Metastable Evaporation of Molecules from Water Clusters

. 2024 Oct 10 ; 128 (40) : 8679-8689. [epub] 20240926

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39327233

We probe the stability of water clusters by means of their metastable decay probability extracted from two-dimensional reflectron time-of-flight mass spectra. Two different methods are used to ionize and potentially excite the clusters and trigger the evaporation: (i) attachment of electrons with near-zero energies, producing negatively charged (H2O)n- clusters, and (ii) electron impact ionization, producing protonated (H2O)nH+ clusters. The electron attachment is a soft ionization and therefore provides information about the size distribution of the neutral clusters in the beam due to a very limited amount of post-ionization loss of water molecules. A dependence of metastable fractions on the conditions of neutral clusters production prior to the electron attachment is reported. For the cations, the higher energy electron impact ionization leads to a more extensive metastable loss of water molecules. The results are discussed in the light of neutral cluster excitation energy distributions and, for negative clusters, also in terms of binding energies. The experiments demonstrate clearly the role of the excess electron vs the excess proton in the two different charge states of the clusters around sizes N = 50-55, for which binding energies of the anions are derived from the data.

Zobrazit více v PubMed

Hock C.; Schmidt M.; Kuhnen R.; Bartels C.; Ma L.; Haberland H.; v.Issendorff B. Calorimetric Observation of the Melting of Free Water Nanoparticles at Cryogenic Temperatures. Phys. Rev. Lett. 2009, 103, 073401.10.1103/PhysRevLett.103.073401. PubMed DOI

Schmidt M.; von Issendorff B. Gas-Phase Calorimetry of Protonated Water Clusters. J. Chem. Phys. 2012, 136, 164307.10.1063/1.4705266. PubMed DOI

Pradzynski C. C.; Forck R. M.; Zeuch T.; Slavíček P.; Buck U. A Fully Size-Resolved Perspective on the Crystallization of Water Clusters. Science 2012, 337, 1529–1532. 10.1126/science.1225468. PubMed DOI

Buck U.; Pradzynski C. C.; Zeuch T.; Dieterich J. M.; Hartke B. A Size Resolved Investigation of Large Water Clusters. Phys. Chem. Chem. Phys. 2014, 16, 6859–6871. 10.1039/c3cp55185g. PubMed DOI

Gimelshein N.; Gimelshein S.; Pradzynski C. C.; Zeuch T.; Buck U. The Temperature and Size Distribution of Large Water Clusters from a Non-Equilibrium Model. J. Chem. Phys. 2015, 142, 244305.10.1063/1.4922312. PubMed DOI

Moberg D. R.; Becker D.; Dierking C. W.; Zurheide F.; Bandow B.; Buck U.; Hudait A.; Molinero V.; Paesani F.; Zeuch T. The End of Ice I. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 24413–24419. 10.1073/pnas.1914254116. PubMed DOI PMC

Lengyel J.; Pysanenko A.; Poterya V.; Kočišek J.; Fárník M. Extensive Water Cluster Fragmentation After Low Energy Electron Ionization. Chem. Phys. Lett. 2014, 612, 256–261. 10.1016/j.cplett.2014.08.038. DOI

Huang C.; Kresin V. V.; Pysanenko A.; Fárník M. Water Cluster Fragmentation Probed by Pickup Experiments. J. Chem. Phys. 2016, 145, 104304.10.1063/1.4962220. PubMed DOI

Suchan J.; Kolafa J.; Slavíček P. Electron-Induced Fragmentation of Water Droplets: Simulation Study. J. Chem. Phys. 2022, 156, 144303.10.1063/5.0088591. PubMed DOI

Echt O.; Kreisle D.; Knapp M.; Recknagel E. Evolution of “Magic Numbers” in Mass Spectra of Clusters after Ionization. Chem. Phys. Lett. 1984, 108, 401.10.1016/0009-2614(84)85215-X. DOI

Belau L.; Wilson K. R.; Leone S. R.; Ahmed M. Vacuum Ultraviolet (VUV) Photoionization of Small Water Clusters. J. Phys. Chem. A 2007, 111, 10075–10083. 10.1021/jp075263v. PubMed DOI

Andersson P. U.; Ryding M. J.; Sekiguchi O.; Uggerud E. Isotope Exchange and Structural Rearrangements in Reactions between Size-Selected Ionic Water Clusters, H3O+(H2O)(n) and NH${}_{4}^+$(H2O)(n), and D2O. Phys. Chem. Chem. Phys. 2008, 10, 6127–6134. 10.1039/b804584d. PubMed DOI

Sundén A.; Støchkel K.; Panja S.; Kadhane U.; Hvelplund P.; Nielsen S. B.; Zettergren H.; Dynefors B.; Hansen K. Heat Capacities of Freely Evaporating Charged Water Clusters. J. Chem. Phys. 2009, 130, 224308.10.1063/1.3149784. PubMed DOI

Hansen K.; Andersson P.; Uggerud E. Activation Energies for Evaporation from Protonated and Deprotonated Water Clusters from Mass Spectra. J. Chem. Phys. 2009, 131, 124303.10.1063/1.3230111. PubMed DOI

Knapp M.; Echt O.; Kreisle D.; Recknagel E. Electron Attachment to Water Clusters under Collision-Free Conditions. J. Phys. Chem. 1987, 91, 2601–2607. 10.1021/j100294a031. DOI

Kühlewind H.; Neusser H.; Schlag E. Metastable Fragment Ions in Multi-Photon Time-of-Flight Mass Spectrometry: Decay Channels of the Benzene Cation. Int. J. Mass Spectrom. Ion Phys. 1983, 51, 255–265. 10.1016/0020-7381(83)85011-6. DOI

Echt O.; Dao P. D.; Morgan S.; Castleman A. W. Multiphoton Ionization of Ammonia Clusters and the Dissociation Dynamics of Protonated Cluster Ions. J. Chem. Phys. 1985, 82, 4076.10.1063/1.448849. DOI

Morgan S.; Castleman J. A. W. Evidence of Delayed Internal Ion–Molecule Reactions Following the Multiphoton Ionization of Clusters: Variation in Reaction Channels in Methanol with Degree of Solvation. J. Am. Chem. Soc. 1987, 109, 2867–287. 10.1021/ja00244a001. DOI

Morgan S.; Castleman A. W. Dissociation Dynamics of Methanol Clusters Following Multiphoton Ionization. J. Phys. Chem. 1989, 93, 4544.10.1021/j100348a031. DOI

Morgan S.; Keesee R. G.; Castleman A. W. Reactions of Methanol Clusters following Multiphoton Ionization. J. Am. Chem. Soc. 1989, 111, 3841–3845. 10.1021/ja00193a014. DOI

Wei S. Q.; Tzeng W. B.; Castleman A. W. Dissociation Dynamics: Measurements of Decay Fractions of Metastable Ammonia Cluster Ions. J. Chem. Phys. 1990, 93, 2506–2512. 10.1063/1.459033. DOI

Shi Z.; Ford J. V.; Wei S.; Castleman A. W. Water Clusters: Contributions of Binding Energy and Entropy to Stability. J. Chem. Phys. 1993, 99, 8009–8015. 10.1063/1.465678. DOI

Wei S. Q.; Castleman A. W. Using Reflectron TOFMS Techniques to Investigate Cluster Dynamics and Bonding. Int. J. Mass Spectrom. Ion Processes 1994, 131, 233–264. 10.1016/0168-1176(93)03886-Q. DOI

Bockova J.; Rebelo A.; Ryszka M.; Pandey R.; da Fonseca Cunha T.; Limao-Vieira P.; Mason N.; Poully J.; Eden S. Mapping the Complex Metastable Fragmentation Pathways of Excited 3-Aminophenol. Int. J. Mass. Spectrom 2019, 442, 95–101. 10.1016/j.ijms.2019.05.006. DOI

Bobbert C.; Schütte S.; Steinbach C.; Buck U. Fragmentation and Reliable Size Distributions of Large Ammonia and Water Clusters. Eur. Phys. J. D 2002, 19, 183–192. 10.1140/epjd/e20020070. DOI

Lengyel J.; Pysanenko A.; Kočišek J.; Poterya V.; Pradzynski C.; Zeuch T.; Slavíček P.; Fárník M. Nucleation of Mixed Nitric Acid-Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule. J. Phys. Chem. Lett. 2012, 3, 3096–3109. 10.1021/jz3013886. PubMed DOI

Kočišek J.; Lengyel J.; Fárník M. Ionization of Large Homogeneous and Heterogeneous Clusters Generated in Acetylene-Ar Expansions: Cluster Ion Polymerization. J. Chem. Phys. 2013, 138, 124306.10.1063/1.4796262. PubMed DOI

Boesl U. Time-of-Flight Mass Spectrometry: Introduction to the Basics. Mass Spectrom. Rev. 2017, 36, 86–109. 10.1002/mas.21520. PubMed DOI

Ma L.; Majer K.; Chirot F.; von Issendorff B. Low Temperature Photoelectron Spectra of Water Cluster Anions. J. Chem. Phys. 2009, 131, 144303.10.1063/1.3245859. PubMed DOI

Yoder B. L.; Litman J. H.; Forysinski P. W.; Corbett J. L.; Signorell R. Sizer for Neutral Weakly Bound Ultrafine Aerosol Particles Based on Sodim Doping and Mass Spectrometric Detection. J. Phys. Chem. Lett. 2011, 2, 2623–2628. 10.1021/jz201086v. DOI

Becker D.; Dierking C. W.; Suchan J.; Zurheide F.; Lengyel J.; Fárník M.; Slavíček P.; Buck U.; Zeuch T. Temperature Evolution in IR Action Spectroscopy Experiments with Sodium Doped Water Clusters. Phys. Chem. Chem. Phys. 2021, 23, 7682–7695. 10.1039/D0CP05390B. PubMed DOI

Kondow T.; Nagata T.; Kuchitsu K. A Mechanism of Electron Attachment to Small Clusters. Z. Phys. D - Atoms, Molecules and Cluster 1989, 12, 291–292. 10.1007/BF01426959. DOI

Lee S.-W.; Freivogel P.; Schindler T.; Beauchamp J. L. Freeze-Dried Biomolecules: FT-ICR Studies of the Specific Solvation of Functional Groups and Clathrate Formation Observed by the Slow Evaporation of Water from Hydrated Peptides and Model Compounds in the Gas Phase. J. Am. Chem. Soc. 1998, 120, 11758–11765. 10.1021/ja982075x. DOI

Schindler T.; Berg C.; Niedner-Schatteburg G.; Bondybey V. E. Protonated Water Clusters and Their Black Body Radiation Induced Fragmentation. Cheem. Phys. Lett. 1996, 250, 301–308. 10.1016/0009-2614(96)00002-4. DOI

Hansen K.; Näher U. Evaporation and Cluster Abundance Spectra. Phys. Rev. A 1999, 60, 1240.10.1103/PhysRevA.60.1240. DOI

Hansen K.Statistical Physics of Nanoparticles in the Gas Phase; Springer Series on Atomic, Optical, and Plasma Physics; Springer: Dordrecht, 2018; Vol. 73, 2nd ed.

Niman J. W.; Kamerin B. S.; Kresin V. V.; Krohn J.; Signorell R.; Halonen R.; Hansen K. Shells in CO2 Clusters. Phys. Chem. Chem. Phys. 2022, 24, 5343–5350. 10.1039/D1CP05866E. PubMed DOI

Kazachenko S.; Thakkar A. J. Water nanodroplets: Predictions of five model potentials. J. Chem. Phys. 2013, 138, 194302.10.1063/1.4804399. PubMed DOI

Jongma R. T.; Huang Y.; Shi S.; Wodtke A. M. Rapid Evaporative Cooling Suppresses Fragmentation in Mass Spectrometry: Synthesis of “Unprotonated” Water Cluster Ions. J. Phys. Chem. A 1998, 102, 8847–8854. 10.1021/jp983366v. DOI

Dong F.; Heinbuch S.; Rocca J. J.; Bernstein E. R. Dynamics and Fragmentation of Van der Waals Clusters: (H2O)n, (CH3OH)n, and (NH3)n Upon Ionization by a 26.5 eV Soft X-Ray Laser. J. Chem. Phys. 2006, 124, 224319.10.1063/1.2202314. PubMed DOI

Hansen K.; Andersson P. U.; Uggerud E. Activation energies for evaporation from protonated and deprotonated water clusters from mass spectra. J. Chem. Phys. 2009, 131, 124303.10.1063/1.3230111. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...