Spatio-temporal mechanisms of consolidation, recall and reconsolidation in reward-related memory trace
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Sonata-bis 2014/14/E/NZ4/00172
Narodowe Centrum Nauki (National Science Centre)
Opus 2018/29/B/NZ7/02021
Narodowe Centrum Nauki (National Science Centre)
Opus Opus 2023/51/B/NZ7/02350
Narodowe Centrum Nauki (National Science Centre)
PubMed
39271752
PubMed Central
PMC11919705
DOI
10.1038/s41380-024-02738-8
PII: 10.1038/s41380-024-02738-8
Knihovny.cz E-zdroje
- MeSH
- amfetamin farmakologie MeSH
- amygdala fyziologie metabolismus MeSH
- hipokampus fyziologie metabolismus MeSH
- konsolidace paměti * fyziologie účinky léků MeSH
- krysa rodu Rattus MeSH
- mozek fyziologie MeSH
- neurony fyziologie MeSH
- nucleus accumbens fyziologie MeSH
- odměna MeSH
- paměť fyziologie MeSH
- podněty MeSH
- prefrontální mozková kůra fyziologie MeSH
- rozpomínání * fyziologie účinky léků MeSH
- strojové učení MeSH
- tegmentum mesencephali - area ventralis fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amfetamin MeSH
The formation of memories is a complex, multi-scale phenomenon, especially when it involves integration of information from various brain systems. We have investigated the differences between a novel and consolidated association of spatial cues and amphetamine administration, using an in situ hybridisation method to track the short-term dynamics during the recall testing. We have found that remote recall group involves smaller, but more consolidated groups of neurons, which is consistent with their specialisation. By employing machine learning analysis, we have shown this pattern is especially pronounced in the VTA; furthermore, we also uncovered significant activity patterns in retrosplenial and prefrontal cortices, as well as in the DG and CA3 subfields of the hippocampus. The behavioural propensity towards the associated localisation appears to be driven by the nucleus accumbens, however, further modulated by a trio of the amygdala, VTA and hippocampus, as the trained association is confronted with test experience. Moreover, chemogenetic analysis revealed central amygdala as critical for linking appetitive emotional states with spatial contexts. These results show that memory mechanisms must be modelled considering individual differences in motivation, as well as covering dynamics of the process.
BRAINCITY Nencki Institute of Experimental Biology Polish Academy of Sciences Warsaw Poland
Institute of Physiology Academy of Sciences of the Czech Republic Praha Czechia
Zobrazit více v PubMed
Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51–86. PubMed
Behrens TE, Muller TH, Whittington JC, Mark S, Baram AB, Stachenfeld KL, et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 2018;100:490–509. PubMed
O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res. 1978;31:573–90. PubMed
Mizumori SJ, Ragozzino K, Cooper B, Leutgeb S. Hippocampal representational organization and spatial context. Hippocampus 1999;9:444–51. PubMed
Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci. 2001;21:1635–44. PubMed PMC
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–5. PubMed
O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109. PubMed
Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci. 2008;31:69–89. PubMed
Dumont JR, Taube JS. The neural correlates of navigation beyond the hippocampus. Prog Brain Res. 2015;219:83–102. PubMed
Grieves RM, Jeffery KJ. The representation of space in the brain. Behav Process. 2017;135:113–31. PubMed
Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 2011;332:595–9. PubMed PMC
Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 2005;46:703–13. PubMed
Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G. Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 2011;333:353–7. PubMed PMC
Golebiowska J, Hołuj M, Potasiewicz A, Piotrowska D, Kuziak A, Popik P, et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci Rep. 2019;9:20283. PubMed PMC
Ikemoto S, Panksepp J. The effects of early social isolation on the motivation for social play in juvenile rats. Developmental Psychobiology: The. J Int Soc Dev Psychobiol. 1992;25:261–74. PubMed
Hamed A, Kursa MB. Social deprivation substantially changes multi-structural neurotransmitter signature of social interaction: glutamate concentration in amygdala and VTA as a key factor in social encounter-induced 50-kHz ultrasonic vocalization. Eur Neuropsychopharmacol. 2020;37:82–99. PubMed
Simola N, Fenu S, Costa G, Pinna A, Plumitallo A, Morelli M. Pharmacological characterization of 50-kHz ultrasonic vocalizations in rats: Comparison of the effects of different psychoactive drugs and relevance in drug-induced reward. Neuropharmacology 2012;63:224–34. PubMed
Hamed A, Daszczuk P, Kursa MB, Turzyńska D, Sobolewska A, Lehner M, et al. Non-parametric analysis of neurochemical effects and arc expression in amphetamine-induced 50-kHz ultrasonic vocalization. Behav Brain Res. 2016;312:174–85. PubMed
Bijoch Ł, Klos J, Pawłowska M, Wiśniewska J, Legutko D, Szachowicz U, et al. Whole-brain tracking of cocaine and sugar rewards processing. Transl Psychiatry 2023;13:20. PubMed PMC
Leith NJ, Barrett RJ. Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia 1976;46:19–25. PubMed
Jones S, Kornblum JL, Kauer JA. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J Neurosci. 2000;20:5575–80. PubMed PMC
Mulvihill KG, Brudzynski SM. Individual behavioural predictors of amphetamine-induced emission of 50 kHz vocalization in rats. Behav Brain Res. 2018;350:80–6. PubMed
Costa G, Morelli M, Simola N. Involvement of glutamate NMDA receptors in the acute, long-term, and conditioned effects of amphetamine on rat 50kHz ultrasonic vocalizations. Int J Neuropsychopharmacol. 2015;18:pyv057. PubMed PMC
Taracha E, Hamed A, Krząścik P, Lehner M, Skórzewska A, Płaźnik A, et al. Inter-individual diversity and intra-individual stability of amphetamine-induced sensitization of frequency-modulated 50-kHz vocalization in sprague–dawley rats. Psychopharmacology 2012;222:619–32. PubMed PMC
Barry DN, Commins S. Imaging spatial learning in the brain using immediate early genes: insights, opportunities and limitations. Rev Neurosci. 2011;22:131–42. PubMed
Balcerek E, Włodkowska U, Czajkowski R. Retrosplenial cortex in spatial memory: focus on immediate early genes mapping. Mol Brain 2021;14:1–17. PubMed PMC
Jaworski J, Kalita K, Knapska E. C-fos and neuronal plasticity: the aftermath of kaczmarek’s theory. Acta Neurobiol Exp. 2018;78:287–96. PubMed
Kubik S, Miyashita T, Guzowski JF. Using immediate-early genes to map hippocampal subregional functions. Learn Mem. 2007;14:758–70. PubMed
Sauvage M, Kitsukawa T, Atucha E. Single-cell memory trace imaging with immediate-early genes. J Neurosci Methods. 2019;326:108368. PubMed
Squire LR, Genzel L, Wixted JT, Morris RG. Memory consolidation. Cold Spring Harb Perspect Biol. 2015;7:a021766. PubMed PMC
Guzowski JF, Worley PF. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr Protoc Neurosci. 2001;15:1–8. PubMed
Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.
Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:1–6. PubMed PMC
Polter AM, Kauer JA. Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci. 2014;39:1179–88. PubMed PMC
Cohen AO, Glover MM, Shen X, Phaneuf CV, Avallone KN, Davachi L, et al. Reward enhances memory via age-varying online and offline neural mechanisms across development. J Neurosci. 2022;42:6424–34. PubMed PMC
Díaz FC, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev. 2021;131:953–63. PubMed
Hainmueller T, Bartos M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci. 2020;21:153–68. PubMed PMC
Floresco SB, Montes DR, Maric M, Holstein Mvan. Differential contributions of nucleus accumbens subregions to cue-guided risk/reward decision making and implementation of conditional rules. J Neurosci. 2018;38:1901–14. PubMed PMC
Sohn S, Kim S, Yang JH, Choe ES. Linking of NMDA receptors and mGluR5 in the nucleus accumbens core to repeated cocaine-induced 50-kHz ultrasonic vocalization in rats. Addict Biol. 2022;27:e13084. PubMed
Brudzynski SM, Komadoski M, Pierre JS. Quinpirole-induced 50 kHz ultrasonic vocalization in the rat: Role of D2 and D3 dopamine receptors. Behav Brain Res. 2012;226:511–8. PubMed
Burgdorf J, Knutson B, Panksepp J, Ikemoto S. Nucleus accumbens amphetamine microinjections unconditionally elicit 50-kHz ultrasonic vocalizations in rats. Behav Neurosci. 2001;115:940. PubMed
Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol. 2010;90:385–417. PubMed
Bornstein AM, Daw ND. Multiplicity of control in the basal ganglia: Computational roles of striatal subregions. Curr Opin Neurobiol. 2011;21:374–80. PubMed PMC
Khamassi M, Humphries MD. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci. 2012;6:79. PubMed PMC
Martin PD, Ono T. Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats. Behav Brain Res. 2000;116:23–38. PubMed
Groenewegen H, Room P, Witter M, Lohman A. Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 1982;7:977–96. PubMed
Jayaraman A. Organization of thalamic projections in the nucleus accumbens and the caudate nucleus in cats and its relation with hippocampal and other subcortical afferents. J Comp Neurol. 1985;231:396–420. PubMed
Powell EW, Leman RB. Connections of the nucleus accumbens. Brain Res. 1976;105:389–403. PubMed
Zahm D, Brog J. On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 1992;50:751–67. PubMed
Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21:1281–9. PubMed
Vazdarjanova A, Guzowski JF. Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci. 2004;24:6489–96. PubMed PMC
Chawla MK, Lin G, Olson K, Vazdarjanova A, Burke SN, McNaughton BL, et al. 3D-catFISH: A system for automated quantitative three-dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization. J Neurosci methods. 2004;139:13–24. PubMed
Kubik S, Miyashita T, Kubik-Zahorodna A, Guzowski JF. Loss of activity-dependent arc gene expression in the retrosplenial cortex after hippocampal inactivation: Interaction in a higher-order memory circuit. Neurobiol Learn Mem. 2012;97:124–31. PubMed
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Hard cover ed. Germany: Elsevier; 2006.
Ng H, Ong S, Foong K, Goh PS, Nowinski W. Medical image segmentation using k-means clustering and improved watershed algorithm. Denver, CO, USA: IEEE; 2006. p. 61–5.
Bonaventura J, Eldridge MAG, Hu F, Gomez JL, Sanchez-Soto M, Abramyan AM, et al. High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat. Commun. 2019;10. PubMed PMC
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.