Comparison of Repeat Versus Initial Stereotactic Radiosurgery for Intracranial Arteriovenous Malformations: A Retrospective Multicenter Matched Cohort Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, srovnávací studie
PubMed
39283113
DOI
10.1227/neu.0000000000002950
PII: 00006123-202410000-00021
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- intrakraniální arteriovenózní malformace * chirurgie radioterapie diagnostické zobrazování MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- radiochirurgie * metody MeSH
- reoperace statistika a číselné údaje MeSH
- retrospektivní studie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- srovnávací studie MeSH
BACKGROUND AND OBJECTIVES: Studies comparing neurological and radiographic outcomes of repeat to initial stereotactic radiosurgery (SRS) intracranial arteriovenous malformations are scarce. Our aim was to perform a retrospective matched comparison of patients initially treated with SRS with those undergoing a second radiosurgical procedure. METHODS: We collected data from arteriovenous malformations managed in 21 centers that underwent initial and repeated radiosurgery from 1987 to 2022. Based on arteriovenous malformations volume, margin dose, deep venous drainage, deep, and critical location, we matched 1:1 patients who underwent an initial SRS for treatment-naive arteriovenous malformations and a group with repeated SRS treatment. RESULTS: After the selection process, our sample consisted of 328 patients in each group. Obliteration in the initial SRs group was 35.8% at 3 and 56.7% at 5 years post-SRS, while the repeat SRS group showed obliteration rates of 33.9% at 3 years and 58.6% at 5 years, without statistically significant differences (P = .75 and P = .88, respectively). There were no statistically significant differences between the 2 groups for obliteration rates (hazard ratio = 0.93; 95% CI, 0.77-1.13; P = .5), overall radiation-induced changes (RIC) (OR = 1.1; 95% CI, 0.75-1.6; P = .6), symptomatic RIC (OR = 0.78; 95% CI, 0.4-1.5; P = .4), and post-SRS hemorrhage (OR = 0.68; 95% CI; P = .3). CONCLUSION: In matched cohort analysis, a second SRS provides comparable outcomes in obliteration and RIC compared with the initial SRS. Dose reduction on repeat SRS may not be warranted.
Department of Neurological Surgery University of Virginia Charlottesville Virginia USA
Department of Neurosurgery Benha University Benha Egypt
Department of Neurosurgery Cleveland Clinic Foundation Cleveland Ohio USA
Department of Neurosurgery Koc University School of Medicine Istanbul Turkey
Department of Neurosurgery Neurological Institute Taipei Veteran General Hospital Taipei City Taiwan
Department of Neurosurgery NYU Langone New York New York USA
Department of Neurosurgery Penn State Milton S Hershey Medical Center Hershey Pennsylvania USA
Department of Neurosurgery Postgraduate Institute of Medical Education and Research Chandigarh India
Department of Neurosurgery University of Louisville Louisville Kentucky USA
Department of Neurosurgery University of Miami Miami Florida USA
Department of Neurosurgery University of Pennsylvania Philadelphia Pennsylvania USA
Department of Neurosurgery University of Pittsburgh Pittsburgh Pennsylvania USA
Department of Neurosurgery University of Puerto Rico San Juan Puerto Rico USA
Department of Neurosurgery University of Sherbrooke Sherbrooke Quebec Canada
Department of Neurosurgery University of Southern California Los Angeles California USA
Department of Neurosurgery West Virginia University Morgantown West Virginia USA
Department of Stereotactic and Radiation Neurosurgery Na Homolce Hospital Prague Czech Republic
Gamma Knife Center Beaumont Health System Royal Oak Michigan USA
Gamma Knife Center Cairo Nasser Institute Hospital Cairo Egypt
Zobrazit více v PubMed
Mantziaris G, Pikis S, Dumot C, et al. Outcome evaluation of repeat stereotactic radiosurgery for cerebral arteriovenous malformations. Stroke. 2023;54(8):1974-1984.
Niranjan A, Lunsford LD. Stereotactic radiosurgery guideline for the management of patients with intracranial arteriovenous malformations. Prog Neurol Surg. 2013;27:130-140.
Friedlander RM. Clinical practice. Arteriovenous malformations of the brain. N Engl J Med. 2007;356(26):2704-2712.
Kano H, Lunsford LD, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. J Neurosurg. 2012;116(1):11-20.
Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96(1):79-85.
Pikis S, Mantziaris G, Ramanathan P, Xu Z, Sheehan JP. Repeat stereotactic radiosurgery for cerebral arteriovenous malformations. Neurosurg Focus. 2022;53(1):e11.
Ding D, Xu Z, Shih HH, et al. Worse outcomes after repeat vs initial stereotactic radiosurgery for cerebral arteriovenous malformations: a retrospective matched-cohort study. Neurosurgery. 2016;79(5):690-700.
Stahl JM, Chi YY, Friedman WA. Repeat radiosurgery for intracranial arteriovenous malformations. Neurosurgery. 2012;70(1):150-154; discussion 154.
Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476-483.
Wegner RE, Oysul K, Pollock BE, et al. A modified radiosurgery-based arteriovenous malformation grading scale and its correlation with outcomes. Int J Radiat Oncol Biol Phys. 2011;79(4):1147-1150.
Ho D, Imai K, King G, Stuart EA. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw. 2011;42:1-28.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2020.
Kwon Y, Jeon SR, Kim JH, et al. Analysis of the causes of treatment failure in gamma knife radiosurgery for intracranial arteriovenous malformations. J Neurosurg. 2000;93(Suppl 3):104-106.
Gallina P, Merienne L, Meder JF, Schlienger M, Lefkopoulos D, Merland JJ. Failure in radiosurgery treatment of cerebral arteriovenous malformations. Neurosurgery. 1998;42(5):996-1004; discussion 1002-1004.
Ding D, Yen CP, Starke RM, Xu Z, Sun X, Sheehan JP. Radiosurgery for Spetzler-Martin Grade III arteriovenous malformations. J Neurosurg. 2014;120(4):959-969.
Naylor RM, Graffeo CS, Nesvick CL, et al. Stereotactic radiosurgery for intermediate- and high-grade arteriovenous malformations: outcomes stratified by the supplemented Spetzler-Martin grading system. J Neurosurg. 2023;138(3):804-809.
Karlsson B, Jokura H, Yamamoto M, Söderman M, Lax I. Is repeated radiosurgery an alternative to staged radiosurgery for very large brain arteriovenous malformations? J Neurosurg. 2007;107(4):740-744.
Seymour ZA, Chan JW, McDermott MW, et al. Adverse radiation effects in volume-staged radiosurgery for large arteriovenous malformations: a multiinstitutional study. J Neurosurg. 2022;136(2):503-511.
Kano H, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 3: outcome predictors and risks after repeat radiosurgery. J Neurosurg. 2012;116(1):21-32.
Chang H, Silva MA, Weng J, Kovacevic J, Luther E, Starke RM. The impact of embolization on radiosurgery obliteration rates for brain arteriovenous malformations: a systematic review and meta-analysis. Neurosurg Rev. 2022;46(1):28.
Russell D, Peck T, Ding D, et al. Stereotactic radiosurgery alone or combined with embolization for brain arteriovenous malformations: a systematic review and meta-analysis. J Neurosurg. 2018;128(5):1338-1348.
Andrade-Souza YM, Ramani M, Scora D, Tsao MN, terBrugge K, Schwartz ML. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery. 2007;60(3):443-452; discussion 451-452.
Starke RM, Kano H, Ding D, et al. Stereotactic radiosurgery for cerebral arteriovenous malformations: evaluation of long-term outcomes in a multicenter cohort. J Neurosurg. 2017;126(1):36-44.
Kano H, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations after embolization: a case-control study. J Neurosurg. 2012;117(2):265-275.
Koizumi S, Shojima M, Shinya Y, et al. Risk factors of brain arteriovenous malformation embolization as adjunctive therapy: single-center 10-year experience. World Neurosurg. 2022;167:e1448-e1454.
Letchuman V, Mittal AM, Gupta HR, et al. The era of onyx embolization: a systematic and literature review of preoperative embolization before stereotactic radiosurgery for the management of cerebral arteriovenous malformations. World Neurosurg. 2023;170:90-98.
Zhang B, Qi J, Chen P, et al. Deliberately staged combined endovascular embolization and subsequent microsurgery resection for the treatment of cerebral arteriovenous malformations. World Neurosurg. 2023;178:e254-e264.
Park MT, Essibayi MA, Srinivasan VM, Catapano JS, Graffeo CS, Lawton MT. Surgical management outcomes of intracranial arteriovenous malformations after preoperative embolization: a systematic review and meta-analysis. Neurosurg Rev. 2022;45(6):3499-3510.
Bing F, Doucet R, Lacroix F, et al. Liquid embolization material reduces the delivered radiation dose: clinical myth or reality? AJNR Am J Neuroradiol. 2012;33(2):320-322.
Alzate JD, Berger A, Bernstein K, et al. Preoperative flow analysis of arteriovenous malformations and obliteration response after stereotactic radiosurgery. J Neurosurg. 2023;138(4):944-954.
Panni P, Gallotti AL, Gigliotti CR, et al. Impact of flow and angioarchitecture on brain arteriovenous malformation outcome after gamma knife radiosurgery: the role of hemodynamics and morphology in obliteration. Acta Neurochir (Wien). 2020;162(7):1749-1757.
Lawton MT, Kim H, McCulloch CE, Mikhak B, Young WL. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery. 2010;66(4):702-713; discussion 713.
Starke RM, Chalouhi N, Ding D, et al. Vascular smooth muscle cells in cerebral aneurysm pathogenesis. Transl Stroke Res. 2014;5(3):338-346.
Starke RM, Raper DMS, Ding D, et al. Tumor necrosis factor-α modulates cerebral aneurysm formation and rupture. Transl Stroke Res. 2014;5(2):269-277.
Mouchtouris N, Jabbour PM, Starke RM, et al. Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metab. 2015;35(2):167-175.
Hak JF, Borius PY, Spatola G, et al. Upfront and repeated Gamma-Knife radiosurgery for small (≤5 mL) unruptured brain arteriovenous malformation: a cohort of 249 consecutive patients. World Neurosurg. 2022;158:e889-e895.
Maesawa S, Flickinger JC, Kondziolka D, Lunsford LD. Repeated radiosurgery for incompletely obliterated arteriovenous malformations. J Neurosurg. 2000;92(6):961-970.
Kano H, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 4: management of basal ganglia and thalamus arteriovenous malformations. J Neurosurg. 2012;116(1):33-43.
Ding D, Yen CP, Xu Z, Starke RM, Sheehan JP. Radiosurgery for primary motor and sensory cortex arteriovenous malformations: outcomes and the effect of eloquent location. Neurosurgery. 2013;73(5):816-824; discussio 824.
Yen CP, Schlesinger D, Sheehan JP. Natural history of cerebral arteriovenous malformations and the risk of hemorrhage after radiosurgery. Prog Neurol Surg. 2013;27:5-21.
Karlsson B, Jokura H, Yang HC, et al. Risk for hemorrhage the first 2 years after gamma knife surgery for arteriovenous malformations: an update. Neurosurgery. 2022;91(6):920-927.
Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D. Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke. 1996;27(1):1-6.
Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002;63(3):347-354.
Oermann EK, Ding D, Yen CP, et al. Effect of prior embolization on cerebral arteriovenous malformation radiosurgery outcomes: a case-control study. Neurosurgery. 2015;77(3):406-417; discussion 417.
Lee CC, Reardon MA, Ball BZ, et al. The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery. J Neurosurg. 2015;123(1):136-144.
OʼConnor TE, Friedman WA. Magnetic resonance imaging assessment of cerebral arteriovenous malformation obliteration after stereotactic radiosurgery. Neurosurgery. 2013;73(5):761-766.
Pollock BE, Kondziolka D, Flickinger JC, Patel AK, Bissonette DJ, Lunsford LD. Magnetic resonance imaging: an accurate method to evaluate arteriovenous malformations after stereotactic radiosurgery. J Neurosurg. 1996;85(6):1044-1049.