Metastable Evaporation of Molecules from Water Clusters
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39327233
PubMed Central
PMC11648104
DOI
10.1021/acs.jpca.4c04728
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We probe the stability of water clusters by means of their metastable decay probability extracted from two-dimensional reflectron time-of-flight mass spectra. Two different methods are used to ionize and potentially excite the clusters and trigger the evaporation: (i) attachment of electrons with near-zero energies, producing negatively charged (H2O)n- clusters, and (ii) electron impact ionization, producing protonated (H2O)nH+ clusters. The electron attachment is a soft ionization and therefore provides information about the size distribution of the neutral clusters in the beam due to a very limited amount of post-ionization loss of water molecules. A dependence of metastable fractions on the conditions of neutral clusters production prior to the electron attachment is reported. For the cations, the higher energy electron impact ionization leads to a more extensive metastable loss of water molecules. The results are discussed in the light of neutral cluster excitation energy distributions and, for negative clusters, also in terms of binding energies. The experiments demonstrate clearly the role of the excess electron vs the excess proton in the two different charge states of the clusters around sizes N = 50-55, for which binding energies of the anions are derived from the data.
Zobrazit více v PubMed
Hock C.; Schmidt M.; Kuhnen R.; Bartels C.; Ma L.; Haberland H.; v.Issendorff B. Calorimetric Observation of the Melting of Free Water Nanoparticles at Cryogenic Temperatures. Phys. Rev. Lett. 2009, 103, 073401.10.1103/PhysRevLett.103.073401. PubMed DOI
Schmidt M.; von Issendorff B. Gas-Phase Calorimetry of Protonated Water Clusters. J. Chem. Phys. 2012, 136, 164307.10.1063/1.4705266. PubMed DOI
Pradzynski C. C.; Forck R. M.; Zeuch T.; Slavíček P.; Buck U. A Fully Size-Resolved Perspective on the Crystallization of Water Clusters. Science 2012, 337, 1529–1532. 10.1126/science.1225468. PubMed DOI
Buck U.; Pradzynski C. C.; Zeuch T.; Dieterich J. M.; Hartke B. A Size Resolved Investigation of Large Water Clusters. Phys. Chem. Chem. Phys. 2014, 16, 6859–6871. 10.1039/c3cp55185g. PubMed DOI
Gimelshein N.; Gimelshein S.; Pradzynski C. C.; Zeuch T.; Buck U. The Temperature and Size Distribution of Large Water Clusters from a Non-Equilibrium Model. J. Chem. Phys. 2015, 142, 244305.10.1063/1.4922312. PubMed DOI
Moberg D. R.; Becker D.; Dierking C. W.; Zurheide F.; Bandow B.; Buck U.; Hudait A.; Molinero V.; Paesani F.; Zeuch T. The End of Ice I. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 24413–24419. 10.1073/pnas.1914254116. PubMed DOI PMC
Lengyel J.; Pysanenko A.; Poterya V.; Kočišek J.; Fárník M. Extensive Water Cluster Fragmentation After Low Energy Electron Ionization. Chem. Phys. Lett. 2014, 612, 256–261. 10.1016/j.cplett.2014.08.038. DOI
Huang C.; Kresin V. V.; Pysanenko A.; Fárník M. Water Cluster Fragmentation Probed by Pickup Experiments. J. Chem. Phys. 2016, 145, 104304.10.1063/1.4962220. PubMed DOI
Suchan J.; Kolafa J.; Slavíček P. Electron-Induced Fragmentation of Water Droplets: Simulation Study. J. Chem. Phys. 2022, 156, 144303.10.1063/5.0088591. PubMed DOI
Echt O.; Kreisle D.; Knapp M.; Recknagel E. Evolution of “Magic Numbers” in Mass Spectra of Clusters after Ionization. Chem. Phys. Lett. 1984, 108, 401.10.1016/0009-2614(84)85215-X. DOI
Belau L.; Wilson K. R.; Leone S. R.; Ahmed M. Vacuum Ultraviolet (VUV) Photoionization of Small Water Clusters. J. Phys. Chem. A 2007, 111, 10075–10083. 10.1021/jp075263v. PubMed DOI
Andersson P. U.; Ryding M. J.; Sekiguchi O.; Uggerud E. Isotope Exchange and Structural Rearrangements in Reactions between Size-Selected Ionic Water Clusters, H3O+(H2O)(n) and NH${}_{4}^+$(H2O)(n), and D2O. Phys. Chem. Chem. Phys. 2008, 10, 6127–6134. 10.1039/b804584d. PubMed DOI
Sundén A.; Støchkel K.; Panja S.; Kadhane U.; Hvelplund P.; Nielsen S. B.; Zettergren H.; Dynefors B.; Hansen K. Heat Capacities of Freely Evaporating Charged Water Clusters. J. Chem. Phys. 2009, 130, 224308.10.1063/1.3149784. PubMed DOI
Hansen K.; Andersson P.; Uggerud E. Activation Energies for Evaporation from Protonated and Deprotonated Water Clusters from Mass Spectra. J. Chem. Phys. 2009, 131, 124303.10.1063/1.3230111. PubMed DOI
Knapp M.; Echt O.; Kreisle D.; Recknagel E. Electron Attachment to Water Clusters under Collision-Free Conditions. J. Phys. Chem. 1987, 91, 2601–2607. 10.1021/j100294a031. DOI
Kühlewind H.; Neusser H.; Schlag E. Metastable Fragment Ions in Multi-Photon Time-of-Flight Mass Spectrometry: Decay Channels of the Benzene Cation. Int. J. Mass Spectrom. Ion Phys. 1983, 51, 255–265. 10.1016/0020-7381(83)85011-6. DOI
Echt O.; Dao P. D.; Morgan S.; Castleman A. W. Multiphoton Ionization of Ammonia Clusters and the Dissociation Dynamics of Protonated Cluster Ions. J. Chem. Phys. 1985, 82, 4076.10.1063/1.448849. DOI
Morgan S.; Castleman J. A. W. Evidence of Delayed Internal Ion–Molecule Reactions Following the Multiphoton Ionization of Clusters: Variation in Reaction Channels in Methanol with Degree of Solvation. J. Am. Chem. Soc. 1987, 109, 2867–287. 10.1021/ja00244a001. DOI
Morgan S.; Castleman A. W. Dissociation Dynamics of Methanol Clusters Following Multiphoton Ionization. J. Phys. Chem. 1989, 93, 4544.10.1021/j100348a031. DOI
Morgan S.; Keesee R. G.; Castleman A. W. Reactions of Methanol Clusters following Multiphoton Ionization. J. Am. Chem. Soc. 1989, 111, 3841–3845. 10.1021/ja00193a014. DOI
Wei S. Q.; Tzeng W. B.; Castleman A. W. Dissociation Dynamics: Measurements of Decay Fractions of Metastable Ammonia Cluster Ions. J. Chem. Phys. 1990, 93, 2506–2512. 10.1063/1.459033. DOI
Shi Z.; Ford J. V.; Wei S.; Castleman A. W. Water Clusters: Contributions of Binding Energy and Entropy to Stability. J. Chem. Phys. 1993, 99, 8009–8015. 10.1063/1.465678. DOI
Wei S. Q.; Castleman A. W. Using Reflectron TOFMS Techniques to Investigate Cluster Dynamics and Bonding. Int. J. Mass Spectrom. Ion Processes 1994, 131, 233–264. 10.1016/0168-1176(93)03886-Q. DOI
Bockova J.; Rebelo A.; Ryszka M.; Pandey R.; da Fonseca Cunha T.; Limao-Vieira P.; Mason N.; Poully J.; Eden S. Mapping the Complex Metastable Fragmentation Pathways of Excited 3-Aminophenol. Int. J. Mass. Spectrom 2019, 442, 95–101. 10.1016/j.ijms.2019.05.006. DOI
Bobbert C.; Schütte S.; Steinbach C.; Buck U. Fragmentation and Reliable Size Distributions of Large Ammonia and Water Clusters. Eur. Phys. J. D 2002, 19, 183–192. 10.1140/epjd/e20020070. DOI
Lengyel J.; Pysanenko A.; Kočišek J.; Poterya V.; Pradzynski C.; Zeuch T.; Slavíček P.; Fárník M. Nucleation of Mixed Nitric Acid-Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule. J. Phys. Chem. Lett. 2012, 3, 3096–3109. 10.1021/jz3013886. PubMed DOI
Kočišek J.; Lengyel J.; Fárník M. Ionization of Large Homogeneous and Heterogeneous Clusters Generated in Acetylene-Ar Expansions: Cluster Ion Polymerization. J. Chem. Phys. 2013, 138, 124306.10.1063/1.4796262. PubMed DOI
Boesl U. Time-of-Flight Mass Spectrometry: Introduction to the Basics. Mass Spectrom. Rev. 2017, 36, 86–109. 10.1002/mas.21520. PubMed DOI
Ma L.; Majer K.; Chirot F.; von Issendorff B. Low Temperature Photoelectron Spectra of Water Cluster Anions. J. Chem. Phys. 2009, 131, 144303.10.1063/1.3245859. PubMed DOI
Yoder B. L.; Litman J. H.; Forysinski P. W.; Corbett J. L.; Signorell R. Sizer for Neutral Weakly Bound Ultrafine Aerosol Particles Based on Sodim Doping and Mass Spectrometric Detection. J. Phys. Chem. Lett. 2011, 2, 2623–2628. 10.1021/jz201086v. DOI
Becker D.; Dierking C. W.; Suchan J.; Zurheide F.; Lengyel J.; Fárník M.; Slavíček P.; Buck U.; Zeuch T. Temperature Evolution in IR Action Spectroscopy Experiments with Sodium Doped Water Clusters. Phys. Chem. Chem. Phys. 2021, 23, 7682–7695. 10.1039/D0CP05390B. PubMed DOI
Kondow T.; Nagata T.; Kuchitsu K. A Mechanism of Electron Attachment to Small Clusters. Z. Phys. D - Atoms, Molecules and Cluster 1989, 12, 291–292. 10.1007/BF01426959. DOI
Lee S.-W.; Freivogel P.; Schindler T.; Beauchamp J. L. Freeze-Dried Biomolecules: FT-ICR Studies of the Specific Solvation of Functional Groups and Clathrate Formation Observed by the Slow Evaporation of Water from Hydrated Peptides and Model Compounds in the Gas Phase. J. Am. Chem. Soc. 1998, 120, 11758–11765. 10.1021/ja982075x. DOI
Schindler T.; Berg C.; Niedner-Schatteburg G.; Bondybey V. E. Protonated Water Clusters and Their Black Body Radiation Induced Fragmentation. Cheem. Phys. Lett. 1996, 250, 301–308. 10.1016/0009-2614(96)00002-4. DOI
Hansen K.; Näher U. Evaporation and Cluster Abundance Spectra. Phys. Rev. A 1999, 60, 1240.10.1103/PhysRevA.60.1240. DOI
Hansen K.Statistical Physics of Nanoparticles in the Gas Phase; Springer Series on Atomic, Optical, and Plasma Physics; Springer: Dordrecht, 2018; Vol. 73, 2nd ed.
Niman J. W.; Kamerin B. S.; Kresin V. V.; Krohn J.; Signorell R.; Halonen R.; Hansen K. Shells in CO2 Clusters. Phys. Chem. Chem. Phys. 2022, 24, 5343–5350. 10.1039/D1CP05866E. PubMed DOI
Kazachenko S.; Thakkar A. J. Water nanodroplets: Predictions of five model potentials. J. Chem. Phys. 2013, 138, 194302.10.1063/1.4804399. PubMed DOI
Jongma R. T.; Huang Y.; Shi S.; Wodtke A. M. Rapid Evaporative Cooling Suppresses Fragmentation in Mass Spectrometry: Synthesis of “Unprotonated” Water Cluster Ions. J. Phys. Chem. A 1998, 102, 8847–8854. 10.1021/jp983366v. DOI
Dong F.; Heinbuch S.; Rocca J. J.; Bernstein E. R. Dynamics and Fragmentation of Van der Waals Clusters: (H2O)n, (CH3OH)n, and (NH3)n Upon Ionization by a 26.5 eV Soft X-Ray Laser. J. Chem. Phys. 2006, 124, 224319.10.1063/1.2202314. PubMed DOI
Hansen K.; Andersson P. U.; Uggerud E. Activation energies for evaporation from protonated and deprotonated water clusters from mass spectra. J. Chem. Phys. 2009, 131, 124303.10.1063/1.3230111. PubMed DOI