Hyperhomocysteinemia-Induced Alterations in Protein Expression and Oxidative Stress Parameters in Rat Heart
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39264075
PubMed Central
PMC11414592
DOI
10.33549/physiolres.935280
PII: 935280
Knihovny.cz E-zdroje
- MeSH
- hyperhomocysteinemie * metabolismus MeSH
- krysa rodu Rattus MeSH
- myokard * metabolismus MeSH
- oxidační stres * MeSH
- potkani Wistar * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hyperhomocysteinemia (HHcy) is considered an independent risk factor of cardiovascular diseases. Among the proposed mechanisms underlying homocysteine toxicity are altered protein expression and induction of oxidative stress. In the present study, we explored protein abundance and parameters related to oxidative stress in heart homogenates of rats exposed to chronic mild HHcy. Using two-dimensional gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry 22 altered proteins (6 upregulated and 14 downregulated) were identified. For eight proteins the altered abundances were validated by Western blot analysis. Identified proteins are primarily involved in energy metabolism (mainly enzymes of glycolysis, pyruvate dehydrogenase complex, citric acid cycle, and ATP synthase), cardiac muscle contraction (alpha-actin and myosin light chains), stress response (heat-shock protein beta1 and alphaB-crystallin) and antioxidant defense (glutathione peroxidase 1). Diminished antioxidant defense was confirmed by decreases in total antioxidant capacity and GSH/GSSG ratio. Consistent with the decline in enzymatic and non-enzymatic antioxidant defense the protein oxidative modification, as determined by tyrosine nitration, was significantly increased. These findings suggest that both, altered protein expression and elevated oxidative stress contribute to cardiovascular injury caused by HHcy. Keywords: Homocysteine, Heart, Protein abundance, Antioxidant capacity, Nitrotyrosines.
Zobrazit více v PubMed
Cziraki A, Nemeth Z, Szabados S, Nagy T, Szántó M, Nyakas C, Koller A. Morphological and functional remodeling of the ischemic heart correlates with homocysteine levels. J Cardiovasc Dev Dis. 2023;10:122. doi: 10.3390/jcdd10030122. PubMed DOI PMC
Perła-Kaján J, Jakubowski H. Dysregulation of epigenetic mechanisms of gene expression in the pathologies of hyperhomocysteinemia. Int J Mol Sci. 2019;20:3140. doi: 10.3390/ijms20133140. PubMed DOI PMC
Suematsu N, Ojaimi C, Kinugawa S, Wang Z, Xu X, Koller A, Recchia FA, et al. Hyperhomocysteinemia alters cardiac substrate metabolism by impairing nitric oxide bioavailability through oxidative stress. Circulation. 2007;115:255–262. doi: 10.1161/CIRCULATIONAHA.106.652693. PubMed DOI
Austin RC, Sood SK, Dorward AM, Singh G, Shaughnessy SG, Pamidi S, Outinen PA, et al. Homocysteine-dependent alterations in mitochondrial gene expression, function and structure. Homocysteine and H2O2 act synergistically to enhance mitochondrial damage. J Biol Chem. 1998;273:30808–30817. doi: 10.1074/jbc.273.46.30808. PubMed DOI
Cueto R, Zhang L, Shan HM, Huang X, Li X, Li YF, Lopez J, et al. Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile - Novel hypothesis establishment. Redox Biol. 2018;17:70–88. doi: 10.1016/j.redox.2018.03.015. PubMed DOI PMC
Timkova V, Tatarkova Z, Lehotsky J, Racay P, Dobrota D, Kaplan P. Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria. Mol Cell Biochem. 2016;411:261–270. doi: 10.1007/s11010-015-2588-7. PubMed DOI
Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, Koller A. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2003;23:418–424. doi: 10.1161/01.ATV.0000061735.85377.40. PubMed DOI
Racek J, Rusnáková H, Trefil L, Siala KK. The influence of folate and antioxidants on homocysteine levels and oxidative stress in patients with hyperlipidemia and hyperhomocysteinemia. Physiol Res. 2005;54:87–95. doi: 10.33549/physiolres.930520. PubMed DOI
Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, et al. Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol. 2012;52:753–760. doi: 10.1016/j.yjmcc.2011.12.009. PubMed DOI PMC
Zivkovic V, Jakovljevic V, Djordjevic D, Vuletic M, Barudzic N, Djuric D. The effects of homocysteine-related compounds on cardiac contractility, coronary flow, and oxidative stress markers in isolated rat heart. Mol Cell Biochem. 2012;370:59–67. doi: 10.1007/s11010-012-1398-4. PubMed DOI
Song S, Kertowidjojo E, Ojaimi C, Martin-Fernandez B, Kandhi S, Wolin M, Hintze TH. Long-term methionine-diet induced mild hyperhomocysteinemia associated cardiac metabolic dysfunction in multiparous rats. Physiol Rep. 2015;3:e12292. doi: 10.14814/phy2.12292. PubMed DOI PMC
Liu YP, Zhou GH, Song X, Wang YH, Zhang F, Chen QQ, Cho KW, et al. Emodin protects against homocysteine-induced cardiac dysfunction by inhibiting oxidative stress via MAPK and Akt/eNOS/NO signaling pathways. Eur J Pharmacol. 2023;940:175452. doi: 10.1016/j.ejphar.2022.175452. PubMed DOI
Reiter CD, Teng RJ, Beckman JS. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem. 2000;275:32460–32466. doi: 10.1074/jbc.M910433199. PubMed DOI
Kanski J, Beghring A, Pelling J, Schöneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effect of biological aging. Am J Physiol Heart Circ Physiol. 2005;288:H371–H381. doi: 10.1152/ajpheart.01030.2003. PubMed DOI
Liu B, Tewari AK, Zhang L, Green-Church KB, Zweier JL, Chen YR, He G. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochim Biophys Acta. 2009;1794:476–485. doi: 10.1016/j.bbapap.2008.12.008. PubMed DOI PMC
Mujumdar VS, Aru GM, Tyagi SC. Induction of oxidative stress by homocyst(e)ine impairs endothelial function. J Cell Biochem. 2001;82:491–500. doi: 10.1002/jcb.1175. PubMed DOI
Sood HS, Cox MJ, Tyagi SC. Generation of nitrotyrosine precedes activation of metalloproteinase in myocardium of hyperhomocysteinemic rats. Antioxid Redox Signal. 2002;4:799–804. doi: 10.1089/152308602760598954. PubMed DOI
Gomez J, Sanchez-Roman I, Gomez A, Sanchez C, Suarez H, Lopez-Torres M, Barja G. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43:377–386. doi: 10.1007/s10863-011-9368-1. PubMed DOI
Tatarkova Z, Bencurova M, Lehotsky J, Racay P, Kmetova Sivonova M, Dobrota D, Kaplan P. Effect of hyperhomocysteinemia on rat cardiac sarcoplasmic reticulum. Mol Cell Biochem. 2022;477:1621–1628. doi: 10.1007/s11010-022-04399-z. PubMed DOI
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–452. doi: 10.1093/nar/gku1003. PubMed DOI PMC
Grinblat L, Pacheco Bolaños LF, Stoppani AO. Decreased rate of ketone-body oxidation and decreased activity of d-3-hydroxybutyrate dehydrogenase and succinyl-CoA:3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats. Biochem J. 1986;240:49–56. doi: 10.1042/bj2400049. PubMed DOI PMC
Kolling J, Scherer EB, Siebert C, Hansen F, Torres FV, Scaini G, Ferreira G, et al. Homocysteine induces energy imbalance in rat skeletal muscle: is creatine a protector? Cell Biochem Funct. 2013;31:575–584. doi: 10.1002/cbf.2938. PubMed DOI
Kolling J, Longoni A, Siebert C, Dos Santos TM, Marques EP, Carletti J, Pereira LO, et al. Severe hyperhomocysteinemia decreases creatine kinase activity and causes memory impairment: neuroprotective role of creatine. Neurotox Res. 2017;32:585–593. doi: 10.1007/s12640-017-9767-0. PubMed DOI
Todorovic D, Stojanovic M, Medic A, Gopcevic K, Mutavdzin S, Stankovic S, Djuric D. Four weeks of aerobic training affects cardiac tissue matrix metalloproteinase, lactate dehydrogenase and malate dehydrogenase enzymes activities, and hepatorenal biomarkers in experimental hyperhomocysteinemia in rats. Int J Mol Sci. 2021;22:6792. doi: 10.3390/ijms22136792. PubMed DOI PMC
Hendgen-Cotta UB, Kelm M, Rassaf T. Myoglobin functions in the heart. Free Radic Biol Med. 2014;73:252–259. doi: 10.1016/j.freeradbiomed.2014.05.005. PubMed DOI
Sheikh F, Lyon RC, Chen J. Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene. 2015;569:14–20. doi: 10.1016/j.gene.2015.06.027. PubMed DOI PMC
Hernandez OM, Jones M, Guzman G, Szczesna-Cordary D. Myosin essential light chain in health and disease. Am J Physiol Heart Circ Physiol. 2007;292:H1643–H1654. doi: 10.1152/ajpheart.00931.2006. PubMed DOI
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil. 2020;41:313–327. doi: 10.1007/s10974-019-09517-x. PubMed DOI PMC
Melas M, Beltsios ET, Adamou A, Koumarelas K, McBride KL. Molecular diagnosis of hypertrophic cardiomyopathy (HCM): in the heart of cardiac disease. J Clin Med. 2022;12:225. doi: 10.3390/jcm12010225. PubMed DOI PMC
Markandran K, Poh JW, Ferenczi MA, Cheung C. Regulatory light chains in cardiac development and disease. Int J Mol Sci. 2021;22:4351. doi: 10.3390/ijms22094351. PubMed DOI PMC
Christians ES, Ishiwata T, Benjamin IJ. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol. 2012;44:1632–1645. doi: 10.1016/j.biocel.2012.06.006. PubMed DOI PMC
Efthymiou CA, Mocanu MM, de Belleroche J, Wells DJ, Latchmann DS, Yellon DM. Heat shock protein 27 protects the heart against myocardial infarction. Basic Res Cardiol. 2004;99:392–394. doi: 10.1007/s00395-004-0483-6. PubMed DOI
Liu X, Liu K, Li C, Cai J, Huang L, Chen H, Wang H, et al. Heat-shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells. J Cell Physiol. 2019;234:5117–5133. doi: 10.1002/jcp.27322. PubMed DOI
Ghosh S, Sulistyoningrum DC, Glier MB, Verchere CB, Devlin AM. Altered glutathione homeostasis in heart augments cardiac lipotoxicity associated with diet-induced obesity in mice. J Biol Chem. 2011;286:42483–42493. doi: 10.1074/jbc.M111.304592. PubMed DOI PMC
Dimauro I, Antonioni A, Mercatelli N, Caporossi D. The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones. 2018;23:491–505. doi: 10.1007/s12192-017-0866-x. PubMed DOI PMC
Tang S, Chen H, Cheng Y, Nasir MA, Kemper N, Bao E. Expression profiles of heat shock protein 27 and αB-crystallin and their effects on heat-stressed rat myocardial cells in vitro and in vivo. Mol Med Rep. 2016;13:1633–1638. doi: 10.3892/mmr.2015.4693. PubMed DOI
Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, et al. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem. 2001;276:16168–16176. doi: 10.1074/jbc.M010120200. PubMed DOI
Lee JH, Park JW. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity induces apoptosis and hypertrophy of H9c2 cardiomyocytes. Biochimie. 2014;99:110–118. doi: 10.1016/j.biochi.2013.11.016. PubMed DOI
Liu KX, Li C, Li YS, Yuan BL, Xu M, Xia Z, Huang WQ. Proteomic analysis of intestinal ischemia/reperfusion injury and ischemic preconditioning in rats reveals the protective role of aldose reductase. Proteomics. 2010;10:4463–4475. doi: 10.1002/pmic.201000078. PubMed DOI
Baba SP, Zhang D, Singh M, Dassanayaka S, Xie Z, Jagatheesan G, Zhao J, et al. Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. J Mol Cell Cardiol. 2018;118:183–192. doi: 10.1016/j.yjmcc.2018.04.002. PubMed DOI PMC
Levrand S, Pacher P, Pesse B, Rolli J, Feihl F, Waeber B, Liaudet L. Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commun. 2007;359:445–450. doi: 10.1016/j.bbrc.2007.05.147. PubMed DOI PMC
Sood HS, Cox MJ, Tyagi SC. Generation of nitrotyrosine precedes activation of metalloproteinase in myocardium of hyperhomocysteinemic rats. Antioxid Redox Signal. 2002;4:799–804. doi: 10.1089/152308602760598954. PubMed DOI
Kundu S, Kumar M, Sen U, Mishra PK, Tyagi N, Metreveli N, Lominadze D, et al. Nitrotyrosinylation, remodeling and endothelial-myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. J Cell Biochem. 2009;106:119–126. doi: 10.1002/jcb.21982. PubMed DOI PMC