Flagellimonas algarum sp. nov., isolated from dense mats of filamentous algae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39331279
DOI
10.1007/s12223-024-01200-0
PII: 10.1007/s12223-024-01200-0
Knihovny.cz E-zdroje
- Klíčová slova
- Flagellimonas algarum, Flavobacteriaceae, Polyphasic analysis,
- MeSH
- DNA bakterií genetika chemie MeSH
- Flavobacteriaceae * klasifikace izolace a purifikace genetika MeSH
- fosfolipidy analýza MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- hybridizace nukleových kyselin MeSH
- mastné kyseliny analýza MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- techniky typizace bakterií MeSH
- vitamin K 2 analýza analogy a deriváty MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH
- Názvy látek
- DNA bakterií MeSH
- fosfolipidy MeSH
- mastné kyseliny MeSH
- RNA ribozomální 16S MeSH
- vitamin K 2 MeSH
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
College of Pharmacy Keimyung University 1095 Dalgubeoldaero Dalseo Gu Daegu 42601 Republic of Korea
Marine Biotechnology Institute 3 75 1 Heita Kamaishi Iwate 026 0001 Japan
Tropical Technology Plus 12 75 Suzaki Uruma Okinawa 904 2234 Japan
Zobrazit více v PubMed
Abdelghani Z, Hourani N, Zaidan Z, Dbaibo G, Mrad M, Hage-Sleiman R (2021) Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 203:4755–4776. https://doi.org/10.1007/s00203-021-02505-1 PubMed DOI PMC
Arun AB, Chen WM, Lai WA, Chao JH, Rekha PD, Shen FT, Singh S, Young CC (2009) Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 59:2738–2742. https://doi.org/10.1099/ijs.0.007930-0 PubMed DOI
Bae SS, Kwon KK, Yang SH, Lee HS, Kim SJ, Lee JH (2007) Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 57:1050–1054. https://doi.org/10.1099/ijs.0.64565-0 PubMed DOI
Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070. https://doi.org/10.1099/00207713-52-3-1049 PubMed DOI
Birolli WG, Lima RN, Porto ALM (2019) Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Front Microbiol 10:1453. https://doi.org/10.3389/fmicb.2019.01453 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PubMed DOI PMC
Bruns A (2015) Muricauda. Bergey’s Manual of Systematics of Archaea and Bacteria 2015:1–8. https://doi.org/10.1002/9781118960608 DOI
Chen Y, Hu Z, Wang H (2019) Muricauda amphidinii sp. nov., a novel marine bacterium isolated from the phycosphere of dinoflagellate Amphidinium carterae. Int J Syst Evol Microbiol 71:004764. https://doi.org/10.1099/ijsem.0.004764 DOI
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, Meyer SD, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516 PubMed DOI
Collins MD, Jones D (1981) A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134. https://doi.org/10.1111/j.1365-2672.1981.tb00916.x PubMed DOI
Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433. https://doi.org/10.1128/jb.104.1.410-433.1970 PubMed DOI PMC
Dang YR, Sun YY, Sun LL, Yuan XX, Li Y, Qin QL, Chen XL, Zhang YZ, Shi M, Zhang XY (2019) Muricauda nanhaiensis sp. nov., isolated from seawater of the South China Sea. Int J Syst Evol Microbiol 69:2089–2094. https://doi.org/10.1099/ijsem.0.003437 PubMed DOI
Figueroa-Villar JD, Sales EM (2017) The importance of nucleoside hydrolase enzyme (NH) in studies to treatment of Leishmania: a review. Chem Biol Interact 263:18–27. https://doi.org/10.1016/j.cbi.2016.12.004 PubMed DOI
Ghosh D, Saha M, Sana B, Mukherjee J (2005) Marine enzymes. Adv Biochem Eng Biot 96:189–218. https://doi.org/10.1007/b135785 DOI
Jooste PJ (1985) The taxonomy and significance of Flavobacterium–Cytophaga strains from dairy sources. PhD thesis, University of the Orange Free State, South Africa
Kang H, Kim H, Cha I, Joh K (2020) Flagellimonas maritima sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 70:187–192. https://doi.org/10.1099/ijsem.0.003733 PubMed DOI
Kim D, Yoo Y, Khim JS, Yang D, Pathiraja D, Choi IG, Kim JJ (2020) Muricauda ochracea sp. nov., isolated from a tidal flat in the Republic of Korea. Int J Syst Evol Microbiol 70:4555–4561. https://doi.org/10.1099/ijsem.0.004312 PubMed DOI
Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207. https://doi.org/10.1016/S0580-9517(08)70410-0 DOI
Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3 PubMed DOI PMC
Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G + C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0 PubMed DOI
Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Meth 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6 DOI
Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F (2021) Protease–a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett 151:307–323. https://doi.org/10.1007/s10562-020-03316-7 DOI
Novoa EAM, Deshmukh UB, Oren A (2024) Reclassification of Allomuricauda and Muricauda species as members of the genus Flagellimonas Bae et al. 2007 and emended description of the genus Flagellimonas. Int J Syst Evol Microbiol 74:006286. https://doi.org/10.1099/ijsem.0.006286
Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, Clingenpeel SR, Woyke T, McLean JS, Lasken R, Tesler G, Alekseyev MA, Pevzner PA (2013) Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 20:714–737. https://doi.org/10.1089/cmb.2013.0084 PubMed DOI PMC
Park JS (2019) Muricauda hymeniacidonis sp. nov., isolated from sponge of Hymeniacidon sinapium. Int J Syst Evol Microbiol 69:3800–3805. https://doi.org/10.1099/ijsem.0.003683 PubMed DOI
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.7287/peerj.preprints.554v2 PubMed DOI PMC
Perry LB (1973) Gliding motility in some non-spreading flexibacteria. J Appl Microbiol 36:227–232. https://doi.org/10.1111/j.1365-2672.1973.tb04095.x DOI
Power DA, Johnson JA (2009) Difco™ and BBL™ manual: manual of microbiological culture media, 2nd edn. Becton Dickinson and Company, Sparks, pp 359–360
Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56:16–30. https://doi.org/10.17113/ftb.56.01.18.5491 PubMed DOI PMC
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY (2019) Coral and coral-associated microorganisms: a prolific source of potential bioactive natural products. Mar Drugs 17:468. https://doi.org/10.3390/md1708046 PubMed DOI PMC
Su H, Xiao Z, Yu K, Huang Q, Wang G, Wang Y, Liang J, Huang W, Huang X, Wei F, Chen B (2020) Diversity of cultivable protease-producing bacteria and their extracellular proteases associated to scleractinian corals. PeerJ 8:e9055. https://doi.org/10.7717/peerj.9055 PubMed DOI PMC
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569 PubMed DOI PMC
Worliczek HL, Kämpfer P, Rosengarten R, Tindall RBJ, Busse HJ (2007) Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30:355–370. https://doi.org/10.1016/j.syapm.2007.03.004 PubMed DOI
Yoon J, Lee KC, Lee JS (2016) Cribrihabitans pelagius sp. nov., a marine alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 66:3195–3200. https://doi.org/10.1099/ijsem.0.001171 PubMed DOI
Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4 PubMed DOI
Yoon J, Yasumoto-Hirose M, Kasai H (2021) Identification and classification of Croceivirga thetidis sp. nov., a marine Flavobacteriaceae isolated from the hard coral Acropora. Antonie Van Leeuwenhoek 114:1407–1416. https://doi.org/10.1007/s10482-021-01611-w PubMed DOI
Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934. https://doi.org/10.3390/md8061920 PubMed DOI PMC
Zhang Z, Gao X, Qiao Y, Wang Y, Zhang XH (2015) Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 65:4087–4092. https://doi.org/10.1099/ijsem.0.000542 PubMed DOI
Zhou MY, Wang GL, Li D, Zhao DL, Qin QL, Chen XL, Chen B, Zhou BC, Zhang XY, Zhang YZ (2013) Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island. Antarctica Plos ONE 8:e79668. https://doi.org/10.1371/journal.pone.0079668 PubMed DOI