Assessing key parameters in simultaneous simulation of rapid kinetics of chlorophyll a fluorescence and trans-thylakoid electric potential difference
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
31960055
National Natural Science Foundation of China
32160648
National Natural Science Foundation of China
PubMed
39284786
DOI
10.1111/ppl.14517
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- chlorofyl a * metabolismus MeSH
- chlorofyl metabolismus MeSH
- fluorescence MeSH
- fotosyntéza * fyziologie MeSH
- kinetika MeSH
- tylakoidy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a * MeSH
- chlorofyl MeSH
Our study attempts to address the following questions: among numerous photosynthetic modules, which parameters notably influence the rapid chlorophyll fluorescence (ChlF) rise, the so-called O-J-I-P transient, in conjunction with the P515 signal, as these two records are easily obtained and widely used in photosynthesis research, and how are these parameters ranked in terms of their importance? These questions might be difficult to answer solely through experimental assays. Therefore, we employed an established photosynthesis model. Firstly, we utilized the model to simulate the measured rapid ChlF rise and P515 kinetics simultaneously. Secondly, we employed the sensitivity analysis (SA) tool by randomly altering model parameters to observe their effects on model output variables. Thirdly, we systematically identified significant parameters for both or one of the kinetics across various scenarios. A novel aspect of our study is the application of the Morris method, a global SA tool, to simultaneously assess the significance of model parameters in shaping both or one of the kinetics. The Morris SA technique enables the quantification of how much a specific parameter affects O-J-I-P transient during particular time intervals (e.g., J, I, and P steps). This allowed us to theoretically analyze which step is more significantly influenced by the parameter. In summary, our study contributes to the field by providing a comprehensive analysis of photosynthesis kinetics and emphasizing the importance of parameter selection in modelling this process. These findings can inform future research efforts aimed at improving photosynthesis models and advancing our understanding of photosynthetic processes.
Department of Biophysics Faculty of Science Palacký University Olomouc Czech Republic
School of Biological Science and Agriculture Qiannan Normal University for Nationalities Duyun China
Zobrazit více v PubMed
Antal, T.K., Osipov, V., Matorin, D.N., & Rubin, A.B. (2011) Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. Journal of Photochemistry and Photobiology B: Biology, 102(2), 169–173.
Armbruster, U., Leonelli, L., Correa Galvis, V., Strand, D., Quinn, E.H., Jonikas, M.C., & Niyogi, K.K. (2016) Regulation and levels of the thylakoid K+/H+ antiporter KEA3 shape the dynamic response of photosynthesis in fluctuating light. Plant Cell Physiology, 57(7), 1557–1567.
Baker, N.R. (2008) Chlorophyll fluorescence, a probe of photosynthesis in vivo. Annual Reviews on Plant Biology, 59(1), 89–113.
Barber, J. (1980) Membrane surface charges and potentials in relation to photosynthesis. Biochimica et Biophysica Acta, 594(4), 253–308.
Belyaeva, N.E., Bulychev, A.A., Riznichenko, G.Y., & Rubin, A.B. (2016) Thylakoid membrane model of the Chl a fluorescence transient and P700 induction kinetics in plant leaves. Photosynthesis Research, 130(1–3), 491–515.
Belyaeva, N.E., Bulychev, A.A., Riznichenko, G.Y., & Rubin, A.B. (2019) Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark‐adapted and preilluminated pea leaves using a thylakoid membrane model. Photosynthesis Research, 140(1), 1–19.
Ben Touhami, H., Lardy, R., Barra, V., & Bellocchi, G. (2013) Screening parameters in the Pasture simulation model using the Morris method. Ecological Modeling, 266, 42–57.
Bhagooli, R., Mattan‐Moorgawa, S., Kaullysing, D., Louis, Y.D., Gopeechund, A., Ramah, S., Soondur, M., Pilly, S.S., Beesoo, R., Wijayanti, D.P., Bachok, Z.B., Monrás, V.C., Casareto, B.E., Suzuki, Y., & Baker, A.C. (2021) Chlorophyll fluorescence – a tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Marine Pollution Bulletin, 165, 112059.
Braun, N.A., Davis, A.W., & Theg, S.M. (2007) The chloroplast Tat pathway utilizes the transmembrane electric potential as an energy source. Biophysical Journal, 93(6), 1993–1998.
Butler, W. L. (1972). On the primary nature of fluorescence yield changes associated with photosynthesis. Proceedings of the National Academy of Sciences of the U.S.A., 69(11), 3420–3422.
Campolongo, F., Cariboni, J., & Saltelli, A. (2007) An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software, 22(10), 1509–1518.
Campolongo, F., Saltelli, A., & Cariboni, J. (2011) From screening to quantitative sensitivity analysis. A unified approach. Computer Physics Communivations, 182(4), 978–988.
Correa Galvis, V., Strand, D.D., Messer, M., Thiele, W., Bethmann, S., Hubner, D., Uflewski, M., Kaiser, E., Siemiatkowska, B., Morris, B.A., Toth, S.Z., Watanabe, M., Bruckner, F., Hofgen, R., Jahns, P., Schottler, M.A., & Armbruster, U. (2020) H+ transport by K+ EXCHANGE ANTIPORTER3 promotes photosynthesis and growth in chloroplast ATP synthase mutants. Plant Physiology, 182(4), 2126–2142.
Cruz, J.A., Sacksteder, C.A., Kanazawa, A., & Kramer, D.M. (2001) Contribution of electric field (ΔΨ) to steady‐state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into ΔΨ and ΔpH by ionic strength. Biochemistry, 40(5), 1226–1237.
Dau, H., & Sauer, K. (1992) Electric‐field effect on the picosecond fluorescence of photosystem II and its relation to the energetics of primary charge separation. Biochimica et Biophysica Acta, 1102(1), 91–106.
Dau, H., Windecker, R., & Hansen, U.‐P. (1991) Effect of light‐induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves. Biochimica et Biophysica Acta – Bioenergetics, 1057(3), 337–345.
Davis, G.A., Kanazawa, A., Schottler, M.A., Kohzuma, K., Froehlich, J.E., Rutherford, A.W., Satoh‐Cruz, M., Minhas, D., Tietz, S., Dhingra, A., & Kramer, D.M. (2016) Limitations to photosynthesis by proton motive force‐induced photosystem II photodamage. eLife, 5, 27.
Davis, G.A., & Kramer, D.M. (2019) Optimization of ATP synthase c‐rings for oxygenic photosynthesis. Frontiers in Plant Science, 10, 1778.
Davis, G.A., Rutherford, A.W., & Kramer, D.M. (2017) Hacking the thylakoid proton motive force for improved photosynthesis, modulating ion flux rates that control proton motive force partitioning into ΔΨ and ΔpH. Philosiphical Transactions of the Royal Society of London B Biological Sciences, 372(1730), 11.
Delosme, R., & Joliot, P. (2002) Period four oscillations in chlorophyll a fluorescence. Photosynthesis Research, 73(1–3), 165–168.
Demmig, B., & Gimmler, H. (1983) Properties of the isolated intact chloroplast at cytoplasmic K concentrations. I. Light‐induced cation uptake into intact chloroplasts is driven by an electrical potential difference. Plant Physiology, 73(1), 169–174.
Duan, Z., Kong, F., Zhang, L., Li, W., Zhang, J., & Peng, L. (2016) A bestrophin‐like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis. Journal of Integrative Plant Biology, 58(10), 848–858.
Dukic, E., Herdean, A., Cheregi, O., Sharma, A., Nziengui, H., Dmitruk, D., Solymosi, K., Pribil, M., & Spetea, C. (2019) K+ and Cl− channels/transporters independently fine‐tune photosynthesis in plants. Scientific Reports, 9(1), 8639.
Dumas, L., Chazaux, M., Peltier, G., Johnson, X., & Alric, J. (2016) Cytochrome b6f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow. Photosynthesis Research, 129(3), 307–320.
Duysens, L.M.N., & Sweers, H.E. (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (ed.), Studies on Microalgae and Photosynthetic Bacteria, University of Tokyo Press, Tokyo, pp 353‐372.
Duysens, L.N.M. (1954) Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science, 120(3113), 353–354.
Ebenhöh, O., Houwaart, T., Lokstein, H., Schlede, S., & Tirok, K. (2011) A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence. Biosystems, 103(2), 196–204.
Govindjee (1995) Sixty‐three years since Kautsky, chlorophyll a luorescence. Functional Plant Biology, 22(2), 131–160.
Guo, Y., & Tan, J. (2011) Modeling and simulation of the initial phases of chlorophyll fluorescence from Photosystem II. Biosystems, 103(2), 152–157.
Herdean, A., Nziengui, H., Zsiros, O., Solymosi, K., Garab, G., Lundin, B., & Spetea, C. (2016a) The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Frontiers in Plant Science, 7, 115.
Herdean, A., Teardo, E., Nilsson, A.K., Pfeil, B.E., Johansson, O.N., Unnep, R., Nagy, G., Zsiros, O., Dana, S., Solymosi, K., Garab, G., Szabo, I., Spetea, C., & Lundin, B. (2016b) A voltage‐dependent chloride channel fine‐tunes photosynthesis in plants. Nature Communications, 7, 11654.
Holzapfel, C., & Bauer, R. (1975) Computer simulation of primary photosynthetic reactioons – cmpared with experimental resluts of O2‐excahnge and chlorophyll fluorescence of green plants. Zeitschrift fűr Naturforschung C, 30(7–8), 489–498.
Ilík, P., Schansker, G., Kotabová, E., Váczi, P., Strasser, R.J., & Barták, M. (2006) A dip in the chlorophyll fluorescence induction at 0.2‐2 s in Trebouxia‐possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochimica et Biophysica Acta – Bioenergetics, 1757(1), 12–20.
Jablonsky, J., & Lazár, D. (2008) Evidence for intermediate S‐states as initial phase in the process of oxygen‐evolving complex oxidation. Biophysical Journal, 94(7), 2725–2736.
Jablonsky, J., Susila, P., & Lazar, D. (2008) Impact of dimeric organization of enzyme on its function, the case of photosynthetic water splitting. Bioinformatics, 24(23), 2755–2759.
Johnson, J.E., & Berry, J.A. (2021) The role of cytochrome b6f in the control of steady‐state photosynthesis, a conceptual and quantitative model. Photosynthesis Research, 148(3), 101–136.
Johnson, M.P., & Ruban, A.V. (2014) Rethinking the existence of a steady‐state ΔΨ component of the proton motive force across plant thylakoid membranes. Photosynthesis Research, 119(1–2), 233–242.
Kalaji, H.M., Oukarroum, A., Alexandrov, V., Kouzmanova, M., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Allakhverdiev, S.I., & Goltsev, V. (2014a) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiology and Biochemistry, 81, 16–25.
Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A., Dąbrowski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Poli, D., Pollastrini, M., Romanowska‐Duda, Z.B., Rutkowska, B., Serôdio, J., Suresh, K., Szulc, W., Tambussi, E., Yanniccari, M., & Zivcak, M. (2014b) Frequently asked questions about in vivo chlorophyll fluorescence, practical issues. Photosynthesis Research, 122(2), 121–158.
Kaňa, R., & Govindjee (2016) Role of ions in the regulation of light‐harvesting. Frontiers in Plant Science, 7, 1849.
King, D.M., & Perera, B.J.C. (2013) Morris method of sensitivity analysis applied to assess the importance of input variables on urban water supply yield – A case study. Journal of Hydrology. 477, 17–32.
Kok, B., Forbush, B., & McGloin, M. (2008) Cooperation of charges in photosynthetic O2 evolution – I. A linear four step mechanism. Photochemistra and Photobiology, 11(6), 457–475.
Kroon, B.M.A., & Thoms, S. (2006) From electron to biomass, A mechanistic model to describe phytoplankton photosynthesis and steady‐state growth rates. Journal of Phycology, 42(3), 593–609.
Kunz, H.H., Gierth, M., Herdean, A., Satoh‐Cruz, M., Kramer, D.M., Spetea, C., & Schroeder, J.I. (2014) Plastidial transporters KEA1, −2, and −3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proceedings of the National Academy of Sciences of the U.S.A., 111(20), 7480–7485.
Lahlou, A., Coghill, I., Davidson, M.L.H., Billon, R., Barneche, F., Lazár, D., Le Saux, T., & Jullien, L. (2024) Leaves to measure light intensity. Advanced Science, https://doi.org/10.1002/advs.202304420
Lahlou, A, Tehrani, H.S., Coghill, I., Shpinov, Y., Mandal, M., Plamont, M.‐A., Aujard, I., Niu, Y., Nedbal, L., Lazár, D., Mahou, P., Supatto, W., Beaurepaire, E., Eisenmann, I., Desprat, N., Croquette, V., Jeanneret, R., Le Saux, T., & Jullien, L. (2023) Fluorescence to measure light intensity. Nature Methods, 20(12), 1930–1938.
Laisk, A,, Eichelmann, H., & Oja, V. (2006) C3 photosynthesis in silico. Photosynthesis Research, 90(1), 45–66.
Laisk, A., Eichelmann, H., & Oja, V. (2009) Leaf C3 photosynthesis in silico, Integrated carbon/nitrogen metabolism. In: Laisk, A., Nedbal, L., Govindjee (eds.) Photosynthesis in silico. Understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 295‐322.
Langergraber, G., & Ketema, A.A. (2015) Sensitivity analysis of the CLARA simplified planning tool using the Morris screening method. Water Science & Technology, 71(2), 234–244.
Lazár, D. (1999) Chlorophyll a fluorescence induction. Biochimica et Biophysica Acta, 1412(1), 1–28.
Lazár, D. (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark‐adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. Journal of Theoretical Biology, 220(4), 469–503.
Lazár, D. (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Functional Plant Biology, 33(1), 9–30.
Lazár, D. (2009) Modelling of light‐induced chlorophyll a fluorescence rise (O‐J‐I‐P transient) and changes in 820 nm‐transmittance signal of photosynthesis. Photosynthetica, 47(4), 483–498.
Lazár, D. (2013) Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. Journal of Theoretical Biology, 335, 249–264.
Lazár, D., Brokeš, M., Nauš, J., & Dvořák, L. (1998) Mathematical modelling of 3‐(3′,4′‐dichlorophenyl)‐1,1‐dimenthylurea action in plant leaves. Journal of Theoretical Biology, 191(1), 79–86.
Lazár, D., & Ilík, P. (1997) High‐temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. Plant Science, 124(2), 159–164.
Lazár, D., Ilík, P., Kruk, J., Strzałka, K., & Nauš, J. (2005) A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (FM): implications for photoinhibition of photosystem II. Journal of Theoretical Biology, 233(2), 287–300.
Lazár, D., Nauš, J., Matoušková, M., & Flašarová, M. (1997) Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides. Pesticide Biochemistry and Physiology, 57(3), 200–210.
Lazár, D., Niu, Y., & Nedbal, L. (2022) Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. Journal of Experimental Botany, 73(18), 6380–6393.
Lazár, D., & Pospíšil, P. (1999) Mathematical simulation of chlorophyll a fluorescence rise measured with 3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethylurea‐treated barley leaves at room and high temperatures. European Biophysics Journal, 28(6), 468–477.
Lebedeva, G.V., Belyaeva, N.E., Demin, O.V., Riznichenko, G.Y., & Rubin, A.B. (2002) A kinetic model of primary photosynthetic processes. Description of the fast phase of chlorophyll fluorescence induction at different light intensities. Biofizika, 47(6), 1044–1058.
Li, M., Svoboda, V., Davis, G., Kramer, D., Kunz, H.H., & Kirchhoff, H. (2021) Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. Nature Plants, 7(7), 979–988.
Lyu, H., & Lazár, D. (2017a) Modeling the light‐induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves. Journal of Theoretical Biology, 413, 11–23.
Lyu, H., & Lazár, D. (2017b) Modeling the light‐induced electric potential difference ΔΨ across the thylakoid membrane based on the transition state rate theory. Biochimica et Biophysica Acta – Bioenergetics, 1858(3), 239–248.
Lyu, H., & Lazár, D. (2022) Analyzing the effect of ion binding to the membrane‐surface on regulating the light‐induced transthylakoid electric potential (ΔΨm). Frontiers in Plant Science, 13, 945675.
Lyu, H., & Lazár, D. (2023) Effect of ion fluxes on regulating the light‐induced transthylakoid electric potential difference. Plant Physiology and Biochemistry, 194, 60–69.
Lyu, H., Lin, Y.‐C., & Liakopoulos, G. (2024) Screening rate constants in the simulation of rapid kinetics of chlorophyll a fluorescence using the Morris method. Frontiers in Plant Science, 15, 1396309.
Lyu, H., & Zuo, Y.S. (2024) Dynamic modulation of transthylakoid electric potential by chloroplast ATP synthases. Biochimie, 221, 27–37.
Marmagne, A., Vinauger‐Douard, M., Monachello, D., de Longevialle, A.F., Charon, C., Allot, M., Rappaport, F., Wollman, F.A., Barbier‐Brygoo, H., & Ephritikhine, G. (2007) Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. Journal of Experimental Botany, 58(12), 3385–3393.
Matsuoka, T., Tanaka, S., & Ebina, K. (2015) Systems approach to excitation energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics. Journal of Theoretical Biology, 380, 220–237.
Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biological Reviews, 41(3), 445–502.
Mitchell, P. (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochimica et Biophysica Acta, 1807(12), 1507–1538.
Morales, A., Yin, X., Harbinson, J., Driever, S.M., Molenaar, J., Kramer, D.M., & Struik, P.C. (2018) In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants. Plant Physiology, 176(2), 1247–1261.
Morris, M.D. (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174.
Munday, J.C, & Govindjee (1969) Light‐induced changes in the fluorescence yield of chlorophyll a in vivo III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophysical Journal, 9(1), 1–21.
Ohnishi, M., Maekawa, S., Wada, S., Ifuku, K., & Miyake, C. (2023) Evaluating the oxidation rate of reduced ferredoxin in Arabidopsis thaliana independent of photosynthetic linear electron flow. Plausible activity of ferredoxin‐dependent cyclic electron flow around photosystem I. International Journal of Molecular Sciences, 24(15), 12.
Pfündel, E. (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Research, 56(2), 185–195.
Pospíšil, P., & Dau, H. (2002) Valinomycin sensitivity proves that light‐induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. Biochimica et Biophysica Acta – Bioenergetics, 1554(1–2), 94–100.
Pottosin, I.I., & Schonknecht, G. (1996) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. Journal of Membrane Biology, 152(3), 223–233.
Qian, G., & Mahdi, A. (2020) Sensitivity analysis methods in the biomedical sciences. Mathematical Biosciences, 323, 108306.
Remiš, D., Bulychev, A.A., & Kurella, G.A. (1986) The electrical and chemical components of the protonmotive force in chloroplasts as measured with capillary and pH‐sensitive microelectrodes. Biochimica et Biophysica Acta – Bioenergetics, 852(1), 68–73.
Riznichenko, G., Lebedeva, G., Demin, O., & Rubin, A. (1999) Kinetic mechanisms of biological regulation in photosynthetic organisms. Journal of Biological Physics, 25(2–3), 177–192.
Rubin, A., & Riznichenko, G. (2009) Modeling of the primary processes in a photosynthetic membrane. In Laisk, A., Nedbal, L., Govindjee (eds.) Photosynthesis in silico. Understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 151‐176.
Schansker, G., Srivastava, A., Govindjee, & Strasser, R.J. (2003) Characterization of the 820‐nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30(7), 785–796.
Schansker, G., Tóth, S.Z., & Strasser, R.J. (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta – Bioenergetics, 1706(3), 250–261.
Schatz, G.H., Brock, H., & Holzwarth, A.R. (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophysical Joiurnal, 54(3), 397–405.
Schreiber, U. (2023) Light‐induced changes of far‐red excited chlorophyll fluorescence, further evidence for variable fluorescence of photosystem I in vivo. Photosynthesis Research 155(3), 247–270.
Schreiber, U., & Klughammer, C. (2008) New accessory for the Dual‐PAM‐100: the P515/535 module and examples of its application. PAM Application Notes, 1, 1–10.
Schreiber, U., & Neubauer, C. (1990) O2‐dependent electron flow, membrane energization and the mechanism of non‐photochemical quenching of chlorophyll fluorescence. Photosynthesis Research, 25(3), 279–293.
Shikanai, T. (2016) Regulatory network of proton motive force, contribution of cyclic electron transport around photosystem I. Photosynthesis Research 129(3), 253–260.
Shikanai, T., & Yamamoto, H. (2017) Contribution of cyclic and pseudo‐cyclic electron transport to the formation of proton motive force in chloroplasts. Molecular Plant, 10(1), 20–29.
Sohier, H., Farges, J.L., & Piet‐Lahanier, H. (2014) Adaptation of the Morris method to multi‐dimensional factors for air‐launch‐to‐orbit separation. Proceedings of the IEEE Aerospace Conference, Big Sky, MT.
Sohier, H., Piet‐Lahanier, H., & Farges, J.‐L. (2015) Analysis and optimization of an air‐launch‐to‐orbit separation. Acta Astronautica, 108, 18–29.
Srivastava, A., Guissé, B., Greppin, H., & Strasser, R.J. (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta – Bioenergetics, 1320(1), 95–106.
Stasser, R.J., Srivastava, A., & Govndjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemsitry and Photobiology, 61(1), 32–42.
Stirbet, A., Lazár, D., Guo, Y., & Govindjee, G. (2020) Photosynthesis, basics, history and modelling. Annals of Botany, 126(4), 511–537.
Stirbet, A., & Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1–2), 236–257.
Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee (2018) Chlorophyll a fluorescence induction: Can just a one‐second measurement be used to quantify abiotic stress responses? Photosynthetica, 56(1), 86–104.
Stirbet, A.D., & Strasser, R.J. (1996) Numerical simulation of the in vivo fluorescence in plants. Mathematics and Computers in Simulation, 42(2–3), 245–253.
Strasser, B,J, (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 52(2), 147–155.
Strasser, R.J., & Stirbet, A.D. (2001) Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O–J–I–P. Fitting of experimental data to three different PS II models. Mathematics and Computers in Simulation, 56(4–5), 451–462.
Sušila, P., Lazár, D., Ilík, P., Tomek, P., & Nauš, J. (2004) The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. Photosynthetica, 42(2), 161–172.
Tomek, P., Lazár, D., Ilík, P., & Nauš, J. (2001) On the intermediate steps between the O and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light. Functional Plant Biology, 28(11), 1151–1160.
Trissl, H.W., Gao, Y., & Wulf, K. (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton‐radical pair equilibrium. Biophysical Journal, 64(4), 974–988.
Valcke, R. (2021) Can chlorophyll fluorescence imaging make the invisible visible? Photosynthetica, 59(SI), 381–398.
Van Kooten, O., Snel, J.F., & Vredenberg, W.J. (1986) Photosynthetic free energy transduction related to the electric potential changes across the thylakoid membrane. Photosynthesis Research, 9(1–2), 211–227.
Velthuys, B., & Amesz, J. (1974) Charge accumulation at the reducing side of system 2 of photosynthesis. Biochimica et Biophysica Acta – Bioenergetics, 333(1), 85–94.
Vredenberg, W.J. (2004) System analysis and photoelectrochemical control of chlorophyll fluorescence in terms of trapping models of photosystem II, a challenging view. In: Papageorgiou, G.C., Govindjee (eds.) Chlorophyll a fluorescence, a signature of photosynthesis. Springer, pp. 133–172.
Vredenberg, W.J., & Bulychev, A. (2003) Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry, 60(1–2), 87–95.
Vredenberg, W.J., & Bulychev, A.A. (2002) Photo‐electrochemical control of photosystem II chlorophyll fluorescence in vivo. Bioelectrochemistry, 57(2), 123–128.
Wang, C., Peng, M., & Xia, G. (2020) Sensitivity analysis based on Morris method of passive system performance under ocean conditions. Annals of Nucleat Energy, 137, 9.
Yamamoto, H., Cheuk, A., Shearman, J., Nixon, P.J., Meier, T., & Shikanai, T. (2023) Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts. Plant Physiology, 192(2), 1221–1233.
Zhu, X.G., Wang, Y., Ort, D.R., & Long, S.P. (2013) e‐Photosynthesis, a comprehensive dynamic mechanistic model of C3 photosynthesis, from light capture to sucrose synthesis. Plant, Cell & Environment, 36(9), 1711–1727.