Population structure and demographic history of two highly-trafficked species of pangolin in the Congo Basin

. 2024 Sep 27 ; 14 (1) : 22177. [epub] 20240927

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39333261

Grantová podpora
VK01010103 Ministerstvo Vnitra České Republiky
IGA 20243105 Internal grant agency of the Czech University of Life Sciences Prague
180517814 Mohamed bin Zayed Species Conservation Fund
2023B0039 IGA Faculty of Environmental Sciences CZU Prague

Odkazy

PubMed 39333261
PubMed Central PMC11437027
DOI 10.1038/s41598-024-68928-0
PII: 10.1038/s41598-024-68928-0
Knihovny.cz E-zdroje

African pangolins are hunted for their meat and for use in local traditional medicine, as well as for their scales, which are trafficked internationally, especially to growing Asian markets. Pangolin's population genetic structure can be used to trace the geographic origins of trafficked scales, but substantial sampling gaps across pangolins' ranges hinder these efforts. In this study, we documented population structure and dynamics in the two species of African pangolin, the white-bellied pangolin (Phataginus tricuspis) and the giant pangolin (Smutsia gigantea) in the underexplored Republic of Congo. Using the mitochondrial control region and two nuclear markers (beta-fibrinogen and titin), we identified high genetic diversity in both species. We document a distinct mitochondrial lineage of the white-bellied pangolin, which was most likely shaped by river barriers together with dynamics of forest refugia related to the climatic shifts during the Pleistocene. We detected population growth in the white-bellied pangolin coinciding with a dry period during the Pleistocene, suggesting some ability for this typically forest-dwelling species to persist under diverse environmental conditions. Using landscape genetics, we found all but one of the pangolins we sampled at bush meat markets originated locally. A single individual appeared to have been imported to Congo from Cameroon. These findings significantly contribute to our understanding of pangolin population biology and local trade dynamics. In addition, our data from a previously unstudied part of pangolins' ranges will help us to better understand international wildlife trafficking patterns and to target conservation and protection strategies for these highly vulnerable species.

Zobrazit více v PubMed

Challender, D. W., Waterman, C. & Baillie, M. J. E. Scaling up pangolin conservation: IUCN SSC pangolin specialist group conservation action plan, in IUCN Library Systemhttps://portals.iucn.org/library/node/44947 (2014).

Challender, D. W. & Hywood, L. African pangolins. TRAFFIC Bull.24, 53–55 (2012).

Ingram, D. J., Cronin, D. T., Challender, D. W. S., Venditti, D. M. & Gonder, M. K. Characterising trafficking and trade of pangolins in the Gulf of Guinea. Glob. Ecol. Conserv17, e00576. 10.1016/j.gecco.2019.e00576 (2019).

Emogor, C. A. et al. The scale of Nigeria’s involvement in the trans-national illegal pangolin trade: Temporal and spatial patterns and the effectiveness of wildlife trade regulations. Biol. Conserv.264, 109365. 10.1016/j.biocon.2021.109365 (2021). PubMed PMC

Suwal, T. L., Gurung, S. & Pei, K. J. C. Pangolin seizures in Nepal indicate priority areas for conservation interventions. ORYX57, 727–734 (2023).

Heinrich, S. et al. Where did all the pangolins go? International CITES trade in pangolin species. Glob. Ecol. Conserv.8, 241–253 (2016).

Ingram, D. J. et al. Assessing Africa-wide pangolin exploitation by scaling local data. Conserv. Lett.11, 1–9 (2018).

Baiyewu, A. O., Boakye, M. K., Kotzé, A., Dalton, D. L. & Jansen, R. Ethnozoological survey of traditional uses of Temminck’s ground pangolin (Smutsia temminckii) in South Africa. Soc. Anim.26, 306–325 (2018).

Malimbo, D. K. et al. Local perception on the exploitation, the current state and taboos related to pangolins (Pholidota, Mammalia) by the communities living in the Tayna nature reserve and its surroundings (RNT) North Kivu DRC. J. Environ. Prot. Sci.08, 18–35 (2020).

Segniagbeto, G. H. et al. Insights into the status and distribution of pangolins in Togo (West Africa). Afr. J. Ecol.59, 342–349 (2021).

Soewu, D. A. & Sodeinde, O. A. Utilization of pangolins in Africa: Fuelling factors, diversity of uses and sustainability. Int. J. Biodivers. Conserv.7, 1–10 (2015).

Swiacká, M., Ingram, D. J., Bohm, T. & Ceacero, F. Perceptions and uses of pangolins (Pholidota) among remote rural communities in the Republic of the Congo: A baseline study from the Odzala-Kokoua National Park. Conserv. Sci. Pract.4, e12839. 10.1111/csp2.12839 (2022).

Zanvo, S. et al. Ethnozoological and commercial drivers of the pangolin trade in Benin. J. Ethnobiol. Ethnomed.17, e18. 10.1186/s13002-021-00446-z (2021). PubMed PMC

Ingram, D. J. et al. Wild meat is still on the menu: Progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ.46, 221–254 (2021).

IUCN. IUCN Red List of Threatened Species, Version 2023-1. IUCNhttps://www.iucnredlist.org/ (2023).

Pietersen, D. W. & Challender, D. W. S. Research needs for pangolins. In Pangolins (eds Challnder, D. W. et al.) 537–543 (Elsevier, 2020).

Duckworth, J. W. The difficulty of estimating population densities of nocturnal forest mammals from transect counts of animals. J. Zool.246, 443–486 (1998).

Newton, P., Van Thai, N., Roberton, S. & Bell, D. Pangolins in peril: Using local hunters’ knowledge to conserve elusive species in Vietnam. Endanger. Species Res.6, 41–53 (2008).

Khwaja, H. et al. Pangolins in global camera trap data: Implications for ecological monitoring. Glob. Ecol. Conserv.20, e00769. 10.1016/j.gecco.2019.e00769 (2019).

Willcox, D. et al. Evaluating methods for detecting and monitoring pangolin (Pholidata: Manidae) populations. Glob. Ecol. Conserv.17, e00539. 10.1016/j.gecco.2019.e00539 (2019).

Ingram, D. J., Willcox, D. & Challender, D. W. S. Evaluation of the application of methods used to detect and monitor selected mammalian taxa to pangolin monitoring. Glob. Ecol. Conserv.18, e00632. 10.1016/j.gecco.2019.e00632 (2019).

Ewart, K. M. et al. DNA analyses of large pangolin scale seizures: Species identification validation and case studies. Forensic Sci. Int.1, 100014. 10.1016/j.fsiae.2021.100014 (2021).

Hsieh, H. M. et al. Establishing the pangolin mitochondrial D-loop sequences from the confiscated scales. Forensic Sci. Int. Genet.5, 303–307 (2011). PubMed

Kumar, V. P. et al. Illegal trade of Indian Pangolin (Manis crassicaudata): Genetic study from scales based on mitochondrial genes. Egypt. J. Forensic Sci.6, 524–533 (2016).

Luczon, A. U., Ong, P. S., Quilang, J. P. & Fontanilla, I. K. C. Determining species identity from confiscated pangolin remains using DNA barcoding. Mitochondrial DNA B Resour.1, 763–766 (2016). PubMed PMC

Nash, H. C. et al. Conservation genomics reveals possible illegal trade routes and admixture across pangolin lineages in Southeast Asia. Conserv. Genet.19, 1083–1095 (2018).

Yeo, D. et al. Uncovering the magnitude of African pangolin poaching with extensive nanopore DNA genotyping of seized scales. Conserv. Biol.10.1111/cobi.14162 (2023). PubMed

Zhang, H. et al. Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Glob. Ecol. Conserv.4, 414–422 (2015).

Zhang, H. et al. Genetic identification of African pangolins and their origin in illegal trade. Glob. Ecol. Conserv.23, e01119 (2020).

Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science349, 84–87 (2015). PubMed PMC

Gaubert, P. et al. Phylogeography of the heavily poached A frican common pangolin (Pholidota, Manis tricuspis) reveals six cryptic lineages as traceable signatures of Pleistocene diversification. Mol. Ecol.25, 5975–5993 (2016). PubMed

Huntley, J. W., Keith, K. D., Castellanos, A. A., Musher, L. J. & Voelker, G. Underestimated and cryptic diversification patterns across Afro-tropical lowland forests. J. Biogeogr.46, 381–391 (2019).

Bohoussou, K. H. et al. The phylogeography of the rodent genus Malacomys suggests multiple Afrotropical Pleistocene lowland forest refugia. J. Biogeogr.42, 2049–2061 (2015).

Pietersen, D. et al. White-bellied Pangolin, in IUCN Red List of Threatened Specieshttps://www.iucnredlist.org/species/12767/123586469 (2019).

Pagés, E. Etude éco-éthologique de Manis tricuspis par radio-tracking. Mammalia39, 613–642 (1975). PubMed

Jansen, R. et al. White-bellied pangolin (Phataginus tricuspis). In Pangolins (eds Challender, D. W. et al.) 139–156 (Elsevier, 2020).

Zanvo, S. et al. Assessing the spatiotemporal dynamics of endangered mammals through local ecological knowledge combined with direct evidence: The case of pangolins in Benin (West Africa). Glob. Ecol. Conserv.23, e01085. 10.1016/j.gecco.2020.e01085 (2020).

Akpona, H. A., Chabi, A. D. & Sinsin, B. Ecology and ethnozoology of the three-cusped pangolin Manis tricuspis (Mammalia, Pholidota) in the Lama forest reserve, Benin. Mammalia72, 198–202 (2008).

Gaubert, P. Order pholidota. In Handbook of the Mammals of the World, Volume 2: Hoofed Mammals Vol. 2 (eds Wilson, D. & Mittermeier, R. A.) 82–103 (Lynx Ediciones Barcelona, 2011).

Bruce, T. et al. Locating giant ground pangolins (Smutsia gigantea) using camera traps on burrows in the dja biosphere reserve. Cameroon. Trop. Conserv. Sci.11, 1–5 (2018).

Nixon, S. et al. Giant ground pangolin, in IUCN Red List of Threatened Specieshttps://www.iucnredlist.org/species/12762/123584478 (2019).

D’Cruze, N. et al. Snake oil and pangolin scales: Insights into wild animal use at “Marché des Fétiches” traditional medicine market. Togo. Nat. Conserv.10.3897/natureconservation.39.47879 (2020).

Gluszek, S., Viollaz, J., Mwinyihali, R., Wieland, M. & Gore, M. L. Using conservation criminology to understand the role of restaurants in the urban wild meat trade. Conserv. Sci. Pract.3, e368. 10.1111/csp2.368 (2021).

du Toit, Z., Grobler, P. J., Kotze, A., Jansen, R. & Dalton, D. L. Scale samples from Temminck’s ground pangolin (Smutsia temminckii): A non-invasive source of DNA. Conserv. Genet. Resour.9, 1–4 (2017).

Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994). PubMed PMC

Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet.76, 449–462 (2005). PubMed PMC

Stephens, M., Smith, N. J. & Donnelly, P. A New Statistical Method for Haplotype Reconstruction from Population Data. Am. J. Hum. Genet68, 978–989 (2001). PubMed PMC

Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol.9, 1657–1659 (2000). PubMed

Múrias Dos Santos, A., Cabezas, M. P., Tavares, A. I., Xavier, R. & Branco, M. TcsBU: A tool to extend TCS network layout and visualization. Bioinformatics32, 627–628 (2016). PubMed

Guillot, G., Mortier, F. & Estoup, A. GENELAND: A computer package for landscape genetics. Mol. Ecol. Notes5, 712–715 (2005).

Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol.38, 3022–3027 (2021). PubMed PMC

Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol.34, 3299–3302 (2017). PubMed

Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol.7, e214. 10.1186/1471-2148-7-214 (2007). PubMed PMC

Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol.52, 696–704 (2003). PubMed

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods9, 772 (2012). PubMed PMC

Gaubert, P. et al. The complete phylogeny of Pangolins: Scaling up resources for the molecular tracing of the most trafficked mammals on earth. J. Hered.109, 347–359 (2018). PubMed

Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol.67, 901–904 (2018). PubMed PMC

Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol.15, e1006650. 10.1371/journal.pcbi.1006650 (2019). PubMed PMC

Miller, M. P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered.96, 722–724 (2005). PubMed

Pedreschi, D. et al. Challenging the European southern refugium hypothesis: Species-specific structures versus general patterns of genetic diversity and differentiation among small mammals. Glob. Ecol. Biogeogr.28, 262–274 (2019).

Meiklejohn, K. A., Burnham-Curtis, M. K., Straughan, D. J., Giles, J. & Moore, M. K. Current methods, future directions and considerations of DNA-based taxonomic identification in wildlife forensics. Forensic Sci. Int.1, 100030. 10.1016/j.fsiae.2021.100030 (2021).

Mizerovská, D. et al. Genetic variation of the most abundant forest-dwelling rodents in Central Africa (Praomys jacksoni complex): Evidence for Pleistocene refugia in both montane and lowland forests. J. Biogeogr.46, 1466–1478 (2019).

Tinsman, J. C. et al. Genomic analyses reveal poaching hotspots and illegal trade in pangolins from Africa to Asia. Science382, 1282–1286 (2023). PubMed

Portik, D. M. et al. Evaluating mechanisms of diversification in a Guineo-Congolian tropical forest frog using demographic model selection. Mol. Ecol.26, 5245–5263 (2017). PubMed

Van Thai, N., Clark, L. & Quang, T. Sunda Pangolin (Manis Javanica): Husbandry Guidelines. Carnivore and Pangolin Conservation Program – Save Vietnam’s Wildlife, Vietnam (2013).

Zanvo, S. et al. Can DNA help trace the local trade of pangolins? Conservation genetics of white-bellied pangolins from the Dahomey Gap (West Africa). BMC Ecol. Evol.10.1186/s12862-022-01971-5 (2022). PubMed PMC

Du Toit, Z. et al. The complete mitochondrial genome of Temminck’s ground pangolin (Smutsia temminckii; Smuts, 1832) and phylogenetic position of the Pholidota (Weber, 1904). Gene551, 49–54 (2014). PubMed

Wei, S. et al. Influence of Pleistocene climate fluctuations on the demographic history and distribution of the critically endangered Chinese pangolin (Manis pentadactyla). BMC Zool.7, e50. 10.1186/s40850-022-00153-6 (2022). PubMed PMC

deMenocal, P. B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett.220, 3–24 (2004).

Mouafo, A. D. T., Ingram, D. J., Tegang Pagning, R., Nfor Ngwayi, I. C. & Mayaka, T. B. Local knowledge and use of pangolins by culturally diverse communities in the forest-savannah transition area of cameroon. Trop. Conserv. Sci.14, 1–14 (2021).

Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci.3, 160498. 10.1098/rsos.160498 (2016). PubMed PMC

Fopa, G. D. et al. Understanding local ecological knowledge, ethnozoology, and public opinion to improve pangolin conservation in the center and east regions of Cameroon. J. Ethnobiol.40, 234–251 (2020).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...