Spatio-temporal mechanisms of consolidation, recall and reconsolidation in reward-related memory trace

. 2025 Apr ; 30 (4) : 1319-1328. [epub] 20240913

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39271752

Grantová podpora
Sonata-bis 2014/14/E/NZ4/00172 Narodowe Centrum Nauki (National Science Centre)
Opus 2018/29/B/NZ7/02021 Narodowe Centrum Nauki (National Science Centre)
Opus Opus 2023/51/B/NZ7/02350 Narodowe Centrum Nauki (National Science Centre)

Odkazy

PubMed 39271752
PubMed Central PMC11919705
DOI 10.1038/s41380-024-02738-8
PII: 10.1038/s41380-024-02738-8
Knihovny.cz E-zdroje

The formation of memories is a complex, multi-scale phenomenon, especially when it involves integration of information from various brain systems. We have investigated the differences between a novel and consolidated association of spatial cues and amphetamine administration, using an in situ hybridisation method to track the short-term dynamics during the recall testing. We have found that remote recall group involves smaller, but more consolidated groups of neurons, which is consistent with their specialisation. By employing machine learning analysis, we have shown this pattern is especially pronounced in the VTA; furthermore, we also uncovered significant activity patterns in retrosplenial and prefrontal cortices, as well as in the DG and CA3 subfields of the hippocampus. The behavioural propensity towards the associated localisation appears to be driven by the nucleus accumbens, however, further modulated by a trio of the amygdala, VTA and hippocampus, as the trained association is confronted with test experience. Moreover, chemogenetic analysis revealed central amygdala as critical for linking appetitive emotional states with spatial contexts. These results show that memory mechanisms must be modelled considering individual differences in motivation, as well as covering dynamics of the process.

Zobrazit více v PubMed

Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51–86. PubMed

Behrens TE, Muller TH, Whittington JC, Mark S, Baram AB, Stachenfeld KL, et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 2018;100:490–509. PubMed

O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res. 1978;31:573–90. PubMed

Mizumori SJ, Ragozzino K, Cooper B, Leutgeb S. Hippocampal representational organization and spatial context. Hippocampus 1999;9:444–51. PubMed

Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci. 2001;21:1635–44. PubMed PMC

O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–5. PubMed

O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109. PubMed

Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci. 2008;31:69–89. PubMed

Dumont JR, Taube JS. The neural correlates of navigation beyond the hippocampus. Prog Brain Res. 2015;219:83–102. PubMed

Grieves RM, Jeffery KJ. The representation of space in the brain. Behav Process. 2017;135:113–31. PubMed

Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 2011;332:595–9. PubMed PMC

Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 2005;46:703–13. PubMed

Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G. Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 2011;333:353–7. PubMed PMC

Golebiowska J, Hołuj M, Potasiewicz A, Piotrowska D, Kuziak A, Popik P, et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci Rep. 2019;9:20283. PubMed PMC

Ikemoto S, Panksepp J. The effects of early social isolation on the motivation for social play in juvenile rats. Developmental Psychobiology: The. J Int Soc Dev Psychobiol. 1992;25:261–74. PubMed

Hamed A, Kursa MB. Social deprivation substantially changes multi-structural neurotransmitter signature of social interaction: glutamate concentration in amygdala and VTA as a key factor in social encounter-induced 50-kHz ultrasonic vocalization. Eur Neuropsychopharmacol. 2020;37:82–99. PubMed

Simola N, Fenu S, Costa G, Pinna A, Plumitallo A, Morelli M. Pharmacological characterization of 50-kHz ultrasonic vocalizations in rats: Comparison of the effects of different psychoactive drugs and relevance in drug-induced reward. Neuropharmacology 2012;63:224–34. PubMed

Hamed A, Daszczuk P, Kursa MB, Turzyńska D, Sobolewska A, Lehner M, et al. Non-parametric analysis of neurochemical effects and arc expression in amphetamine-induced 50-kHz ultrasonic vocalization. Behav Brain Res. 2016;312:174–85. PubMed

Bijoch Ł, Klos J, Pawłowska M, Wiśniewska J, Legutko D, Szachowicz U, et al. Whole-brain tracking of cocaine and sugar rewards processing. Transl Psychiatry 2023;13:20. PubMed PMC

Leith NJ, Barrett RJ. Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia 1976;46:19–25. PubMed

Jones S, Kornblum JL, Kauer JA. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J Neurosci. 2000;20:5575–80. PubMed PMC

Mulvihill KG, Brudzynski SM. Individual behavioural predictors of amphetamine-induced emission of 50 kHz vocalization in rats. Behav Brain Res. 2018;350:80–6. PubMed

Costa G, Morelli M, Simola N. Involvement of glutamate NMDA receptors in the acute, long-term, and conditioned effects of amphetamine on rat 50kHz ultrasonic vocalizations. Int J Neuropsychopharmacol. 2015;18:pyv057. PubMed PMC

Taracha E, Hamed A, Krząścik P, Lehner M, Skórzewska A, Płaźnik A, et al. Inter-individual diversity and intra-individual stability of amphetamine-induced sensitization of frequency-modulated 50-kHz vocalization in sprague–dawley rats. Psychopharmacology 2012;222:619–32. PubMed PMC

Barry DN, Commins S. Imaging spatial learning in the brain using immediate early genes: insights, opportunities and limitations. Rev Neurosci. 2011;22:131–42. PubMed

Balcerek E, Włodkowska U, Czajkowski R. Retrosplenial cortex in spatial memory: focus on immediate early genes mapping. Mol Brain 2021;14:1–17. PubMed PMC

Jaworski J, Kalita K, Knapska E. C-fos and neuronal plasticity: the aftermath of kaczmarek’s theory. Acta Neurobiol Exp. 2018;78:287–96. PubMed

Kubik S, Miyashita T, Guzowski JF. Using immediate-early genes to map hippocampal subregional functions. Learn Mem. 2007;14:758–70. PubMed

Sauvage M, Kitsukawa T, Atucha E. Single-cell memory trace imaging with immediate-early genes. J Neurosci Methods. 2019;326:108368. PubMed

Squire LR, Genzel L, Wixted JT, Morris RG. Memory consolidation. Cold Spring Harb Perspect Biol. 2015;7:a021766. PubMed PMC

Guzowski JF, Worley PF. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr Protoc Neurosci. 2001;15:1–8. PubMed

Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.

Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:1–6. PubMed PMC

Polter AM, Kauer JA. Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci. 2014;39:1179–88. PubMed PMC

Cohen AO, Glover MM, Shen X, Phaneuf CV, Avallone KN, Davachi L, et al. Reward enhances memory via age-varying online and offline neural mechanisms across development. J Neurosci. 2022;42:6424–34. PubMed PMC

Díaz FC, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev. 2021;131:953–63. PubMed

Hainmueller T, Bartos M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci. 2020;21:153–68. PubMed PMC

Floresco SB, Montes DR, Maric M, Holstein Mvan. Differential contributions of nucleus accumbens subregions to cue-guided risk/reward decision making and implementation of conditional rules. J Neurosci. 2018;38:1901–14. PubMed PMC

Sohn S, Kim S, Yang JH, Choe ES. Linking of NMDA receptors and mGluR5 in the nucleus accumbens core to repeated cocaine-induced 50-kHz ultrasonic vocalization in rats. Addict Biol. 2022;27:e13084. PubMed

Brudzynski SM, Komadoski M, Pierre JS. Quinpirole-induced 50 kHz ultrasonic vocalization in the rat: Role of D2 and D3 dopamine receptors. Behav Brain Res. 2012;226:511–8. PubMed

Burgdorf J, Knutson B, Panksepp J, Ikemoto S. Nucleus accumbens amphetamine microinjections unconditionally elicit 50-kHz ultrasonic vocalizations in rats. Behav Neurosci. 2001;115:940. PubMed

Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol. 2010;90:385–417. PubMed

Bornstein AM, Daw ND. Multiplicity of control in the basal ganglia: Computational roles of striatal subregions. Curr Opin Neurobiol. 2011;21:374–80. PubMed PMC

Khamassi M, Humphries MD. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci. 2012;6:79. PubMed PMC

Martin PD, Ono T. Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats. Behav Brain Res. 2000;116:23–38. PubMed

Groenewegen H, Room P, Witter M, Lohman A. Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 1982;7:977–96. PubMed

Jayaraman A. Organization of thalamic projections in the nucleus accumbens and the caudate nucleus in cats and its relation with hippocampal and other subcortical afferents. J Comp Neurol. 1985;231:396–420. PubMed

Powell EW, Leman RB. Connections of the nucleus accumbens. Brain Res. 1976;105:389–403. PubMed

Zahm D, Brog J. On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 1992;50:751–67. PubMed

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21:1281–9. PubMed

Vazdarjanova A, Guzowski JF. Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci. 2004;24:6489–96. PubMed PMC

Chawla MK, Lin G, Olson K, Vazdarjanova A, Burke SN, McNaughton BL, et al. 3D-catFISH: A system for automated quantitative three-dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization. J Neurosci methods. 2004;139:13–24. PubMed

Kubik S, Miyashita T, Kubik-Zahorodna A, Guzowski JF. Loss of activity-dependent arc gene expression in the retrosplenial cortex after hippocampal inactivation: Interaction in a higher-order memory circuit. Neurobiol Learn Mem. 2012;97:124–31. PubMed

Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Hard cover ed. Germany: Elsevier; 2006.

Ng H, Ong S, Foong K, Goh PS, Nowinski W. Medical image segmentation using k-means clustering and improved watershed algorithm. Denver, CO, USA: IEEE; 2006. p. 61–5.

Bonaventura J, Eldridge MAG, Hu F, Gomez JL, Sanchez-Soto M, Abramyan AM, et al. High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat. Commun. 2019;10. PubMed PMC

Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...