ACS Pharmacology & Translational Science, 5, 89–101. https://doi.org/10.1021/acsptsci.1c00239

Pottie, E., Tosh, D. K., Gao, Z.‐G., Jacobson, K. A., & Stove, C. P. (2020). Assessment of biased agonism at the A3 adenosine receptor using β‐arrestin and miniGαi recruitment assays. Biochemical Pharmacology, 177, 113934. https://doi.org/10.1016/j.bcp.2020.113934

Poulie, C. B. M., Pottie, E., Simon, I. A., Harpsøe, K., D'Andrea, L., Komarov, I. V., Gloriam, D. E., Jensen, A. A., Stove, C. P., & Kristensen, J. L. (2022). Discovery of β‐arrestin‐biased 25CN‐NBOH‐derived 5‐HT2A receptor agonists. Journal of Medicinal Chemistry, 65, 12031–12043. https://doi.org/10.1021/acs.jmedchem.2c00702

Proudman, R. G. W., & Baker, J. G. (2021). The selectivity of α‐adrenoceptor agonists for the human α1A, α1B, and α1D‐adrenoceptors. Pharmacology Research & Perspectives, 9, 1–23.

Radoux‐Mergault, A., Oberhauser, L., Aureli, S., & Luigi, F. (2022). Subcellular location defines GPCR signal transduction. Science Advances, 9(16), eadf6059.

Rahman, S. N., McNaught‐Flores, D. A., Huppelschoten, Y., da Costa Pereira, D., Christopoulos, A., Leurs, R., & Langmead, C. J. (2023). Structural and molecular determinants for isoform bias at human histamine H3 receptor isoforms. ACS Chemical Neuroscience, 14, 645–656. https://doi.org/10.1021/acschemneuro.2c00425

Rajagopal, S., Ahn, S., Rominger, D. H., Gowen‐MacDonald, W., Lam, C. M., DeWire, S. M., Violin, J. D., & Lefkowitz, R. J. (2011). Quantifying ligand bias at seven‐transmembrane receptors. Molecular Pharmacology, 80, 367–377. https://doi.org/10.1124/mol.111.072801

Ramos‐Gonzalez, N., Groom, S., Sutcliffe, K. J., Bancroft, S., Bailey, C. P., Sessions, R. B., Henderson, G., & Kelly, E. (2023). Carfentanil is a β‐arrestin‐biased agonist at the μ opioid receptor. British Journal of Pharmacology, 180, 2341–2360. https://doi.org/10.1111/BPH.16084

Randáková, A., & Jakubík, J. (2021). Functionally selective and biased agonists of muscarinic receptors. Pharmacological Research, 169, 105641. https://doi.org/10.1016/j.phrs.2021.105641

Randáková, A., Nelic, D., Ungerová, D., Nwokoye, P., Su, Q., Doležal, V., el‐Fakahany, E. E., Boulos, J., & Jakubík, J. (2020). Novel M2‐selective, Gi‐biased agonists of muscarinic acetylcholine receptors. British Journal of Pharmacology, 177, 2073–2089. https://doi.org/10.1111/bph.14970

Reher, T. M., Brunskole, I., Neumann, D., & Seifert, R. (2012). Evidence for ligand‐specific conformations of the histamine H2‐receptor in human eosinophils and neutrophils. Biochemical Pharmacology, 84, 1174–1185. https://doi.org/10.1016/j.bcp.2012.08.014

Reinartz, M. T., Kälble, S., Littmann, T., Ozawa, T., Dove, S., Kaever, V., Wainer, I. W., & Seifert, R. (2015). Structure‐bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2‐adrenoceptor. Naunyn‐Schmiedeberg's Archives of Pharmacology, 388, 51–65. https://doi.org/10.1007/s00210-014-1054-5

Riddy, D. M., Cook, A. E., Diepenhorst, N. A., Bosnyak, S., Brady, R., Mannoury la Cour, C., Mocaer, E., Summers, R. J., Charman, W. N., Sexton, P. M., Christopoulos, A., & Langmead, C. J. (2017). Isoform‐specific biased agonism of histamine H3 receptor agonists. Molecular Pharmacology, 91, 87–99. https://doi.org/10.1124/mol.116.106153

Robbins, A. J., Che Bakri, N. A., Toke‐Bjolgerud, E., Edwards, A., Vikraman, A., Michalsky, C., Fossler, M., Lemm, N. M., Medhipour, S., Budd, W., Gravani, A., Hurley, L., Kapil, V., Jackson, A., Lonsdale, D., Latham, V., Laffan, M., Chapman, N., Cooper, N., … Owen, D. (2023). The effect of TRV027 on coagulation in COVID‐19: A pilot randomized, placebo‐controlled trial. British Journal of Clinical Pharmacology, 89, 1495–1501. https://doi.org/10.1111/bcp.15618

Rosethorne, E. M., & Charlton, S. J. (2011). Agonist‐biased signaling at the histamine H4 receptor: JNJ7777120 recruits β‐arrestin without activating G proteins. Molecular Pharmacology, 79, 749–757. https://doi.org/10.1124/mol.110.068395

Roy, S., Ganguly, A., Haque, M., & Ali, H. (2019). Angiogenic host defense peptide AG‐30/5C and bradykinin B(2) receptor antagonist Icatibant are G protein biased agonists for MRGPRX2 in mast cells. Journal of Immunology, 202, 1229–1238. https://doi.org/10.4049/jimmunol.1801227

Ryba, D. M., Li, J., Cowan, C. L., Russell, B., Wolska, B. M., & Solaro, R. J. (2017). Long‐term biased β‐arrestin signaling improves cardiac structure and function in dilated cardiomyopathy. Circulation, 135, 1056–1070. https://doi.org/10.1161/CIRCULATIONAHA.116.024482

Sałaciak, K., & Pytka, K. (2021). Biased agonism in drug discovery: Is there a future for biased 5‐HT1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacology & Therapeutics, 227, 107872. https://doi.org/10.1016/j.pharmthera.2021.107872

Sanchez‐Soto, M., Verma, R. K., Willette, B. K. A., Gonye, E. C., Moore, A. M., Moritz, A. E., Boateng, C. A., Yano, H., Free, R. B., Shi, L., & Sibley, D. R. (2020). A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Science Signaling, 13, 1–15. https://doi.org/10.1126/scisignal.aaw5885

Sarma, P., Carino, C. M. C., Seetharama, D., Pandey, S., Dwivedi‐Agnihotri, H., Rui, X., Cao, Y., Kawakami, K., Kumari, P., Chen, Y. C., Luker, K. E., Yadav, P. N., Luker, G. D., Laporte, S. A., Chen, X., Inoue, A., & Shukla, A. K. (2023). Molecular insights into intrinsic transducer‐coupling bias in the CXCR4‐CXCR7 system. Nature Communications, 14, 4808. https://doi.org/10.1038/s41467-023-40482-9

Schamiloglu, S., Lewis, E., Keeshen, C. M., Hergarden, A. C., Bender, K. J., & Whistler, J. L. (2023). Arrestin‐3 agonism at dopamine D3 receptors defines a subclass of second‐generation antipsychotics that promotes drug tolerance. Biological Psychiatry, 94, 531–542. https://doi.org/10.1016/j.biopsych.2023.03.006

Schmid, C. L., Kennedy, N. M., Ross, N. C., Lovell, K. M., Yue, Z., Morgenweck, J., Cameron, M. D., Bannister, T. D., & Bohn, L. M. (2017). Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell, 171, 1165–1175.e13. https://doi.org/10.1016/j.cell.2017.10.035

Schönegge, A.‐M., Gallion, J., Picard, L. P., Wilkins, A. D., le Gouill, C., Audet, M., Stallaert, W., Lohse, M. J., Kimmel, M., Lichtarge, O., & Bouvier, M. (2017). Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nature Communications, 8, 2169. https://doi.org/10.1038/s41467-017-02257-x

Seifert, R., Schneider, E. H., Dove, S., Brunskole, I., Neumann, D., Strasser, A., & Buschauer, A. (2011). Paradoxical stimulatory effects of the “standard” histamine H4‐receptor antagonist JNJ7777120: The H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. Molecular Pharmacology, 79, 631–638. https://doi.org/10.1124/mol.111.071266

Seyedabadi, M., Gharghabi, M., Gurevich, E. V., & Gurevich, V. V. (2022). Structural basis of GPCR coupling to distinct signal transducers: Implications for biased signaling. Trends in Biochemical Sciences, 47, 570–581. https://doi.org/10.1016/j.tibs.2022.03.009

Shao, Z., Shen, Q., Yao, B., Mao, C., Chen, L. N., Zhang, H., Shen, D. D., Zhang, C., Li, W., Du, X., Li, F., Ma, H., Chen, Z. H., Xu, H. E., Ying, S., Zhang, Y., & Shen, H. (2022). Identification and mechanism of G protein‐biased ligands for chemokine receptor CCR1. Nature Chemical Biology, 18, 264–271. https://doi.org/10.1038/s41589-021-00918-z

Shen, Y., McCorvy, J. D., Martini, M. L., Rodriguiz, R. M., Pogorelov, V. M., Ward, K. M., Wetsel, W. C., Liu, J., Roth, B. L., & Jin, J. (2019). D2 dopamine receptor G protein‐biased partial agonists based on cariprazine. Journal of Medicinal Chemistry, 62, 4755–4771. https://doi.org/10.1021/acs.jmedchem.9b00508

Shimizu, Y., Koyama, R., & Kawamoto, T. (2017). Rho kinase‐dependent desensitization of GPR39; a unique mechanism of GPCR downregulation. Biochemical Pharmacology, 140, 105–114. https://doi.org/10.1016/j.bcp.2017.06.115

Slosky, L. M., Bai, Y., Toth, K., Ray, C., Rochelle, L. K., Badea, A., Chandrasekhar, R., Pogorelov, V. M., Abraham, D. M., Atluri, N., Peddibhotla, S., Hedrick, M. P., Hershberger, P., Maloney, P., Yuan, H., Li, Z., Wetsel, W. C., Pinkerton, A. B., Barak, L. S., & Caron, M. G. (2020). β‐Arrestin‐biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell, 181, 1364–1379.e14. https://doi.org/10.1016/j.cell.2020.04.053

Soethoudt, M., Grether, U., Fingerle, J., Grim, T. W., Fezza, F., de Petrocellis, L., Ullmer, C., Rothenhäusler, B., Perret, C., van Gils, N., Finlay, D., MacDonald, C., Chicca, A., Gens, M. D., Stuart, J., de Vries, H., Mastrangelo, N., Xia, L., Alachouzos, G., … van der Stelt, M. (2017). Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off‐target activity. Nature Communications, 8, 13958. https://doi.org/10.1038/ncomms13958

Stanek, M., Picard, L. P., Schmidt, M. F., Kaindl, J. M., Hübner, H., Bouvier, M., Weikert, D., & Gmeiner, P. (2019). Hybridization of β‐adrenergic agonists and antagonists confers G protein bias. Journal of Medicinal Chemistry, 62, 5111–5131. https://doi.org/10.1021/acs.jmedchem.9b00349

Steen, A., Thiele, S., Guo, D., Hansen, L. S., Frimurer, T. M., & Rosenkilde, M. M. (2013). Biased and constitutive signaling in the CC‐chemokine receptor CCR5 by manipulating the interface between transmembrane helices 6 and 7*. The Journal of Biological Chemistry, 288, 12511–12521. https://doi.org/10.1074/jbc.M112.449587

Steinmüller, S. A. M., Fender, J., Deventer, M. H., Tutov, A., Lorenz, K., Stove, C. P., Hislop, J. N., & Decker, M. (2023). Visible‐light photoswitchable benzimidazole azo‐arenes as beta‐arrestin2‐biased selective cannabinoid 2 receptor agonists. Angewandte Chemie International Edition, 62, e202306176. https://doi.org/10.1002/anie.202306176

Strachan, R. T., Sun, J. P., Rominger, D. H., Violin, J. D., Ahn, S., Rojas Bie Thomsen, A., Zhu, X., Kleist, A., Costa, T., & Lefkowitz, R. J. (2014). Divergent transducer‐specific molecular efficacies generate biased agonism at a G protein‐coupled receptor (GPCR). The Journal of Biological Chemistry, 289, 14211–14224. https://doi.org/10.1074/jbc.M114.548131

Suomivuori, C.‐M., Latorraca, N. R., Wingler, L. M., Eismann, S., King, M. C., Kleinhenz, A. L. W., Skiba, M. A., Staus, D. P., Kruse, A. C., Lefkowitz, R. J., & Dror, R. O. (2020). Molecular mechanism of biased signaling in a prototypical G‐protein‐coupled receptor. Biophysical Journal, 118, 162A. https://doi.org/10.1016/j.bpj.2019.11.1000

Szpakowska, M., D'Uonnolo, G., Luís, R., Alonso Bartolomé, A., Thelen, M., Legler, D. F., & Chevigné, A. (2023). New pairings and deorphanization among the atypical chemokine receptor family—Physiological and clinical relevance. Frontiers in Immunology, 14, 1133394. https://doi.org/10.3389/fimmu.2023.1133394

Tan, L., Zhou, Q., Yan, W., Sun, J., Kozikowski, A. P., Zhao, S., Huang, X. P., & Cheng, J. (2020). Design and synthesis of bitopic 2‐phenylcyclopropylmethylamine (PCPMA) derivatives as selective dopamine D3 receptor ligands. Journal of Medicinal Chemistry, 63, 4579–4602. https://doi.org/10.1021/acs.jmedchem.9b01835

Teng, X., Chen, S., Nie, Y., Xiao, P., Yu, X., Shao, Z., & Zheng, S. (2022). Ligand recognition and biased agonism of the D1 dopamine receptor. Nature Communications, 13, 3186. https://doi.org/10.1038/s41467-022-30929-w

Tompkins, E., Mimic, B., Cuevas‐Mora, K., Schorsch, H., Shah, S. D., Deshpande, D. A., Benovic, J. L., Penn, R. B., & Pera, T. (2022). PD 102807 induces M3 mAChR‐dependent GRK‐/arrestin‐biased signaling in airway smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology, 67, 550–561. https://doi.org/10.1165/rcmb.2021-0320OC

Tropmann, K., Höring, C., Plank, N., & Pockes, S. (2020). Discovery of a G protein‐biased radioligand for the histamine H2 receptor with reversible binding properties. Journal of Medicinal Chemistry, 63, 13090–13102. https://doi.org/10.1021/acs.jmedchem.0c01494

Tropmann, K., Seibel‐Ehlert, U., Littmann, T., & Strasser, A. (2021). Shining light on the histamine H2 receptor: Synthesis of carbamoylguanidine‐type agonists as a pharmacological tool to study internalization. Bioorganic & Medicinal Chemistry Letters, 52, 128388. https://doi.org/10.1016/j.bmcl.2021.128388

Turu, G., Soltész‐Katona, E., Tóth, A. D., Juhász, C., Cserző, M., Misák, Á., Balla, A., Caron, M. G., & Hunyady, L. (2021). Biased coupling to β‐arrestin of two common variants of the CB2 cannabinoid receptor. Frontiers in Endocrinology (Lausanne), 12, 714561.

Vaidehi, N., & Bhattacharya, S. (2016). Allosteric communication pipelines in G‐protein‐coupled receptors. Current Opinion in Pharmacology, 30, 76–83. https://doi.org/10.1016/j.coph.2016.07.010

Valant, C., May, L. T., Aurelio, L., Chuo, C. H., White, P. J., Baltos, J. A., Sexton, P. M., Scammells, P. J., & Christopoulos, A. (2014). Separation of on‐target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 111, 4614–4619. https://doi.org/10.1073/pnas.1320962111

Vanheule, V., Metzemaekers, M., Janssens, R., Struyf, S., & Proost, P. (2018). How post‐translational modifications influence the biological activity of chemokines. Cytokine, 109, 29–51. https://doi.org/10.1016/j.cyto.2018.02.026

Vecchio, E. A., Chuo, C. H., Baltos, J. A., Ford, L., Scammells, P. J., Wang, B. H., Christopoulos, A., White, P. J., & May, L. T. (2016). The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti‐fibrotic signalling. Biochemical Pharmacology, 117, 46–56. https://doi.org/10.1016/j.bcp.2016.08.007

Venkatakrishnan, A. J., Deupi, X., Lebon, G., Heydenreich, F. M., Flock, T., Miljus, T., Balaji, S., Bouvier, M., Veprintsev, D. B., Tate, C. G., & Schertler, G. F. (2016). Diverse activation pathways in class a GPCRs converge near the G‐protein‐coupling region. Nature, 40, 383–388.

Verweij, E. W. E., al Araaj, B., Prabhata, W. R., Prihandoko, R., Nijmeijer, S., Tobin, A. B., Leurs, R., & Vischer, H. F. (2020). Differential role of serines and threonines in intracellular loop 3 and C‐terminal tail of the histamine H4 receptor in β‐arrestin and G protein‐coupled receptor kinase interaction, internalization, and signaling. ACS Pharmacology & Translational Science, 3, 321–333. https://doi.org/10.1021/acsptsci.0c00008

Verweij, E. W. E., Bosma, R., Gao, M., van den Bor, J., al Araaj, B., de Munnik, S. M., Ma, X., Leurs, R., & Vischer, H. F. (2022). BRET‐based biosensors to measure agonist efficacies in histamine H1 receptor‐mediated G protein activation, signaling and interactions with GRKs and β‐arrestins. International Journal of Molecular Sciences, 23, 3184. https://doi.org/10.3390/ijms23063184

Violin, J. D., DeWire, S. M., Yamashita, D., Rominger, D. H., Nguyen, L., Schiller, K., Whalen, E. J., Gowen, M., & Lark, M. W. (2010). Selectively engaging β‐arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. The Journal of Pharmacology and Experimental Therapeutics, 335, 572–579. https://doi.org/10.1124/jpet.110.173005

von Moo, E., Harpsøe, K., Hauser, A. S., Masuho, I., Bräuner‐Osborne, H., Gloriam, D. E., & Martemyanov, K. A. (2022). Ligand‐directed bias of G protein signaling at the dopamine D2 receptor. Cell Chemical Biology, 29, 226–238.e4. https://doi.org/10.1016/j.chembiol.2021.07.004

Wall, M. J., Hill, E., Huckstepp, R., Barkan, K., Deganutti, G., Leuenberger, M., Preti, B., Winfield, I., Carvalho, S., Suchankova, A., Wei, H., Safitri, D., Huang, X., Imlach, W., la Mache, C., Dean, E., Hume, C., Hayward, S., Oliver, J., … Frenguelli, B. G. (2022). Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression. Nature Communications, 13, 4150. https://doi.org/10.1038/s41467-022-31652-2

Wang, H., Hetzer, F., Huang, W., Qu, Q., Meyerowitz, J., Kaindl, J., Hübner, H., Skiniotis, G., Kobilka, B. K., & Gmeiner, P. (2022). Structure‐based evolution of G protein‐biased μ‐opioid receptor agonists. Angewandte Chemie International Edition, 61, e202200269. https://doi.org/10.1002/anie.202200269

Wang, J., Gareri, C., & Rockman, H. A. (2018). G‐protein‐coupled receptors in heart disease. Circulation Research, 123, 716–735. https://doi.org/10.1161/CIRCRESAHA.118.311403

Wang, J., Hanada, K., Staus, D. P., Makara, M. A., Dahal, G. R., Chen, Q., Ahles, A., Engelhardt, S., & Rockman, H. A. (2017). Gαi is required for carvedilol‐induced β1 adrenergic receptor β‐arrestin biased signaling. Nature Communications, 8, 1706. https://doi.org/10.1038/s41467-017-01855-z

Wang, J., Pani, B., Gokhan, I., Xiong, X., Kahsai, A. W., Jiang, H., Ahn, S., Lefkowitz, R. J., & Rockman, H. A. (2021). Β‐Arrestin–biased allosteric modulator potentiates carvedilol‐stimulated Β adrenergic receptor cardioprotection. Molecular Pharmacology, 100, 568–579. https://doi.org/10.1124/molpharm.121.000359

Wang, Y.‐Q., Lin, W. W., Wu, N., Wang, S. Y., Chen, M. Z., Lin, Z. H., Xie, X. Q., & Feng, Z. W. (2019). Structural insight into the serotonin (5‐HT) receptor family by molecular docking, molecular dynamics simulation and systems pharmacology analysis. Acta Pharmacologica Sinica, 40, 1138–1156. https://doi.org/10.1038/s41401-019-0217-9

Welihinda, A. A., Kaur, M., Greene, K., Zhai, Y., & Amento, E. P. (2016). The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cellular Signalling, 28, 552–560. https://doi.org/10.1016/j.cellsig.2016.02.010

Werner, K., Neumann, D., & Seifert, R. (2014). Analysis of the histamine H2‐receptor in human monocytes. Biochemical Pharmacology, 92, 369–379. https://doi.org/10.1016/j.bcp.2014.08.028

White, P. J., Webb, T. E., & Boarder, M. R. (2003). Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: Evidence for agonist‐specific signaling. Molecular Pharmacology, 63, 1356–1363. https://doi.org/10.1124/mol.63.6.1356

Wingler, L. M., Elgeti, M., Hilger, D., Latorraca, N. R., Lerch, M. T., Staus, D. P., Dror, R. O., Kobilka, B. K., Hubbell, W. L., & Lefkowitz, R. J. (2019). Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell, 176, 468–478.e11. https://doi.org/10.1016/j.cell.2018.12.005

Wingler, L. M., & Lefkowitz, R. J. (2020). Conformational basis of G protein‐coupled receptor signaling versatility. Trends in Cell Biology, 30, 736–747. https://doi.org/10.1016/j.tcb.2020.06.002

Wingler, L. M., McMahon, C., Staus, D. P., Lefkowitz, R. J., & Kruse, A. C. (2019). Distinctive activation mechanism for angiotensin receptor revealed by a synthetic Nanobody. Cell, 176, 479–490.e12. https://doi.org/10.1016/j.cell.2018.12.006

Wingler, L. M., Skiba, M. A., McMahon, C., Staus, D. P., Kleinhenz, A. L., Suomivuori, C. M., Latorraca, N. R., Dror, R. O., Lefkowitz, R. J., & Kruse, A. C. (2020). Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science (80‐.), 367, 888–892.

Wisler, J. W., DeWire, S. M., Whalen, E. J., Violin, J. D., Drake, M. T., Ahn, S., Shenoy, S. K., & Lefkowitz, R. J. (2007). A unique mechanism of beta‐blocker action: Carvedilol stimulates beta‐arrestin signaling. Proceedings of the National Academy of Sciences of the United States of America, 104, 16657–16662. https://doi.org/10.1073/pnas.0707936104

Woo, A. Y. H., Ge, X. Y., Pan, L., Xing, G., Mo, Y. M., Xing, R. J., Li, X. R., Zhang, Y. Y., Wainer, I. W., Cheng, M. S., & Xiao, R. P. (2019). Discovery of β‐arrestin‐biased β2‐adrenoceptor agonists from 2‐amino‐2‐phenylethanol derivatives. Acta Pharmacologica Sinica, 40, 1095–1105. https://doi.org/10.1038/s41401-018-0200-x

Wootten, D., Christopoulos, A., Marti‐Solano, M., Babu, M. M., & Sexton, P. M. (2018). Mechanisms of signalling and biased agonism in G protein‐coupled receptors. Nature Reviews. Molecular Cell Biology, 19, 638–653. https://doi.org/10.1038/s41580-018-0049-3

Wouters, E., Robertson, M. J., Meyrath, M., Szpakowska, M., Chevigné, A., Skiniotis, G., Stove, C., & Stove, C. (2019). Assessment of biased agonism among distinct synthetic cannabinoid receptor agonist scaffolds. ACS Pharmacology & Translational Science, 3(2), 285–295. https://doi.org/10.1021/acsptsci.9b00069

Xu, J., Cao, S., Hübner, H., Weikert, D., Chen, G., Lu, Q., Yuan, D., Gmeiner, P., Liu, Z., & Du, Y. (2022). Structural insights into ligand recognition, activation, and signaling of the α2Aadrenergic receptor. Science Advances, 8, 1–12.

Xu, J., Hu, Y., Kaindl, J., Risel, P., Hübner, H., Maeda, S., Niu, X., Li, H., Gmeiner, P., Jin, C., & Kobilka, B. K. (2019). Conformational complexity and dynamics in a muscarinic receptor revealed by NMR spectroscopy. Molecular Cell, 75, 53–65.e7. https://doi.org/10.1016/j.molcel.2019.04.028

Xu, J., Wang, Q., Hübner, H., Hu, Y., Niu, X., Wang, H., Maeda, S., Inoue, A., Tao, Y., Gmeiner, P., Du, Y., Jin, C., & Kobilka, B. K. (2023). Structural and dynamic insights into supra‐physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature Communications, 14, 376. https://doi.org/10.1038/s41467-022-35726-z

Xu, W., Bearoff, F., & Kortagere, S. (2022). G‐protein biased signaling agonists of dopamine D3 receptor promote distinct activation patterns of ERK1/2. Pharmacological Research, 179, 106223. https://doi.org/10.1016/j.phrs.2022.106223

Yang, Y. (2021). Functional selectivity of dopamine D1 receptor signaling: Retrospect and prospect. International Journal of Molecular Sciences, 22, 11914. https://doi.org/10.3390/ijms222111914

Yang, Y., Lee, S. M., Imamura, F., Gowda, K., Amin, S., & Mailman, R. B. (2021). D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Molecular Psychiatry, 26, 645–655. https://doi.org/10.1038/s41380-018-0312-1

Zagzoog, A., Brandt, A. L., Black, T., Kim, E. D., Burkart, R., Patel, M., Jin, Z., Nikolaeva, M., & Laprairie, R. B. (2021). Assessment of select synthetic cannabinoid receptor agonist bias and selectivity between the type 1 and type 2 cannabinoid receptor. Scientific Reports, 11, 10611. https://doi.org/10.1038/s41598-021-90167-w

Zhang, D., Liu, Y., Zaidi, S. A., Xu, L., Zhan, Y., Chen, A., Guo, J., Huang, X.‐. P., Roth, B. L., Katritch, V., Cherezov, V., & Zhang, H. (2023). Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists. The EMBO Journal, 42, e112940.

Zhang, G., Cheng, J., McCorvy, J. D., Lorello, P. J., Caldarone, B. J., Roth, B. L., & Kozikowski, A. P. (2017). Discovery of N‐substituted (2‐phenylcyclopropyl)methylamines as functionally selective serotonin 2C receptor agonists for potential use as antipsychotic medications. Journal of Medicinal Chemistry, 60, 6273–6288. https://doi.org/10.1021/acs.jmedchem.7b00584

Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., James, D., Wang, D., Nelson, G., Weierstall, U., Sawaya, M. R., Xu, Q., Messerschmidt, M., Williams, G. J., Boutet, S., Yefanov, O. M., White, T. A., Wang, C., Ishchenko, A., … Cherezov, V. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161, 833–844. https://doi.org/10.1016/j.cell.2015.04.011

Zheng, K., Smith, J. S., Eiger, D. S., Warman, A., Choi, I., Honeycutt, C. C., Boldizsar, N., Gundry, J. N., Pack, T. F., Inoue, A., Caron, M. G., & Rajagopal, S. (2022). Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β‐arrestin complexes. Science Signaling, 15, eabg5203. https://doi.org/10.1126/scisignal.abg5203

Zhou, Q., Yang, D., Wu, M., Guo, Y., Guo, W., Zhong, L., Cai, X., Dai, A., Jang, W., Shakhnovich, E. I., Liu, Z. J., Stevens, R. C., Lambert, N. A., Babu, M. M., Wang, M. W., & Zhao, S. (2019). Common activation mechanism of class a GPCRs. eLife, 8, 1–31. https://doi.org/10.7554/eLife.50279

Zhuang, Y., Wang, Y., He, B., He, X., Zhou, X. E., Guo, S., Rao, Q., Yang, J., Liu, J., Zhou, Q., Wang, X., Liu, M., Liu, W., Jiang, X., Yang, D., Jiang, H., Shen, J., Melcher, K., Chen, H., … Xu, H. E. (2022). Molecular recognition of morphine and fentanyl by the human μ‐opioid receptor. Cell, 185, 4361–4375.e19. https://doi.org/10.1016/j.cell.2022.09.041

Zhuang, Y., Xu, P., Mao, C., Wang, L., Krumm, B., Zhou, X. E., Huang, S., Liu, H., Cheng, X., Huang, X. P., Shen, D. D., Xu, T., Liu, Y. F., Wang, Y., Guo, J., Jiang, Y., Jiang, H., Melcher, K., Roth, B. L., … Xu, H. E. (2021). Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell, 184, 931–942.e18. https://doi.org/10.1016/j.cell.2021.01.027

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...