Mammals show faster recovery from capture and tagging in human-disturbed landscapes

. 2024 Sep 15 ; 15 (1) : 8079. [epub] 20240915

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39278967

Grantová podpora
R01 GM083863 NIGMS NIH HHS - United States

Odkazy

PubMed 39278967
PubMed Central PMC11402999
DOI 10.1038/s41467-024-52381-8
PII: 10.1038/s41467-024-52381-8
Knihovny.cz E-zdroje

Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals.

Alaska Department of Fish and Game Wildlife Division 11255 W 8th Street AK USA

Amarula Elephant Research Programme School of Life Sciences University of KwaZulu Natal Durban 4041 South Africa

Animal Behavior Graduate Group University of California Davis CA 95616 USA

Animal Ecology Institute of Biochemistry and Biology University of Potsdam 14469 Potsdam Germany

Arctic Research Centre Aarhus University Aarhus Denmark

Biodiversity Research Centre Agriculture and Natural Resources Sciences Namibia University of Science and Technology Windhoek Namibia

Bionet Natuuronderzoek Stein Netherlands

Büro Renala Gülper Hauptstr 4 14715 Havelaue Germany

Center for Ecological Sciences Indian Institute of Science Bengaluru 560012 India

Center for Integrated Spatial Research Environmental Studies Department University of California Santa Cruz CA 95060 USA

Centre for Biodiversity and Conservation Ashoka Trust for Research in Ecology and the Environment Bangalore India

Chair of Wildlife Ecology and Management Faculty of Environment and Natural Resources University of Freiburg Tennenbacher Straße 4 79106 Freiburg Germany

Copenhagen Zoo Frederiksberg Denmark

Danau Girang Field Centre Sabah Wildlife Department 88100 Kota Kinabalu Sabah Malaysia

Departamento de Ciencias Integradas Facultad de Ciencias Experimentales Centro de Estudios Avanzados en Física Matemáticas y Computación Universidad de Huelva Huelva Spain

Department of Anthropology University of California Davis CA 95616 USA

Department of Behavioural Ecology Bielefeld University Bielefeld Germany

Department of Biological Sciences Chicago State University 9501 S King Drive Chicago IL 60628 USA

Department of Biological Sciences Goethe University 60438 Frankfurt Germany

Department of Biology St Louis University St Louis MO USA

Department of Biology University of British Columbia 1177 Research Road Kelowna British Columbia Canada

Department of Ecoscience Aarhus University Roskilde Denmark

Department of Environmental Science Policy and Management 130 Mulford Hall University of California at Berkeley Berkeley CA 94720 3112 USA

Department of Environmental Science Radboud Institute for Biological and Environmental Sciences Radboud University P O Box 9010 6500 GL Nijmegen Netherlands

Department of Evolutionary Biology and Environmental Studies University of Zurich 8057 Zurich Switzerland

Department of Fisheries and Wildlife Michigan State University East Lansing MI USA

Department of Forest Ecology Faculty of Forestry and Wood Technology Mendel University 613 00 Brno Czech Republic

Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcká 129 Prague 6 Suchdol 165 00 Czech Republic

Department of Genetics Evolution and Environment University College London WC1E 6BT UK

Department of Integrative Biology and Biodiversity Research University of Natural Resources and Life Sciences Vienna Gregor Mendel Straße 33 1180 Vienna Austria

Department of Integrative Biology and Evolution Research Institute of Wildlife Ecology University of Veterinary Medicine Savoyenstraße 1 1160 Vienna Austria

Department of Life Science and Biotechnology University of Ferrara Via Borsari 46 1 44121 Ferrara Italy

Department of National Park Monitoring and Animal Management Bavarian Forest National Park Freyunger Str 2 94481 Grafenau Germany

Department of Sociobiology Anthropology University of Göttingen 37077 Göttingen Germany

Department of Veterinary Medicine University of Sassari Via Vienna 2 07100 Sassari Italy

Department of Wildlife Fisheries and Aquaculture Mississippi State University Mississippi State MS USA

Department of Zoology and Physiology University of Wyoming Laramie WY 82071 USA

Dipertimento di agronomia animali alimenti risorse naturali e ambiente Università degli Studi di Padova 35020 Legnaro PD Italy

Ecology and Macroecology Laboratory Institute for Biochemistry and Biology University of Potsdam 14469 Potsdam Germany

Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas Sevilla Spain

Evolutionary Biology Systematic Zoology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany

German Primate Center Behavioral Ecology and Sociobiology Unit 37077 Göttingen Germany

Gran Paradiso National Park Turin Italy

Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences 730 91 Riddarhyttan Sweden

Hunting Association of Lower Austria Wickenburggasse 3 1080 Vienna Austria

Institute of Ecology Chair of Planning Related Animal Ecology Technische Universität Berlin Potsdam Germany

Institute of Forestry and Wildlife Management Inland Norway University of Applied Science NO 2480 Koppang Norway

Institute of Nature Conservation Polish Academy of Sciences 31 120 Kraków Poland

Leibniz Institute for Zoo and Wildlife Research Berlin Germany

Mammal Research Institute Polish Academy of Sciences Stoczek 1 17 230 Białowieża Poland

Mpala Research Centre 555 10400 Nanyuki Kenya

NBFC National Biodiversity Future Centre Palermo 90133 Italy

Norwegian Institute for Nature Research P O Box 5685 Torgarden NO 7485 Trondheim Norway

Office Français de la Biodiversité Montfort 01330 Birieux France

Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF10 3AX UK

Panthera 8 W 40th St 18th Floor New York NY 10018 USA

Plant Ecology and Nature Conservation Institute of Biochemistry and Biology University of Potsdam 14469 Potsdam Germany

Research and Innovation Centre Animal Ecology Unit Fondazione Edmund Mach San Michele all'Adige Trento Italy

Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna A 1160 Vienna Austria

School of Business Innovation and Sustainability Halmstad University Halmstad Sweden

School of Life Sciences University of KwaZulu Natal Durban South Africa

School of Mathematical Sciences University of KwaZulu Natal Private Bag X54001 Durban 4000 South Africa

Senckenberg Biodiversity and Climate Research Centre Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt Germany

Smithsonian Conservation Biology Institute National Zoological Park Front Royal VA USA

Tatra National Park Zakopane Poland

Technische Universität München Arcisstraße 21 80333 München Germany

Texas A and M Natural Resources Institute and Department of Rangeland Wildlife and Fisheries Management Texas A and M University College Station TX 77843 2138 USA

Tragsatec C de Julián Camarillo 6B San Blas Canillejas 28037 Madrid Spain

Université de Toulouse INRAE CEFS Castanet Tolosan France

Wellcome Trust DBT India Alliance Clinical and Public Health Program Bengaluru India

WildCare Institute Saint Louis Zoo 1 Government Drive Saint Louis MO 63110 USA

Wildlife Conservation Society Mongolia Program Ulaanbaatar Mongolia

Wildlife Research Unit Agricultural Centre Baden Wuerttemberg 88326 Aulendorf Germany

Zobrazit více v PubMed

Hebblewhite, M. & Haydon, D. T. Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B Biol. Sci.365, 2303–2312 (2010).10.1098/rstb.2010.0087 PubMed DOI PMC

Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl Acad. Sci. USA105, 19052–19059 (2008). 10.1073/pnas.0800375105 PubMed DOI PMC

Jeltsch, F. et al. Integrating movement ecology with biodiversity research—exploring new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol.1, 6 (2013). 10.1186/2051-3933-1-6 PubMed DOI PMC

Schlägel, U. E. et al. Movement-mediated community assembly and coexistence. Biol. Rev.95, 1073–1096 (2020). 10.1111/brv.12600 PubMed DOI

Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol.3, 155 (2016).

Handcock, R. et al. Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors9, 3586–3603 (2009). 10.3390/s90503586 PubMed DOI PMC

Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science348, 6340 (2015). PubMed

Jetz, W., Tertitski, G., Kays, R., Mueller, U. & Wikelski, M. Biological earth observation with animal sensors. Trend. Ecol. Evol.37, 719–724 (2022).10.1016/j.tree.2022.04.012 PubMed DOI

Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science375, eabg1780 (2022). PubMed

Wilmers, C. C. et al. The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. Ecology96, 1741–1753 (2015). 10.1890/14-1401.1 PubMed DOI

Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A. & Jensen, F. H. Challenges and solutions for studying collective animal behaviour in the wild. Philos.Trans. R Soc. B Biol. Sci.373, 20170005 (2018).10.1098/rstb.2017.0005 PubMed DOI PMC

Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: a reappraisal. J. Animal Ecol.89, 161–172 (2020).10.1111/1365-2656.13040 PubMed DOI PMC

Qasem, L. et al. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE7, e31187 (2012). 10.1371/journal.pone.0031187 PubMed DOI PMC

Martín López, L. M., Miller, P. J. O., Aguilar de Soto, N. & Johnson, M. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives. J. Exp. Biol.218, 1325–1338 (2015). 10.1242/jeb.106013 PubMed DOI

Gunner, R. M. et al. A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis. Ecol. Evol.10, 7872–7886 (2020). 10.1002/ece3.6515 PubMed DOI PMC

Wilson, R. P. et al. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J. Animal Ecol.75, 1081–1090 (2006).10.1111/j.1365-2656.2006.01127.x PubMed DOI

Gleiss, A. C., Wilson, R. P. & Shepard, E. L. C. Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol. Evol.2, 23–33 (2011).10.1111/j.2041-210X.2010.00057.x DOI

Cooke, S. J. et al. Biotelemetry: a mechanistic approach to ecology. Trend Ecol. Evol.19, 334–343 (2004).10.1016/j.tree.2004.04.003 PubMed DOI

McGowan, J. et al. Integrating research using animal-borne telemetry with the needs of conservation management. J. Appl. Ecol.54, 423–429 (2017).10.1111/1365-2664.12755 DOI

Godfrey, J. & Bryant, D. Effects of radio transmitters: review of recent radio-tracking studies. In Conservation Applications of Mmeasuring Energy Expenditure of New Zealand Birds: Assessing Habitat Quality and Costs of Carrying Radio Transmitters. (ed. Williams, M.) 83–95 (Department of Conservation, 2003).

Mech, D. L. & Barber, S. M. A Critique of Wildlife Radio-Tracking and Its Use in National Parks: a Report to the National Park Service, US Geological Survey.https://pubs.usgs.gov/publication/93895 (2002).

Ropert-Coudert, Y. & Wilson, R. Subjectivity in bio-logging science: do logged data mislead? Mem. Nat. Inst. Polar Res.58, 23–33 (2004).

Healy, M., Chiaradia, A., Kirkwood, R. & Dann, P. Balance: a neglected factor when attaching external devices to penguins. Memoirs Nat. Inst. Polar Res.Special Issue, 179–182 (2004).

Powell, R. A. & Proulx, G. Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense. ILAR J.44, 259–276 (2003). 10.1093/ilar.44.4.259 PubMed DOI

Iossa, G., Soulsbury, C. & Harris, S. Mammal trapping: a review of animal welfare standards of killing and restraining traps. Animal Welfare16, 335–352 (2007).10.1017/S0962728600027159 DOI

Morellet, N. et al. The effect of capture on ranging behaviour and activity of the European Roe deer (Capreolus capreolus). Wildlife Biol.15, 278–287 (2009).10.2981/08-084 DOI

Northrup, J. M., Anderson, C. R. & Wittemyer, G. Effects of helicopter capture and handling on movement behavior of mule deer. J. Wildlife Manag.78, 731–738 (2014).10.1002/jwmg.705 DOI

Brogi, R. et al. Capture effects in wild boar: a multifaceted behavioural investigation. Wildlife Biol.2019, 1–10 (2019).

Theil, P. K., Coutant, A. E. & Olesen, C. R. Seasonal changes and activity-dependent variation in heart rate of Roe deer. J. Mammal.85, 245–253 (2004).10.1644/1545-1542(2004)085<0245:SCAAVI>2.0.CO;2 DOI

Grandin, T. & Shivley, C. How farm animals react and perceive stressful situations such as handling, restraint, and transport. Animals5, 1233–1251 (2015). 10.3390/ani5040409 PubMed DOI PMC

Bergvall, U. A. et al. Settle down! ranging behaviour responses of Roe deer to different capture and release methods. Animals11, 3299 (2021). 10.3390/ani11113299 PubMed DOI PMC

Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: implications for wildlife welfare and research. J. Mammal.89, 973–990 (2008).10.1644/08-MAMM-A-095.1 DOI

Alibhai, S. K., Jewell, Z. C. & Towindo, S. S. Effects of immobilization on fertility in female black rhino (Diceros bicornis). J. Zool.253, 333–345 (2001).10.1017/S0952836901000309 DOI

Harcourt, R. G., Turner, E., Hall, A., Waas, J. R. & Hindell, M. Effects of capture stress on free-ranging, reproductively active male Weddell seals. J. Comp. Physiol. A196, 147–154 (2010).10.1007/s00359-009-0501-0 PubMed DOI

Salvo, A. D. Chemical and physical restraint of African wild animals. J. Wildlife Dis.58, 951–953 (2022).

Pelletier, F., Hogg, J. T. & Festa-Bianchet, M. Effect of chemical immobilization on social status of bighorn rams. Animal Behav.67, 1163–1165 (2004).10.1016/j.anbehav.2003.07.009 DOI

Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: the case study of chemical immobilisation on Alpine ibex. PLoS ONE10, e0130957 (2015). 10.1371/journal.pone.0130957 PubMed DOI PMC

Arnemo, J. M. et al. Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildlife Biol.12, 109–113 (2006).10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2 DOI

Jacques, C. N. et al. Evaluating ungulate mortality associated with helicopter net-gun captures in the Northern great plains. J. Wildlife Manag.73, 1282–1291 (2009).10.2193/2009-039 DOI

Wilson, R. P. et al. Animal lifestyle affects acceptable mass limits for attached tags. Proc. R. Soc. B Biol. Sci.288, 20212005 (2021). PubMed PMC

McIntyre, T. Animal telemetry: tagging effects. Science349, 596–597 (2015). 10.1126/science.349.6248.596-b PubMed DOI

Brooks, C., Bonyongo, C. & Harris, S. Effects of global positioning system collar weight on zebra behavior and location error. J. Wildlife Manag.72, 527–534 (2008).10.2193/2007-061 DOI

Stabach, J. A. et al. Short-term effects of GPS collars on the activity, behavior, and adrenal response of scimitar-horned oryx (Oryx dammah). PLoS ONE15, e0221843 (2020). 10.1371/journal.pone.0221843 PubMed DOI PMC

Wilson, R. P. & McMahon, C. R. Measuring devices on wild animals: what constitutes acceptable practice? Front. Ecol. Environ.4, 147–154 (2006).10.1890/1540-9295(2006)004[0147:MDOWAW]2.0.CO;2 DOI

van de Bunte, W., Weerman, J. & Hof, A. R. Potential effects of GPS collars on the behaviour of two red pandas (Ailurus fulgens) in Rotterdam Zoo. PLoS ONE16, e0252456 (2021). 10.1371/journal.pone.0252456 PubMed DOI PMC

Becciolini, V., Lanini, F. & Ponzetta, M. P. Impact of capture and chemical immobilization on the spatial behaviour of red deer Cervus elaphus hinds. Wildlife Biol.2019, wlb.00499 (2019).

Mortensen, R. M. & Rosell, F. Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal. Sci. Rep.10, 17886 (2020). 10.1038/s41598-020-74933-w PubMed DOI PMC

Chi, D., Chester, D., Ranger, W. & Gilbert, B. Effects of capture procedures on black bear activity at an Alaskan Salmon stream. Ursus10, 563–569 (1998).

Hawkins, P. Bio-logging and animal welfare: practical refinements. Mem. Natl Inst. Polar Res. Spec. Issue58, 58–68 (2004).

Gehrt, S. D., Anchor, C. & White, L. A. Home range and landscape use of coyotes in a metropolitan landscape: conflict or coexistence? J. Mammal.90, 1045–1057 (2009).10.1644/08-MAMM-A-277.1 DOI

Prange, S., Gehrt, S. D. & Wiggers, E. P. Influences of anthropogenic resources on Raccoon (Procyon lotor) movements and spatial distribution. J. Mammal.85, 483–490 (2004).10.1644/BOS-121 DOI

Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun.6, 8877 (2015). 10.1038/ncomms9877 PubMed DOI PMC

Tucker, M. A. et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science359, 466–469 (2018). 10.1126/science.aam9712 PubMed DOI

Ciuti, S. et al. Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS ONE7, e50611 (2012). 10.1371/journal.pone.0050611 PubMed DOI PMC

Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science360, 1232–1235 (2018). 10.1126/science.aar7121 PubMed DOI

Chinnadurai, S. K., Strahl-Heldreth, D., Fiorello, C. V. & Harms, C. A. Best-practice guidelines for field-based surgery and anesthesia of free-ranging wildlife. I. Anesthesia and analgesia. J. Wildlife Dis.52, S14–S27 (2016).10.7589/52.2S.S14 PubMed DOI

Neumann, W., Ericsson, G., Dettki, H. & Arnemo, J. M. Effect of immobilizations on the activity and space use of female moose (Alces alces). Can. J. Zool.89, 1013–1018 (2011).10.1139/z11-076 DOI

Woodroffe, R. & Vincent, A. Mother’s little helpers: patterns of male care in mammals. Trend. Ecol. Evol.9, 294–297 (1994).10.1016/0169-5347(94)90033-7 PubMed DOI

Roche, D. G., Careau, V. & Binning, S. A. Demystifying animal ‘personality’ (or not): why individual variation matters to experimental biologists. J. Exp. Biol.219, 3832–3843 (2016). PubMed

Sloan Wilson, D., Clark, A. B., Coleman, K. & Dearstyne, T. Shyness and boldness in humans and other animals. Trend. Ecol. Evol.9, 442–446 (1994).10.1016/0169-5347(94)90134-1 PubMed DOI

Schirmer, A., Herde, A., Eccard, J. A. & Dammhahn, M. Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia189, 647–660 (2019). 10.1007/s00442-019-04365-5 PubMed DOI PMC

Lingle, S. & Pellis, S. Fight or flight? antipredator behavior and the escalation of coyote encounters with deer. Oecologia131, 154–164 (2002). 10.1007/s00442-001-0858-4 PubMed DOI

Quick, J. C. & Spielberger, C. D. Walter Bradford Cannon: pioneer of stress research. Int. J. Stress Manag.1, 141–143 (1994).10.1007/BF01857607 DOI

Bracha, S. H. Freeze, flight, fight, fright, faint: adaptationist perspectives on the acute stress response spectrum. CNS Spectr.9, 679–685 (2004). 10.1017/S1092852900001954 PubMed DOI

Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev.92, 216–233 (2017). 10.1111/brv.12224 PubMed DOI

Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett.22, 365–376 (2019). 10.1111/ele.13199 PubMed DOI PMC

Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? evidence of the intended and unintended effects of feeding wild ungulates. J. Wildlife Manag.78, 1322–1334 (2014).10.1002/jwmg.798 DOI

Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl Acad. Sci.114, 8951–8956 (2017). 10.1073/pnas.1606034114 PubMed DOI PMC

Tucker, M. A. et al. Behavioral responses of terrestrial mammals to COVID-19 lockdowns. Science380, 1059–1064 (2023). 10.1126/science.abo6499 PubMed DOI

Erb, P. L., McShea, W. J. & Guralnick, R. P. Anthropogenic influences on macro-level mammal occupancy in the Appalachian trail corridor. PLoS ONE7, e42574 (2012). 10.1371/journal.pone.0042574 PubMed DOI PMC

Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev.86, 640–657 (2011). 10.1111/j.1469-185X.2010.00164.x PubMed DOI

Gaynor, K. M. et al. An applied ecology of fear framework: linking theory to conservation practice. Animal Conserv.24, 308–321 (2021).10.1111/acv.12629 DOI

Martínez-Abraín, A., Quevedo, M. & Serrano, D. Translocation in relict shy-selected animal populations: program success versus prevention of wildlife-human conflict. Biol. Conserv.268, 109519 (2022).10.1016/j.biocon.2022.109519 DOI

Gallagher, C. A., Grimm, V., Kyhn, L. A., Kinze, C. C. & Nabe-Nielsen, J. Movement and seasonal energetics mediate vulnerability to disturbance in marine mammal populations. Am. Nat.197, 296–311 (2021). 10.1086/712798 PubMed DOI

Nabe-Nielsen, J. et al. Predicting the impacts of anthropogenic disturbances on marine populations. Conserv. Lett.11, e12563 (2018).

Pirotta, E. et al. Understanding the population consequences of disturbance. Ecol. Evol.8, 9934–9946 (2018). PubMed PMC

Wikelski, M., Davidson, S. C. & Kays, R. The Movebank Data Repository.www.movebank.org (2020).

Kranstauber, B., Smolla, M. & Scharf, A. Move: Visualizing and Analyzing Animal Track Data. https://cran.r-project.org/package=move (2020).

Scharf, A. moveACC: Visualitation and Analysis of Acceleration Data (Mainly for eObs Tags).https://gitlab.com/anneks/moveACC/ (2018).

Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model.197, 516–519 (2006).10.1016/j.ecolmodel.2006.03.017 DOI

McGowan, P. J. K. Mapping the terrestrial human footprint. Nature537, 172–173 (2016). 10.1038/537172a PubMed DOI

Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun.7, 12558 (2016). 10.1038/ncomms12558 PubMed DOI PMC

Wood, S. N. Generalized Additive Models 2nd edn, Vol. 496 (Chapman and Hall/CRC, 2017).

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).

Faurby, S. et al. PHYLACINE 1.2: the phylogenetic Atlas of mammal macroecology. Ecology99, 2626–2626 (2018). 10.1002/ecy.2443 PubMed DOI

Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.15.6.https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2016).

Urbano, F. & Cagnacci, F. Data management and sharing for collaborative science: lessons learnt from the euromammals iInitiative. Front. Ecol. Evol.9, 727023 (2021).

Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...