Tree drought-mortality risk depends more on intrinsic species resistance than on stand species diversity

. 2024 Sep ; 30 (9) : e17503.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39315483

Grantová podpora
2020-02339 Svenska Forskningsrådet Formas
ANR-20-EBI5-0003 Agence National pour la Recherche
451394862 Deutsche Forschungsgemeinschaft
French Environment and Energy Management Agency (ADEME)
BELSPO
l 5086-B Austrian Science Fund
862221 European Union H2020 programme
FAPESP
MixForChange
101087262 EU Horizon project EXCELLENTIA

Increasing tree diversity is considered a key management option to adapt forests to climate change. However, the effect of species diversity on a forest's ability to cope with extreme drought remains elusive. In this study, we assessed drought tolerance (xylem vulnerability to cavitation) and water stress (water potential), and combined them into a metric of drought-mortality risk (hydraulic safety margin) during extreme 2021 or 2022 summer droughts in five European tree diversity experiments encompassing different biomes. Overall, we found that drought-mortality risk was primarily driven by species identity (56.7% of the total variability), while tree diversity had a much lower effect (8% of the total variability). This result remained valid at the local scale (i.e within experiment) and across the studied European biomes. Tree diversity effect on drought-mortality risk was mediated by changes in water stress intensity, not by changes in xylem vulnerability to cavitation. Significant diversity effects were observed in all experiments, but those effects often varied from positive to negative across mixtures for a given species. Indeed, we found that the composition of the mixtures (i.e., the identities of the species mixed), but not the species richness of the mixture per se, is a driver of tree drought-mortality risk. This calls for a better understanding of the underlying mechanisms before tree diversity can be considered an operational adaption tool to extreme drought. Forest diversification should be considered jointly with management strategies focussed on favouring drought-tolerant species.

AgroParisTech INRAE UMR Silva Université de Lorraine Nancy France

Chair of Silviculture Faculty of Environment and Natural Resources University of Freiburg Freiburg im Breisgau Germany

CIRAD UMR Eco and Sols Montpellier France

Community Ecology Unit Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

Department of Crop Production Ecology Swedish University of Agricultural Sciences Uppsala Sweden

Department of Forest and Soil Sciences Institute of Forest Ecology University of Natural Resources and Life Sciences Vienna Austria

Department of Forest Protection and Wildlife Management Mendel University in Brno Brno Czech Republic

Department of Forest Sciences ESALQ University of São Paulo Piracicaba Brazil

Eco and Sols Univ Montpellier CIRAD INRAE Institut Agro IRD Montpellier France

Forest and Nature Lab Department of Environment Faculty of Bioscience Engineering Ghent University Melle Gontrode Belgium

French Environment and Energy Management Agency Angers France

Geobotany Faculty of Biology University of Freiburg Freiburg im Breisgau Germany

INRAE Piaf Université Clermont Auvergne Clermont Ferrand France

INRAE UMR BIOGECO University of Bordeaux Pessac France

INRAE Univ Bordeaux Biogeco Cestas France

INRAE URFM Avignon France

Institute of BioEconomy National Research Council Sassari Italy

Instituto de Recursos Naturales y Agrobiologıa Seville Spain

National Biodiversity Future Center S C A R L Palermo Italy

Plant Ecology Research Laboratory PERL School of Architecture Civil and Environmental Engineering EPFL Lausanne Switzerland

UCLouvain Université Catholique de Louvain Earth and Life Institute Louvain La Neuve Belgium

Zobrazit více v PubMed

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.‐H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001

Anderegg, W. R. L., Flint, A., Huang, C., Flint, L., Berry, J. A., Davis, F. W., Sperry, J. S., & Field, C. B. (2015). Tree mortality predicted from drought‐induced vascular damage. Nature Geoscience, 8(5), 5. https://doi.org/10.1038/ngeo2400

Anderegg, W. R. L., Kane, J. M., & Anderegg, L. D. L. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), 30–36. https://doi.org/10.1038/nclimate1635

Anderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbitas, R., Karp, D. S., Pacala, S., Sperry, J. S., Sulman, B. N., & Zenes, N. (2018). Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561(7724), 7724. https://doi.org/10.1038/s41586‐018‐0539‐7

Anderegg, W. R. L., Martinez‐Vilalta, J., Cailleret, M., Camarero, J. J., Ewers, B. E., Galbraith, D., Gessler, A., Grote, R., Huang, C., Levick, S. R., Powell, T. L., Rowland, L., Sánchez‐Salguero, R., & Trotsiuk, V. (2016). When a tree dies in the Forest: Scaling climate‐driven tree mortality to ecosystem water and carbon fluxes. Ecosystems, 19(6), 1133–1147. https://doi.org/10.1007/s10021‐016‐9982‐1

Baeten, L., Verheyen, K., Wirth, C., Bruelheide, H., Bussotti, F., Finér, L., Jaroszewicz, B., Selvi, F., Valladares, F., Allan, E., Ampoorter, E., Auge, H., Avăcăriei, D., Barbaro, L., Bărnoaiea, I., Bastias, C. C., Bauhus, J., Beinhoff, C., Benavides, R., … Scherer‐Lorenzen, M. (2013). A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 15(5), 281–291. https://doi.org/10.1016/j.ppees.2013.07.002

Barry, K. E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A. J., Bai, Y., Connolly, J., De Deyn, G. B., de Kroon, H., Isbell, F., Milcu, A., Roscher, C., Scherer‐Lorenzen, M., Schmid, B., & Weigelt, A. (2019). The future of complementarity: Disentangling causes from consequences. Trends in Ecology & Evolution, 34(2), 167–180. https://doi.org/10.1016/j.tree.2018.10.013

Bolte, A., Rahmann, T., Kuhr, M., Pogoda, P., Murach, D., & Gadow, K. V. (2004). Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies[L.] karst.). Plant and Soil, 264(1), 1–11. https://doi.org/10.1023/B:PLSO.0000047777.23344.a3

Cervellini, M., Zannini, P., Di Musciano, M., Fattorini, S., Jiménez‐Alfaro, B., Rocchini, D., Field, R., Vetaas, R., Irl, S. D. H., Beierkuhnlein, C., Hoffmann, S., Fischer, J.‐C., Casella, L., Angelini, P., Genovesi, P., Nascimbene, J., & Chiarucci, A. (2020). A grid‐based map for the biogeographical regions of Europe. Biodiversity Data Journal, 8, e53720. https://doi.org/10.3897/BDJ.8.e53720

Chauvin, T., Cochard, H., Segura, V., & Rozenberg, P. (2019). Native‐source climate determines the Douglas‐fir potential of adaptation to drought. Forest Ecology and Management, 444, 9–20. https://doi.org/10.1016/j.foreco.2019.03.054

Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., & Medlyn, B. E. (2018). Triggers of tree mortality under drought. Nature, 558(7711), 531–539. https://doi.org/10.1038/s41586‐018‐0240‐x

Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez‐Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. https://doi.org/10.1038/nature11688

Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., & Améglio, T. (2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124(4), 410–418. https://doi.org/10.1111/j.1399‐3054.2005.00526.x

Condo, T. K., & Reinhardt, K. (2019). Large variation in branch and branch‐tip hydraulic functional traits in Douglas‐fir (Pseudotsuga menziesii) approaching lower treeline. Tree Physiology, 39(8), 1461–1472. https://doi.org/10.1093/treephys/tpz058

Depauw, L., Lombaerde, E. D., Dhiedt, E., Blondeel, H., Abdala‐Roberts, L., Auge, H., Barsoum, N., Bauhus, J., Chu, C., Damtew, A., Eisenhauer, N., Fagundes, M. V., Ganade, G., Gendreau‐Berthiaume, B., Godbold, D., Gravel, D., Guillemot, J., Hajek, P., Hector, A., … Baeten, L. (2023). Enhancing tree performance through species mixing: Review of a quarter‐century TreeDivNet experiments revealing research gaps and practical insights. Current Forestry Reports. https://pure.royalholloway.ac.uk/en/publications/enhancing‐tree‐performance‐through‐species‐mixing‐review‐of‐a‐qua, 10, 1–20.

Feng, S., Liu, H., Peng, S., Dai, J., Xu, C., Luo, C., Shi, L., Luo, M., Niu, Y., Liang, B., & Liu, F. (2023). Will drought exacerbate the decline in the sustainability of plantation forests relative to natural forests? Land Degradation & Development, 34(4), 1067–1079. https://doi.org/10.1002/ldr.4516

Fichtner, A., Schnabel, F., Bruelheide, H., Kunz, M., Mausolf, K., Schuldt, A., Härdtle, W., & Oheimb, G. (2020). Neighbourhood diversity mitigates drought impacts on tree growth. Journal of Ecology, 108(3), 865–875. https://doi.org/10.1111/1365‐2745.13353

Fox, J., Weisberg, S., Adler, D., Bates, D., Baud‐Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., & Graves, S. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing, 16(332), 333.

Fuchs, S., Leuschner, C., Mathias Link, R., & Schuldt, B. (2021). Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central Europe. New Phytologist, 231(4), 1387–1400. https://doi.org/10.1111/nph.17448

Grossiord, C. (2020). Having the right neighbors: How tree species diversity modulates drought impacts on forests. New Phytologist, 228(1), 42–49. https://doi.org/10.1111/nph.15667

Grossiord, C., Gessler, A., Granier, A., Pollastrini, M., Bussotti, F., & Bonal, D. (2014). Interspecific competition influences the response of oak transpiration to increasing drought stress in a mixed Mediterranean forest. Forest Ecology and Management, 318, 54–61. https://doi.org/10.1016/j.foreco.2014.01.004

Guillemot, J., Kunz, M., Schnabel, F., Fichtner, A., Madsen, C. P., Gebauer, T., Härdtle, W., von Oheimb, G., & Potvin, C. (2020). Neighbourhood‐mediated shifts in tree biomass allocation drive overyielding in tropical species mixtures. New Phytologist, 228(4), 1256–1268. https://doi.org/10.1111/nph.16722

Guillemot, J., Martin‐StPaul, N. K., Bulascoschi, L., Poorter, L., Morin, X., Pinho, B. X., le Maire, G., Bittencourt, R. L., Oliveira, R. S., Bongers, F., Brouwer, R., Pereira, L., Gonzalez Melo, G. A., Boonman, C. C. F., Brown, K. A., Cerabolini, B. E. L., Niinemets, Ü., Onoda, Y., Schneider, J. V., … Brancalion, P. H. S. (2022). Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 28(8), 2622–2638. https://doi.org/10.1111/gcb.16082

Haberstroh, S., & Werner, C. (2022). The role of species interactions for forest resilience to drought. Plant Biology, 24(7), 1098–1107. https://doi.org/10.1111/plb.13415

Hajek, P., Link, R. M., Nock, C. A., Bauhus, J., Gebauer, T., Gessler, A., Kovach, K., Messier, C., Paquette, A., Saurer, M., Scherer‐Lorenzen, M., Rose, L., & Schuldt, B. (2022). Mutually inclusive mechanisms of drought‐induced tree mortality. Global Change Biology, 28(10), 3365–3378. https://doi.org/10.1111/gcb.16146

Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz‐Romero, C., Hartmann, H., Breshears, D. D., & Allen, C. D. (2022). Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests. Nature Communications, 13(1), 1. https://doi.org/10.1038/s41467‐022‐29289‐2

Herbette, S., Wortemann, R., Awad, H., Huc, R., Cochard, H., & Barigah, T. S. (2010). Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: Phenotypic and environmental sources of variability. Tree Physiology, 30(11), 1448–1455. https://doi.org/10.1093/treephys/tpq079

Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., Gonzalez‐Olabarria, J. R., Koricheva, J., Meurisse, N., & Brockerhoff, E. G. (2017). Tree diversity drives Forest stand resistance to natural disturbances. Current Forestry Reports, 3(3), 223–243. https://doi.org/10.1007/s40725‐017‐0064‐1

Jucker, T., Koricheva, J., Finér, L., Bouriaud, O., Iacopetti, G., & Coomes, D. A. (2020). Good things take time—Diversity effects on tree growth shift from negative to positive during stand development in boreal forests. Journal of Ecology, 108(6), 2198–2211. https://doi.org/10.1111/1365‐2745.13464

Jump, A. S., Ruiz‐Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., Martínez‐Vilalta, J., & Lloret, F. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Global Change Biology, 23(9), 3742–3757. https://doi.org/10.1111/gcb.13636

Lamy, J., Delzon, S., Bouche, P. S., Alia, R., Vendramin, G. G., Cochard, H., & Plomion, C. (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist, 201(3), 874–886. https://doi.org/10.1111/nph.12556

Lamy, J.‐B., Bouffier, L., Burlett, R., Plomion, C., Cochard, H., & Delzon, S. (2011). Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS One, 6(8), e23476. https://doi.org/10.1371/journal.pone.0023476

Lauriks, F., Salomón, R. L., De Roo, L., Goossens, W., Leroux, O., & Steppe, K. (2021). Limited plasticity of anatomical and hydraulic traits in aspen trees under elevated CO2 and seasonal drought. Plant Physiology, kiab497, 268–284. https://doi.org/10.1093/plphys/kiab497

Lemaire, C., Quilichini, Y., Brunel‐Michac, N., Santini, J., Berti, L., Cartailler, J., Conchon, P., Badel, É., & Herbette, S. (2021). Plasticity of the xylem vulnerability to embolism in Populus tremula x alba relies on pit quantity properties rather than on pit structure. Tree Physiology, 41(8), 1384–1399. https://doi.org/10.1093/treephys/tpab018

Liu, D., Wang, T., Peñuelas, J., & Piao, S. (2022). Drought resistance enhanced by tree species diversity in global forests. Nature Geoscience, 15(10), 800–804. https://doi.org/10.1038/s41561‐022‐01026‐w

Ma, Q., Su, Y., Niu, C., Ma, Q., Hu, T., Luo, X., Tai, X., Qiu, T., Zhang, Y., Bales, R. C., Liu, L., Kelly, M., & Guo, Q. (2023). Tree mortality during long‐term droughts is lower in structurally complex forest stands. Nature Communications, 14(1), 7467. https://doi.org/10.1038/s41467‐023‐43083‐8

Martínez‐Vilalta, J., Cochard, H., Mencuccini, M., Sterck, F., Herrero, A., Korhonen, J. F. J., Llorens, P., Nikinmaa, E., Nolè, A., Poyatos, R., Ripullone, F., Sass‐Klaassen, U., & Zweifel, R. (2009). Hydraulic adjustment of scots pine across Europe. New Phytologist, 184(2), 353–364. https://doi.org/10.1111/j.1469‐8137.2009.02954.x

Martínez‐Vilalta, J., Santiago, L. S., Poyatos, R., Badiella, L., de Cáceres, M., Aranda, I., Delzon, S., Vilagrosa, A., & Mencuccini, M. (2021). Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytologist, 232(1), 404–417. https://doi.org/10.1111/nph.17571

Martin‐Guay, M.‐O., Belluau, M., Côté, B., Handa, I. T., Jewell, M. D., Khlifa, R., Munson, A. D., Rivest, M., Whalen, J. K., & Rivest, D. (2022). Tree identity and diversity directly affect soil moisture and temperature but not soil carbon ten years after planting. Ecology and Evolution, 12(1), e8509. https://doi.org/10.1002/ece3.8509

Martin‐Stpaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437–1447. https://doi.org/10.1111/ele.12851

Mas, E., Cochard, H., Deluigi, J., Didion‐Gency, M., Martin‐StPaul, N., Morcillo, L., Valladares, F., Vilagrosa, A., & Grossiord, C. (2024). Interactions between beech and oak seedlings can modify the effects of hotter droughts and the onset of hydraulic failure. New Phytologist, 241(3), 1021–1034. https://doi.org/10.1111/nph.19358

Messier, C., Bauhus, J., Sousa‐Silva, R., Auge, H., Baeten, L., Barsoum, N., Bruelheide, H., Caldwell, B., Cavender‐Bares, J., Dhiedt, E., Eisenhauer, N., Ganade, G., Gravel, D., Guillemot, J., Hall, J. S., Hector, A., Hérault, B., Jactel, H., Koricheva, J., … Zemp, D. C. (2022). For the sake of resilience and multifunctionality, let's diversify planted forests! Conservation Letters, 15(1), e12829. https://doi.org/10.1111/conl.12829

Moreno, M., Simioni, G., Cailleret, M., Ruffault, J., Badel, E., Carrière, S., Davi, H., Gavinet, J., Huc, R., Limousin, J.‐M., Marloie, O., Martin, L., Rodríguez‐Calcerrada, J., Vennetier, M., & Martin‐StPaul, N. (2021). Consistently lower sap velocity and growth over nine years of rainfall exclusion in a Mediterranean mixed pine‐oak forest. Agricultural and Forest Meteorology, 308‐309, 108472. https://doi.org/10.1016/j.agrformet.2021.108472

Muys, B., & Messier, C. (2023). Climate‐smart forest management caught between a rock and a hard place. Annals of Forest Science, 80(1), 43. https://doi.org/10.1186/s13595‐023‐01208‐5

Nadrowski, K., Wirth, C., & Scherer‐Lorenzen, M. (2010). Is forest diversity driving ecosystem function and service? Current Opinion in Environmental Sustainability, 2(1), 75–79. https://doi.org/10.1016/j.cosust.2010.02.003

Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, I. J., & Choat, B. (2021). Hydraulic failure and tree size linked with canopy die‐back in eucalypt forest during extreme drought. New Phytologist, 230(4), 1354–1365. https://doi.org/10.1111/nph.17298

Oliveira, R. S., Eller, C. B., Barros, F. d. V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266

Pammenter, N. W., & Van der Willigen, C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18(8‐9), 589–593. https://doi.org/10.1093/treephys/18.8‐9.589

Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Brazaitis, G., Defossez, E., Engel, M., Godvod, K., Jacobs, K., Jansone, L., Jansons, A., Morin, X., Nothdurft, A., Oreti, L., Ponette, Q., Pach, M., Riofrío, J., … Calama, R. (2021). The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481, 118687. https://doi.org/10.1016/j.foreco.2020.118687

Prendin, A. L., Mayr, S., Beikircher, B., von Arx, G., & Petit, G. (2018). Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiology, 38(8), 1088–1097. https://doi.org/10.1093/treephys/tpy065

R Core Team. (2021). R: A language and environment for statistical computing—ScienceOpen. (s.d.). Consulté 2 avril 2024, à l'adresse. https://www.scienceopen.com/book?vid=b164ea90‐95d2‐43bf‐9710‐99753c479112

Rodriguez‐Dominguez, C. M., Forner, A., Martorell, S., Choat, B., Lopez, R., Peters, J. M. R., Pfautsch, S., Mayr, S., Carins‐Murphy, M. R., McAdam, S. A. M., Richardson, F., Diaz‐Espejo, A., Hernandez‐Santana, V., Menezes‐Silva, P. E., Torres‐Ruiz, J. M., Batz, T. A., & Sack, L. (2022). Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant, Cell & Environment, 45(7), 2037–2061. https://doi.org/10.1111/pce.14330

Ruffault, J., Pimont, F., Cochard, H., Dupuy, J.‐L., & Martin‐StPaul, N. (2022). SurEau‐Ecos v2.0: A trait‐based plant hydraulics model for simulations of plant water status and drought‐induced mortality at the ecosystem level. Geoscientific Model Development, 15(14), 5593–5626. https://doi.org/10.5194/gmd‐15‐5593‐2022

Sanchez‐Martinez, P., Martínez‐Vilalta, J., Dexter, K. G., Segovia, R. A., & Mencuccini, M. (2020). Adaptation and coordinated evolution of plant hydraulic traits. Ecology Letters, 23(11), 1599–1610. https://doi.org/10.1111/ele.13584

Sanchez‐Martinez, P., Mencuccini, M., García‐Valdés, R., Hammond, W. M., Serra‐Diaz, J. M., Guo, W.‐Y., Segovia, R. A., Dexter, K. G., Svenning, J.‐C., Allen, C., & Martínez‐Vilalta, J. (2023). Increased hydraulic risk in assemblages of woody plant species predicts spatial patterns of drought‐induced mortality. Nature Ecology & Evolution, 7(10), 1620–1632. https://doi.org/10.1038/s41559‐023‐02180‐z

Schnabel, F., Barry, K. E., Eckhardt, S., Guillemot, J., Geilmann, H., Kahl, A., Moossen, H., Bauhus, J., & Wirth, C. (2022). Neighbourhood species richness and drought‐tolerance traits modulate tree growth and δ13C responses to drought. Journal of Plant Biology, 26, 330–345. https://doi.org/10.1101/2022.11.22.517351

Schoonmaker, A. L., Hacke, U. G., Landhäusser, S. M., Lieffers, V. J., & Tyree, M. T. (2010). Hydraulic acclimation to shading in boreal conifers of varying shade tolerance. Plant, Cell & Environment, 33(3), 382–393. https://doi.org/10.1111/j.1365‐3040.2009.02088.x

Schuldt, B., Knutzen, F., Delzon, S., Jansen, S., Müller‐Haubold, H., Burlett, R., Clough, Y., & Leuschner, C. (2016). How adaptable is the hydraulic system of European beech in the face of climate change‐related precipitation reduction? New Phytologist, 210(2), 443–458. https://doi.org/10.1111/nph.13798

Sergent, A. S., Varela, S. A., Barigah, T. S., Badel, E., Cochard, H., Dalla‐Salda, G., Delzon, S., Fernández, M. E., Guillemot, J., Gyenge, J., Lamarque, L. J., Martinez‐Meier, A., Rozenberg, P., Torres‐Ruiz, J. M., & Martin‐StPaul, N. K. (2020). A comparison of five methods to assess embolism resistance in trees. Forest Ecology and Management, 468, 118175. https://doi.org/10.1016/j.foreco.2020.118175

Shovon, T. A., Auge, H., Haase, J., & Nock, C. A. (2024). Positive effects of tree species diversity on productivity switch to negative after severe drought mortality in a temperate forest experiment. Global Change Biology, 30(3), e17252. https://doi.org/10.1111/gcb.17252

Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2021). partR2: Partitioning R2 in generalized linear mixed models. PeerJ, 9, e11414. https://doi.org/10.7717/peerj.11414

Stout, D. L., & Sala, A. (2003). Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiology, 23(1), 43–50. https://doi.org/10.1093/treephys/23.1.43

Tai, X., Mackay, D. S., Ewers, B. E., Parsekian, A. D., Beverly, D., Speckman, H., Brooks, P. D., & Anderegg, W. R. L. (2019). Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer Forest. Journal of Geophysical Research: Biogeosciences, 124(11), 3555–3568. https://doi.org/10.1029/2019JG005272

Torres‐Ruiz, J. M., Cochard, H., Delzon, S., Boivin, T., Burlett, R., Cailleret, M., Corso, D., Delmas, C. E. L., De Caceres, M., Diaz‐Espejo, A., Fernández‐Conradi, P., Guillemot, J., Lamarque, L. J., Limousin, J.‐M., Mantova, M., Mencuccini, M., Morin, X., Pimont, F., De Dios, V. R., … Martin‐StPaul, N. K. (2024). Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. New Phytologist, 241(3), 984–999. https://doi.org/10.1111/nph.19463

Torres‐Ruiz, J. M., Cochard, H., Mayr, S., Beikircher, B., Diaz‐Espejo, A., Rodriguez‐Dominguez, C. M., Badel, E., & Fernández, J. E. (2014). Vulnerability to cavitation in Olea europaea current‐year shoots: Further evidence of an open‐vessel artifact associated with centrifuge and air‐injection techniques. Physiologia Plantarum, 152(3), 465–474. https://doi.org/10.1111/ppl.12185

Torres‐Ruiz, J. M., Jansen, S., Choat, B., McElrone, A. J., Cochard, H., Brodribb, T. J., Badel, E., Burlett, R., Bouche, P. S., Brodersen, C. R., Li, S., Morris, H., & Delzon, S. (2015). Direct X‐ray microtomography observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiology, 167(1), 40–43. https://doi.org/10.1104/pp.114.249706

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067

Venturas, M. D., Todd, H. N., Trugman, A. T., & Anderegg, W. R. L. (2021). Understanding and predicting forest mortality in the western United States using long‐term forest inventory data and modeled hydraulic damage. New Phytologist, 230(5), 1896–1910. https://doi.org/10.1111/nph.17043

Verheyen, K., Vanhellemont, M., Auge, H., Baeten, L., Baraloto, C., Barsoum, N., Bilodeau‐Gauthier, S., Bruelheide, H., Castagneyrol, B., Godbold, D., Haase, J., Hector, A., Jactel, H., Koricheva, J., Loreau, M., Mereu, S., Messier, C., Muys, B., Nolet, P., … Scherer‐Lorenzen, M. (2016). Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 45(1), 29–41. https://doi.org/10.1007/s13280‐015‐0685‐1

Williams, L. J., Paquette, A., Cavender‐Bares, J., Messier, C., & Reich, P. B. (2017). Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology & Evolution, 1(4), 4. https://doi.org/10.1038/s41559‐016‐0063

Zhang, S., Landuyt, D., Verheyen, K., & De Frenne, P. (2022). Tree species mixing can amplify microclimate offsets in young forest plantations. Journal of Applied Ecology, 59(6), 1428–1439. https://doi.org/10.1111/1365‐2664.14158

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...