Tree drought-mortality risk depends more on intrinsic species resistance than on stand species diversity
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
2020-02339
Svenska Forskningsrådet Formas
ANR-20-EBI5-0003
Agence National pour la Recherche
451394862
Deutsche Forschungsgemeinschaft
French Environment and Energy Management Agency (ADEME)
BELSPO
l 5086-B
Austrian Science Fund
862221
European Union H2020 programme
FAPESP
MixForChange
101087262
EU Horizon project EXCELLENTIA
PubMed
39315483
DOI
10.1111/gcb.17503
Knihovny.cz E-zdroje
- Klíčová slova
- forest adaptation, forest management, hydraulic traits, species interactions, species richness, tree diversity, water stress, xylem embolism,
- MeSH
- biodiverzita * MeSH
- klimatické změny MeSH
- lesy * MeSH
- období sucha * MeSH
- stromy * fyziologie MeSH
- xylém fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Increasing tree diversity is considered a key management option to adapt forests to climate change. However, the effect of species diversity on a forest's ability to cope with extreme drought remains elusive. In this study, we assessed drought tolerance (xylem vulnerability to cavitation) and water stress (water potential), and combined them into a metric of drought-mortality risk (hydraulic safety margin) during extreme 2021 or 2022 summer droughts in five European tree diversity experiments encompassing different biomes. Overall, we found that drought-mortality risk was primarily driven by species identity (56.7% of the total variability), while tree diversity had a much lower effect (8% of the total variability). This result remained valid at the local scale (i.e within experiment) and across the studied European biomes. Tree diversity effect on drought-mortality risk was mediated by changes in water stress intensity, not by changes in xylem vulnerability to cavitation. Significant diversity effects were observed in all experiments, but those effects often varied from positive to negative across mixtures for a given species. Indeed, we found that the composition of the mixtures (i.e., the identities of the species mixed), but not the species richness of the mixture per se, is a driver of tree drought-mortality risk. This calls for a better understanding of the underlying mechanisms before tree diversity can be considered an operational adaption tool to extreme drought. Forest diversification should be considered jointly with management strategies focussed on favouring drought-tolerant species.
AgroParisTech INRAE UMR Silva Université de Lorraine Nancy France
CIRAD UMR Eco and Sols Montpellier France
Department of Crop Production Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Forest Sciences ESALQ University of São Paulo Piracicaba Brazil
Eco and Sols Univ Montpellier CIRAD INRAE Institut Agro IRD Montpellier France
French Environment and Energy Management Agency Angers France
Geobotany Faculty of Biology University of Freiburg Freiburg im Breisgau Germany
INRAE Piaf Université Clermont Auvergne Clermont Ferrand France
INRAE UMR BIOGECO University of Bordeaux Pessac France
INRAE Univ Bordeaux Biogeco Cestas France
Institute of BioEconomy National Research Council Sassari Italy
Instituto de Recursos Naturales y Agrobiologıa Seville Spain
National Biodiversity Future Center S C A R L Palermo Italy
UCLouvain Université Catholique de Louvain Earth and Life Institute Louvain La Neuve Belgium
Zobrazit více v PubMed
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.‐H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Anderegg, W. R. L., Flint, A., Huang, C., Flint, L., Berry, J. A., Davis, F. W., Sperry, J. S., & Field, C. B. (2015). Tree mortality predicted from drought‐induced vascular damage. Nature Geoscience, 8(5), 5. https://doi.org/10.1038/ngeo2400
Anderegg, W. R. L., Kane, J. M., & Anderegg, L. D. L. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), 30–36. https://doi.org/10.1038/nclimate1635
Anderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbitas, R., Karp, D. S., Pacala, S., Sperry, J. S., Sulman, B. N., & Zenes, N. (2018). Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561(7724), 7724. https://doi.org/10.1038/s41586‐018‐0539‐7
Anderegg, W. R. L., Martinez‐Vilalta, J., Cailleret, M., Camarero, J. J., Ewers, B. E., Galbraith, D., Gessler, A., Grote, R., Huang, C., Levick, S. R., Powell, T. L., Rowland, L., Sánchez‐Salguero, R., & Trotsiuk, V. (2016). When a tree dies in the Forest: Scaling climate‐driven tree mortality to ecosystem water and carbon fluxes. Ecosystems, 19(6), 1133–1147. https://doi.org/10.1007/s10021‐016‐9982‐1
Baeten, L., Verheyen, K., Wirth, C., Bruelheide, H., Bussotti, F., Finér, L., Jaroszewicz, B., Selvi, F., Valladares, F., Allan, E., Ampoorter, E., Auge, H., Avăcăriei, D., Barbaro, L., Bărnoaiea, I., Bastias, C. C., Bauhus, J., Beinhoff, C., Benavides, R., … Scherer‐Lorenzen, M. (2013). A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 15(5), 281–291. https://doi.org/10.1016/j.ppees.2013.07.002
Barry, K. E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A. J., Bai, Y., Connolly, J., De Deyn, G. B., de Kroon, H., Isbell, F., Milcu, A., Roscher, C., Scherer‐Lorenzen, M., Schmid, B., & Weigelt, A. (2019). The future of complementarity: Disentangling causes from consequences. Trends in Ecology & Evolution, 34(2), 167–180. https://doi.org/10.1016/j.tree.2018.10.013
Bolte, A., Rahmann, T., Kuhr, M., Pogoda, P., Murach, D., & Gadow, K. V. (2004). Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies[L.] karst.). Plant and Soil, 264(1), 1–11. https://doi.org/10.1023/B:PLSO.0000047777.23344.a3
Cervellini, M., Zannini, P., Di Musciano, M., Fattorini, S., Jiménez‐Alfaro, B., Rocchini, D., Field, R., Vetaas, R., Irl, S. D. H., Beierkuhnlein, C., Hoffmann, S., Fischer, J.‐C., Casella, L., Angelini, P., Genovesi, P., Nascimbene, J., & Chiarucci, A. (2020). A grid‐based map for the biogeographical regions of Europe. Biodiversity Data Journal, 8, e53720. https://doi.org/10.3897/BDJ.8.e53720
Chauvin, T., Cochard, H., Segura, V., & Rozenberg, P. (2019). Native‐source climate determines the Douglas‐fir potential of adaptation to drought. Forest Ecology and Management, 444, 9–20. https://doi.org/10.1016/j.foreco.2019.03.054
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., & Medlyn, B. E. (2018). Triggers of tree mortality under drought. Nature, 558(7711), 531–539. https://doi.org/10.1038/s41586‐018‐0240‐x
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez‐Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. https://doi.org/10.1038/nature11688
Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., & Améglio, T. (2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124(4), 410–418. https://doi.org/10.1111/j.1399‐3054.2005.00526.x
Condo, T. K., & Reinhardt, K. (2019). Large variation in branch and branch‐tip hydraulic functional traits in Douglas‐fir (Pseudotsuga menziesii) approaching lower treeline. Tree Physiology, 39(8), 1461–1472. https://doi.org/10.1093/treephys/tpz058
Depauw, L., Lombaerde, E. D., Dhiedt, E., Blondeel, H., Abdala‐Roberts, L., Auge, H., Barsoum, N., Bauhus, J., Chu, C., Damtew, A., Eisenhauer, N., Fagundes, M. V., Ganade, G., Gendreau‐Berthiaume, B., Godbold, D., Gravel, D., Guillemot, J., Hajek, P., Hector, A., … Baeten, L. (2023). Enhancing tree performance through species mixing: Review of a quarter‐century TreeDivNet experiments revealing research gaps and practical insights. Current Forestry Reports. https://pure.royalholloway.ac.uk/en/publications/enhancing‐tree‐performance‐through‐species‐mixing‐review‐of‐a‐qua, 10, 1–20.
Feng, S., Liu, H., Peng, S., Dai, J., Xu, C., Luo, C., Shi, L., Luo, M., Niu, Y., Liang, B., & Liu, F. (2023). Will drought exacerbate the decline in the sustainability of plantation forests relative to natural forests? Land Degradation & Development, 34(4), 1067–1079. https://doi.org/10.1002/ldr.4516
Fichtner, A., Schnabel, F., Bruelheide, H., Kunz, M., Mausolf, K., Schuldt, A., Härdtle, W., & Oheimb, G. (2020). Neighbourhood diversity mitigates drought impacts on tree growth. Journal of Ecology, 108(3), 865–875. https://doi.org/10.1111/1365‐2745.13353
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud‐Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., & Graves, S. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing, 16(332), 333.
Fuchs, S., Leuschner, C., Mathias Link, R., & Schuldt, B. (2021). Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central Europe. New Phytologist, 231(4), 1387–1400. https://doi.org/10.1111/nph.17448
Grossiord, C. (2020). Having the right neighbors: How tree species diversity modulates drought impacts on forests. New Phytologist, 228(1), 42–49. https://doi.org/10.1111/nph.15667
Grossiord, C., Gessler, A., Granier, A., Pollastrini, M., Bussotti, F., & Bonal, D. (2014). Interspecific competition influences the response of oak transpiration to increasing drought stress in a mixed Mediterranean forest. Forest Ecology and Management, 318, 54–61. https://doi.org/10.1016/j.foreco.2014.01.004
Guillemot, J., Kunz, M., Schnabel, F., Fichtner, A., Madsen, C. P., Gebauer, T., Härdtle, W., von Oheimb, G., & Potvin, C. (2020). Neighbourhood‐mediated shifts in tree biomass allocation drive overyielding in tropical species mixtures. New Phytologist, 228(4), 1256–1268. https://doi.org/10.1111/nph.16722
Guillemot, J., Martin‐StPaul, N. K., Bulascoschi, L., Poorter, L., Morin, X., Pinho, B. X., le Maire, G., Bittencourt, R. L., Oliveira, R. S., Bongers, F., Brouwer, R., Pereira, L., Gonzalez Melo, G. A., Boonman, C. C. F., Brown, K. A., Cerabolini, B. E. L., Niinemets, Ü., Onoda, Y., Schneider, J. V., … Brancalion, P. H. S. (2022). Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 28(8), 2622–2638. https://doi.org/10.1111/gcb.16082
Haberstroh, S., & Werner, C. (2022). The role of species interactions for forest resilience to drought. Plant Biology, 24(7), 1098–1107. https://doi.org/10.1111/plb.13415
Hajek, P., Link, R. M., Nock, C. A., Bauhus, J., Gebauer, T., Gessler, A., Kovach, K., Messier, C., Paquette, A., Saurer, M., Scherer‐Lorenzen, M., Rose, L., & Schuldt, B. (2022). Mutually inclusive mechanisms of drought‐induced tree mortality. Global Change Biology, 28(10), 3365–3378. https://doi.org/10.1111/gcb.16146
Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz‐Romero, C., Hartmann, H., Breshears, D. D., & Allen, C. D. (2022). Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests. Nature Communications, 13(1), 1. https://doi.org/10.1038/s41467‐022‐29289‐2
Herbette, S., Wortemann, R., Awad, H., Huc, R., Cochard, H., & Barigah, T. S. (2010). Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: Phenotypic and environmental sources of variability. Tree Physiology, 30(11), 1448–1455. https://doi.org/10.1093/treephys/tpq079
Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., Gonzalez‐Olabarria, J. R., Koricheva, J., Meurisse, N., & Brockerhoff, E. G. (2017). Tree diversity drives Forest stand resistance to natural disturbances. Current Forestry Reports, 3(3), 223–243. https://doi.org/10.1007/s40725‐017‐0064‐1
Jucker, T., Koricheva, J., Finér, L., Bouriaud, O., Iacopetti, G., & Coomes, D. A. (2020). Good things take time—Diversity effects on tree growth shift from negative to positive during stand development in boreal forests. Journal of Ecology, 108(6), 2198–2211. https://doi.org/10.1111/1365‐2745.13464
Jump, A. S., Ruiz‐Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., Martínez‐Vilalta, J., & Lloret, F. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Global Change Biology, 23(9), 3742–3757. https://doi.org/10.1111/gcb.13636
Lamy, J., Delzon, S., Bouche, P. S., Alia, R., Vendramin, G. G., Cochard, H., & Plomion, C. (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist, 201(3), 874–886. https://doi.org/10.1111/nph.12556
Lamy, J.‐B., Bouffier, L., Burlett, R., Plomion, C., Cochard, H., & Delzon, S. (2011). Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS One, 6(8), e23476. https://doi.org/10.1371/journal.pone.0023476
Lauriks, F., Salomón, R. L., De Roo, L., Goossens, W., Leroux, O., & Steppe, K. (2021). Limited plasticity of anatomical and hydraulic traits in aspen trees under elevated CO2 and seasonal drought. Plant Physiology, kiab497, 268–284. https://doi.org/10.1093/plphys/kiab497
Lemaire, C., Quilichini, Y., Brunel‐Michac, N., Santini, J., Berti, L., Cartailler, J., Conchon, P., Badel, É., & Herbette, S. (2021). Plasticity of the xylem vulnerability to embolism in Populus tremula x alba relies on pit quantity properties rather than on pit structure. Tree Physiology, 41(8), 1384–1399. https://doi.org/10.1093/treephys/tpab018
Liu, D., Wang, T., Peñuelas, J., & Piao, S. (2022). Drought resistance enhanced by tree species diversity in global forests. Nature Geoscience, 15(10), 800–804. https://doi.org/10.1038/s41561‐022‐01026‐w
Ma, Q., Su, Y., Niu, C., Ma, Q., Hu, T., Luo, X., Tai, X., Qiu, T., Zhang, Y., Bales, R. C., Liu, L., Kelly, M., & Guo, Q. (2023). Tree mortality during long‐term droughts is lower in structurally complex forest stands. Nature Communications, 14(1), 7467. https://doi.org/10.1038/s41467‐023‐43083‐8
Martínez‐Vilalta, J., Cochard, H., Mencuccini, M., Sterck, F., Herrero, A., Korhonen, J. F. J., Llorens, P., Nikinmaa, E., Nolè, A., Poyatos, R., Ripullone, F., Sass‐Klaassen, U., & Zweifel, R. (2009). Hydraulic adjustment of scots pine across Europe. New Phytologist, 184(2), 353–364. https://doi.org/10.1111/j.1469‐8137.2009.02954.x
Martínez‐Vilalta, J., Santiago, L. S., Poyatos, R., Badiella, L., de Cáceres, M., Aranda, I., Delzon, S., Vilagrosa, A., & Mencuccini, M. (2021). Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytologist, 232(1), 404–417. https://doi.org/10.1111/nph.17571
Martin‐Guay, M.‐O., Belluau, M., Côté, B., Handa, I. T., Jewell, M. D., Khlifa, R., Munson, A. D., Rivest, M., Whalen, J. K., & Rivest, D. (2022). Tree identity and diversity directly affect soil moisture and temperature but not soil carbon ten years after planting. Ecology and Evolution, 12(1), e8509. https://doi.org/10.1002/ece3.8509
Martin‐Stpaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437–1447. https://doi.org/10.1111/ele.12851
Mas, E., Cochard, H., Deluigi, J., Didion‐Gency, M., Martin‐StPaul, N., Morcillo, L., Valladares, F., Vilagrosa, A., & Grossiord, C. (2024). Interactions between beech and oak seedlings can modify the effects of hotter droughts and the onset of hydraulic failure. New Phytologist, 241(3), 1021–1034. https://doi.org/10.1111/nph.19358
Messier, C., Bauhus, J., Sousa‐Silva, R., Auge, H., Baeten, L., Barsoum, N., Bruelheide, H., Caldwell, B., Cavender‐Bares, J., Dhiedt, E., Eisenhauer, N., Ganade, G., Gravel, D., Guillemot, J., Hall, J. S., Hector, A., Hérault, B., Jactel, H., Koricheva, J., … Zemp, D. C. (2022). For the sake of resilience and multifunctionality, let's diversify planted forests! Conservation Letters, 15(1), e12829. https://doi.org/10.1111/conl.12829
Moreno, M., Simioni, G., Cailleret, M., Ruffault, J., Badel, E., Carrière, S., Davi, H., Gavinet, J., Huc, R., Limousin, J.‐M., Marloie, O., Martin, L., Rodríguez‐Calcerrada, J., Vennetier, M., & Martin‐StPaul, N. (2021). Consistently lower sap velocity and growth over nine years of rainfall exclusion in a Mediterranean mixed pine‐oak forest. Agricultural and Forest Meteorology, 308‐309, 108472. https://doi.org/10.1016/j.agrformet.2021.108472
Muys, B., & Messier, C. (2023). Climate‐smart forest management caught between a rock and a hard place. Annals of Forest Science, 80(1), 43. https://doi.org/10.1186/s13595‐023‐01208‐5
Nadrowski, K., Wirth, C., & Scherer‐Lorenzen, M. (2010). Is forest diversity driving ecosystem function and service? Current Opinion in Environmental Sustainability, 2(1), 75–79. https://doi.org/10.1016/j.cosust.2010.02.003
Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, I. J., & Choat, B. (2021). Hydraulic failure and tree size linked with canopy die‐back in eucalypt forest during extreme drought. New Phytologist, 230(4), 1354–1365. https://doi.org/10.1111/nph.17298
Oliveira, R. S., Eller, C. B., Barros, F. d. V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266
Pammenter, N. W., & Van der Willigen, C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18(8‐9), 589–593. https://doi.org/10.1093/treephys/18.8‐9.589
Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Brazaitis, G., Defossez, E., Engel, M., Godvod, K., Jacobs, K., Jansone, L., Jansons, A., Morin, X., Nothdurft, A., Oreti, L., Ponette, Q., Pach, M., Riofrío, J., … Calama, R. (2021). The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481, 118687. https://doi.org/10.1016/j.foreco.2020.118687
Prendin, A. L., Mayr, S., Beikircher, B., von Arx, G., & Petit, G. (2018). Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiology, 38(8), 1088–1097. https://doi.org/10.1093/treephys/tpy065
R Core Team. (2021). R: A language and environment for statistical computing—ScienceOpen. (s.d.). Consulté 2 avril 2024, à l'adresse. https://www.scienceopen.com/book?vid=b164ea90‐95d2‐43bf‐9710‐99753c479112
Rodriguez‐Dominguez, C. M., Forner, A., Martorell, S., Choat, B., Lopez, R., Peters, J. M. R., Pfautsch, S., Mayr, S., Carins‐Murphy, M. R., McAdam, S. A. M., Richardson, F., Diaz‐Espejo, A., Hernandez‐Santana, V., Menezes‐Silva, P. E., Torres‐Ruiz, J. M., Batz, T. A., & Sack, L. (2022). Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant, Cell & Environment, 45(7), 2037–2061. https://doi.org/10.1111/pce.14330
Ruffault, J., Pimont, F., Cochard, H., Dupuy, J.‐L., & Martin‐StPaul, N. (2022). SurEau‐Ecos v2.0: A trait‐based plant hydraulics model for simulations of plant water status and drought‐induced mortality at the ecosystem level. Geoscientific Model Development, 15(14), 5593–5626. https://doi.org/10.5194/gmd‐15‐5593‐2022
Sanchez‐Martinez, P., Martínez‐Vilalta, J., Dexter, K. G., Segovia, R. A., & Mencuccini, M. (2020). Adaptation and coordinated evolution of plant hydraulic traits. Ecology Letters, 23(11), 1599–1610. https://doi.org/10.1111/ele.13584
Sanchez‐Martinez, P., Mencuccini, M., García‐Valdés, R., Hammond, W. M., Serra‐Diaz, J. M., Guo, W.‐Y., Segovia, R. A., Dexter, K. G., Svenning, J.‐C., Allen, C., & Martínez‐Vilalta, J. (2023). Increased hydraulic risk in assemblages of woody plant species predicts spatial patterns of drought‐induced mortality. Nature Ecology & Evolution, 7(10), 1620–1632. https://doi.org/10.1038/s41559‐023‐02180‐z
Schnabel, F., Barry, K. E., Eckhardt, S., Guillemot, J., Geilmann, H., Kahl, A., Moossen, H., Bauhus, J., & Wirth, C. (2022). Neighbourhood species richness and drought‐tolerance traits modulate tree growth and δ13C responses to drought. Journal of Plant Biology, 26, 330–345. https://doi.org/10.1101/2022.11.22.517351
Schoonmaker, A. L., Hacke, U. G., Landhäusser, S. M., Lieffers, V. J., & Tyree, M. T. (2010). Hydraulic acclimation to shading in boreal conifers of varying shade tolerance. Plant, Cell & Environment, 33(3), 382–393. https://doi.org/10.1111/j.1365‐3040.2009.02088.x
Schuldt, B., Knutzen, F., Delzon, S., Jansen, S., Müller‐Haubold, H., Burlett, R., Clough, Y., & Leuschner, C. (2016). How adaptable is the hydraulic system of European beech in the face of climate change‐related precipitation reduction? New Phytologist, 210(2), 443–458. https://doi.org/10.1111/nph.13798
Sergent, A. S., Varela, S. A., Barigah, T. S., Badel, E., Cochard, H., Dalla‐Salda, G., Delzon, S., Fernández, M. E., Guillemot, J., Gyenge, J., Lamarque, L. J., Martinez‐Meier, A., Rozenberg, P., Torres‐Ruiz, J. M., & Martin‐StPaul, N. K. (2020). A comparison of five methods to assess embolism resistance in trees. Forest Ecology and Management, 468, 118175. https://doi.org/10.1016/j.foreco.2020.118175
Shovon, T. A., Auge, H., Haase, J., & Nock, C. A. (2024). Positive effects of tree species diversity on productivity switch to negative after severe drought mortality in a temperate forest experiment. Global Change Biology, 30(3), e17252. https://doi.org/10.1111/gcb.17252
Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2021). partR2: Partitioning R2 in generalized linear mixed models. PeerJ, 9, e11414. https://doi.org/10.7717/peerj.11414
Stout, D. L., & Sala, A. (2003). Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiology, 23(1), 43–50. https://doi.org/10.1093/treephys/23.1.43
Tai, X., Mackay, D. S., Ewers, B. E., Parsekian, A. D., Beverly, D., Speckman, H., Brooks, P. D., & Anderegg, W. R. L. (2019). Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer Forest. Journal of Geophysical Research: Biogeosciences, 124(11), 3555–3568. https://doi.org/10.1029/2019JG005272
Torres‐Ruiz, J. M., Cochard, H., Delzon, S., Boivin, T., Burlett, R., Cailleret, M., Corso, D., Delmas, C. E. L., De Caceres, M., Diaz‐Espejo, A., Fernández‐Conradi, P., Guillemot, J., Lamarque, L. J., Limousin, J.‐M., Mantova, M., Mencuccini, M., Morin, X., Pimont, F., De Dios, V. R., … Martin‐StPaul, N. K. (2024). Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. New Phytologist, 241(3), 984–999. https://doi.org/10.1111/nph.19463
Torres‐Ruiz, J. M., Cochard, H., Mayr, S., Beikircher, B., Diaz‐Espejo, A., Rodriguez‐Dominguez, C. M., Badel, E., & Fernández, J. E. (2014). Vulnerability to cavitation in Olea europaea current‐year shoots: Further evidence of an open‐vessel artifact associated with centrifuge and air‐injection techniques. Physiologia Plantarum, 152(3), 465–474. https://doi.org/10.1111/ppl.12185
Torres‐Ruiz, J. M., Jansen, S., Choat, B., McElrone, A. J., Cochard, H., Brodribb, T. J., Badel, E., Burlett, R., Bouche, P. S., Brodersen, C. R., Li, S., Morris, H., & Delzon, S. (2015). Direct X‐ray microtomography observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiology, 167(1), 40–43. https://doi.org/10.1104/pp.114.249706
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067
Venturas, M. D., Todd, H. N., Trugman, A. T., & Anderegg, W. R. L. (2021). Understanding and predicting forest mortality in the western United States using long‐term forest inventory data and modeled hydraulic damage. New Phytologist, 230(5), 1896–1910. https://doi.org/10.1111/nph.17043
Verheyen, K., Vanhellemont, M., Auge, H., Baeten, L., Baraloto, C., Barsoum, N., Bilodeau‐Gauthier, S., Bruelheide, H., Castagneyrol, B., Godbold, D., Haase, J., Hector, A., Jactel, H., Koricheva, J., Loreau, M., Mereu, S., Messier, C., Muys, B., Nolet, P., … Scherer‐Lorenzen, M. (2016). Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 45(1), 29–41. https://doi.org/10.1007/s13280‐015‐0685‐1
Williams, L. J., Paquette, A., Cavender‐Bares, J., Messier, C., & Reich, P. B. (2017). Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology & Evolution, 1(4), 4. https://doi.org/10.1038/s41559‐016‐0063
Zhang, S., Landuyt, D., Verheyen, K., & De Frenne, P. (2022). Tree species mixing can amplify microclimate offsets in young forest plantations. Journal of Applied Ecology, 59(6), 1428–1439. https://doi.org/10.1111/1365‐2664.14158