Carrying Police Load Increases Gait Asymmetry in Ground Reaction Forces and Plantar Pressures Beneath Different Foot Regions in a Large Sample of Police Recruits
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39329637
PubMed Central
PMC11428323
DOI
10.3390/bioengineering11090895
PII: bioengineering11090895
Knihovny.cz E-zdroje
- Klíčová slova
- effect size, load carriage, police equipment, special populations, symmetry,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Although carrying external load has negative effects on gait biomechanics, little evidence has been provided regarding its impact on body asymmetry. The main purpose of the present study was to examine, whether standardized equipment produced greater gait asymmetries in ground reaction force and plantar pressure. METHODS: For the purpose of this study, we recruited 845 police recruits (609 men and 236 women; 72.1% men and 27.9% women) measured in two conditions: (i) 'no load' and (ii) 'a 3.5 kg load'. Absolute values in ground reaction forces and plantar pressures beneath the different foot regions were assessed with pedobarographic platform (Zebris FDM). Asymmetry was calculated as (xright - xleft)/0.5 × (xright + xleft) × 100%, where 'x' represented a given parameter being calculated and a value closer to 0 denoted greater symmetry. RESULTS: Significant differences in ground reaction forces and plantar pressures between the left and right foot were observed, when adding 'a 3.5 kg load'. Compared to the 'no load' condition, carrying 'a 3.5 kg load' significantly increased gait asymmetries for maximal ground reaction forces beneath the forefoot (ES = 0.29), midfoot (ES = 0.20) and hindfoot (ES = 0.19) regions of the foot. For maximal plantar pressures, only the asymmetry beneath the midfoot region of the foot significantly increased (ES = 0.19). CONCLUSIONS: Findings of this study indicate that 'a 3.5 kg load' significantly increases ground reaction force and plantar pressure gait asymmetries beneath the forefoot and midfoot regions, compared to 'no load' condition. Due to higher loads, increases in kinetic gait asymmetries may have negative effects on future pain and discomfort in the foot area, possibly causing stress fractures and deviated gait biomechanics in police recruits.
Zobrazit více v PubMed
Larsen L.B., Tranberg R., Ramstrand N. Effects of thigh holster use on kinematics and kinetics of active duty police officers. Clin. Biomech. 2016;37:77–82. doi: 10.1016/j.clinbiomech.2016.06.009. PubMed DOI
Joseph A., Wiley A., Orr R., Schram B., Dawes J.J. The impact of load carriage on measures of power and agility in tactical occupations: A critical review. Int. J. Environ. Res. Public Health. 2018;15:88. doi: 10.3390/ijerph15010088. PubMed DOI PMC
Boffey D., Harat I., Gepner Y., Frosti C.L., Funk S., Hoffman J.R. The Physiology and Biomechanics of Load Carriage Performance. Mil. Med. 2019;184:83–90. doi: 10.1093/milmed/usy218. PubMed DOI
Walsh G.S., Low D.C. Military load carriage effects on the gait of military personnel: A systematic review. Appl. Ergon. 2021;93:103376. doi: 10.1016/j.apergo.2021.103376. PubMed DOI
Faghy M.A., Shei R.J., Armstrong N.C.D., White M., Lomax M. Physiological impact of load carriage exercise: Current understanding and future research directions. Physiol. Rep. 2022;10:15502. doi: 10.14814/phy2.15502. PubMed DOI PMC
Fallowfield J.L., Blacker S.D., Willems M.E., Davey T., Layden J. Neuromuscular and cardiovascular responses of Royal Marine recruits to load carriage in the field. Appl. Ergon. 2012;43:1131–1137. doi: 10.1016/j.apergo.2012.04.003. PubMed DOI
Orr R.M., Pope R. Gender differences in load carriage injuries of Australian army soldiers. BMC Musculoskelet. Disord. 2016;17:488. doi: 10.1186/s12891-016-1340-0. PubMed DOI PMC
Orr R.M., Coyle J., Johnston V., Pope R. Self-reported load carriage injuries of military soldiers. Int. J. Inj. Contr. Saf. Promot. 2017;24:189–197. doi: 10.1080/17457300.2015.1132731. PubMed DOI
Handžić I., Reed K.B. Perception of gait patterns that deviate from normal and symmetric biped locomotion. Front. Psychol. 2015;6:199. doi: 10.3389/fpsyg.2015.00199. PubMed DOI PMC
Helme M., Tee J., Emmonds S., Low C. Does lower-limb asymmetry increase injury risk in sport? A systematic review. Phys. Ther. Sport. 2021;49:204–213. doi: 10.1016/j.ptsp.2021.03.001. PubMed DOI
Lanshammar K., Ribom E.L. Differences in muscle strength in dominant and non-dominant leg in females aged 20-39 years--a population-based study. Phys. Ther. Sport. 2011;12:76–79. doi: 10.1016/j.ptsp.2010.10.004. PubMed DOI
Zhang X.A., Ye M., Wang C.T. Effect of unilateral load carriage on postures and gait symmetry in ground reaction force during walking. Comput. Methods Biomech. Biomed. Engin. 2010;13:339–344. doi: 10.1080/10255840903213445. PubMed DOI
DeVita P., Hong D., Hamill J. Effects of asymmetric load carrying on the biomechanics of walking. J. Biomech. 1991;24:1119–1129. doi: 10.1016/0021-9290(91)90004-7. PubMed DOI
Ozgül B., Akalan N.E., Kuchimov S., Uygur F., Temelli Y., Polat M.G. Effects of unilateral backpack carriage on biomechanics of gait in adolescents: A kinematic analysis. Acta Orthop. Traumatol. Turc. 2012;46:269–274. doi: 10.3944/AOTT.2012.2678. PubMed DOI
Park K., Sy J.F., Horn G.P., Kesler R.M., Petrucci M.N., Rosengren K.S., Hsiao-Wecksler E.T. Assessing gait changes in firefighters after firefighting activities and while carrying asymmetric loads. Appl. Ergon. 2018;70:44–50. doi: 10.1016/j.apergo.2018.01.016. PubMed DOI
Maines J.M., Reiser R.F. Ground reaction force bilateral asymmetries during submaximal sagittal plane lifting from the floor. Int. J. Industr. Ergon. 2006;36:109–117. doi: 10.1016/j.ergon.2005.08.004. DOI
Rocheford E.C., DeVoe D.E., Reiser II R. FEffect of previous unilateral injuries on ground reaction force bilateral asymmetries during static lifting and standing. J. Hum. Mov. Stud. 2006;51:403–424.
Umberger B.R. Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J. Biomech. 2008;41:2575–2580. doi: 10.1016/j.jbiomech.2008.05.024. PubMed DOI
Teyhen D.S., Shaffer S.W., Goffar S.L., Kiesel K., Butler R.J., Rhon D.I., Plisky P.J. Identification of risk factors prospectively associated with musculoskeletal injury in a warrior athlete population. Sports Health. 2020;12:564–572. doi: 10.1177/1941738120902991. PubMed DOI PMC
Yavnai N., Bar-Sela S., Pantanowitz M., Funk S., Waddington G., Simchas L., Svorai-Litvak S., Steinberg N. Incidence of injuries and factors related to injuries in combat soldiers. BMJ Mil. Health. 2021;167:418–423. doi: 10.1136/jramc-2019-001312. PubMed DOI
Canham-Chervak M., Rappole C., Grier T., Jones B.H. Injury mechanisms, activities, and limited work days in US army infantry units. U.S. Army Med. Dep. J. 2018;2-18:6–13. PubMed
Štefan A., Kasović M., Štefan L. Does a standardized load carriage increase spatiotemporal gait asymmetries in police recruits? A population-based study. Mil. Med. 2024:usae358. doi: 10.1093/milmed/usae358. PubMed DOI PMC
Štefan A., Kasović M., Štefan L. Load carriage and changes in spatiotemporal and kinetic biomechanical foot parameters during quiet stance in a large sample of police recruits. Appl. Sci. 2024;14:3274. doi: 10.3390/app14083274. DOI
Robinson R.O., Herzog W., Nigg B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987;10:172–176. PubMed
Sullivan G.M., Feinn R. Using effect size-or why the p-value is not enough. J. Grad. Med. Educ. 2012;4:279–282. doi: 10.4300/JGME-D-12-00156.1. PubMed DOI PMC
Chavet P., Lafortune M.A., Gray J.R. Asymmetry of lower extremity responses to external impact loading. Hum. Mov. Sci. 1997;16:391–406. doi: 10.1016/S0167-9457(96)00046-2. DOI
Alamoudi M., Travascio F., Onar-Thomas A., Eltoukhy M., Asfour S. The effects of different carrying methods on locomotion stability, gait spatio-temporal parameters and spinal stresses. Int. J. Ind. Ergon. 2018;67:81–88. doi: 10.1016/j.ergon.2018.04.012. DOI
Holbein M., Redfern M. Postural Stability While Walking and Carrying Loads in Various Postures. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1994;38:564–567. doi: 10.1177/154193129403801005. DOI
Fowler N.E., Rodacki A.L., Rodacki C.D. Changes in stature and spine kinematics during a loaded walking task. Gait Posture. 2006;23:133–141. doi: 10.1016/j.gaitpost.2004.12.006. PubMed DOI
Singh T., Koh M. Effects of backpack load position on spatiotemporal parameters and trunk forward lean. Gait Posture. 2009;29:49–53. doi: 10.1016/j.gaitpost.2008.06.006. PubMed DOI
Bobet J., Norman R.W. Effects of load placement on back muscle activity in load carriage. Eur. J. Appl. Physiol. Occup. Physiol. 1984;53:71–75. doi: 10.1007/BF00964693. PubMed DOI
Quesada P.M., Mengelkoch L.J., Hale R.C., Simon S.R. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics. 2000;43:293–309. doi: 10.1080/001401300184413. PubMed DOI
Lemus S.A., Volz M., Tiozzo E., Perry A., Best T.M., Travascio F. The effect of clinically elevated body mass index on physiological stress during manual lifting activities. PLoS ONE. 2022;17:e0278858. doi: 10.1371/journal.pone.0278858. PubMed DOI PMC
Heglund N.C., Willems P.A., Penta M., Cavagna G.A. Energy-saving gait mechanics with head-supported loads. Nature. 1995;375:52–54. doi: 10.1038/375052a0. PubMed DOI
Goffar S.L., Reber R.J., Christiansen B.C., Miller R.B., Naylor J.A., Rodriguez B.M., Walker M.J., Teyhen D.S. Changes in dynamic plantar pressure during loaded gait. Phys. Ther. 2013;93:1175–1184. doi: 10.2522/ptj.20120103. PubMed DOI
Majumdar D., Pal M.S., Pramanik A., Majumdar D. Kinetic changes in gait during low magnitude military load carriage. Ergonomics. 2013;56:1917–1927. doi: 10.1080/00140139.2013.835871. PubMed DOI