Evaluation of the Influence of the Tool Set Overhang on the Tool Wear and Surface Quality in the Process of Finish Turning of the Inconel 718 Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39336206
PubMed Central
PMC11433076
DOI
10.3390/ma17184465
PII: ma17184465
Knihovny.cz E-zdroje
- Klíčová slova
- Inconel 718, surface roughness, surface topography, tool wear, turning,
- Publikační typ
- časopisecké články MeSH
The work deals with the influence of the reach of the applied tool holder on the edge wear, dimensional accuracy and surface quality defined by the topography as well as the roughness of the machined surface. The research has been conducted on specimens made of Inconel 718 in the configuration of sleeves, within the scope of finish turning with constant cutting parameters, vc = 85 m/min; f = 0.14 mm/rev; ap = 0.2 mm. The material under machining has undergone heat treatment procedures such as solution treatment and precipitation hardening, resulting in a hardness of 45 ± 2 HRC. Two kinds of turning holders have been used with the reaches of 120 mm and 700 mm. The tools are intended for turning external and internal surfaces, respectively. The tests have been conducted using V-shaped cutting inserts manufactured by different producers, made of fine-grained carbide with coatings applied by the PVD (Physical Vapour Deposition) and CVD (Chemical Vapour Deposition) methods. The edge wear has been evaluated. The value of the achieved diameter dimensions has also been assessed in relation to the set ones, as well as the recorded values of surface roughness and the surface topography parameters have also been assessed. It has been determined that the quality of the manufactured surface evaluated by the 2D and 3D roughness parameters, as well as the dimensional quality are influenced by the kind of the applied tool holder. The influence is also visible considering the edge wear. The smallest values of the deviations from the nominal dimensions have been obtained for the coated inserts of the range of higher abrasion resistance (taking into account information from the producers). The obtained results show that in predicting the dimensional accuracy in the process of turning Inconel 718 alloy with long-overhang tools, one should consider the necessity of correction of the tool path. Taking into account the achieved surface roughness, it should be pointed out that not only the kind of the tool coating but also the character of its wear has a great influence, particularly, when a long cutting distance is required.
Institute of Mechanical Engineering University of Kalisz 4 Nowy Świat Street 62 800 Kalisz Poland
Pratt and Whitney Kalisz 4a Elektryczna Street 62 800 Kalisz Poland
Zobrazit více v PubMed
Hua Y., Liu Z. Effects of cutting parameters and tool nose radius on surface roughness and work hardening during dry turning Inconel 718. Int. J. Adv. Manuf. Technol. 2018;96:2421–2430. doi: 10.1007/s00170-018-1721-7. DOI
Ramanujam R., Venkatesan K., Saxena V., Joseph P. Modeling and optimization of cutting parameters in dry turning of inconel 718 using coated carbide inserts. Procedia Mater. Sci. 2014;5:2550–2559. doi: 10.1016/j.mspro.2014.07.508. DOI
Smak K., Szablewski P., Legutko S., Krawczyk B., Miko E. Investigation of the influence of anti-wear coatings on the surface quality and dimensional accuracy during finish turning of the Inconel 718 alloy. Materials. 2023;16:715. doi: 10.3390/ma16020715. PubMed DOI PMC
Xavior M.A., Manohar M., Patil M.M., Jeyapandiarajan P. Investigation of surface integrity during turning Inconel 718. Trans. Can. Soc. Mech. Eng. 2017;41:387–394. doi: 10.1139/tcsme-2017-1027. DOI
Szablewski P., Smak K., Krawczyk B. Analysis of the impact of wiper geometry insert on surface roughness and chips in machining materials used in the aviation industry. Adv. Sci. Technol. Res. J. 2022;16:203–212. doi: 10.12913/22998624/143475. DOI
Kumar S., Singh D., Kalsi N.S. Experimental investigations of surface roughness of Inconel 718 under different machining conditions. Mater. Today Proc. 2017;4:1179–1185. doi: 10.1016/j.matpr.2017.01.135. DOI
Mehta A., Hemakumar S., Patil A., Khandke S.P., Kuppan P., Oyyaravelu R., Balan A.S.S. Influence of sustainable cutting environments on cutting forces, surface roughness and tool wear in turning of Inconel 718. Mater. Today Proc. 2018;5:6746–6754. doi: 10.1016/j.matpr.2017.11.333. DOI
Bhatt A., Attia H., Vargas R., Thomson V. Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol. Int. 2010;43:1113–1121. doi: 10.1016/j.triboint.2009.12.053. DOI
Khan S.A., Soo S.L., Aspinwall D.K., Sage C., Harden P., Fleming M., White A., M’Saoubi R. Tool wear/life evaluation when finish turning Inconel 718 using PCBN tooling. Procedia CIRP. 2012;1:283–288. doi: 10.1016/j.procir.2012.04.051. DOI
Fang N., Pai P.S., Mosquea S. Effect of tool edge wear on the cutting forces and vibrations in high-speed finish machining of Inconel 718: An experimental study and wavelet transform analysis. Int. J. Adv. Manuf. Technol. 2011;52:65–77. doi: 10.1007/s00170-010-2703-6. DOI
Jeyapandiaraian P., Xavior A.M. Influence of cutting condition on machinability aspects of Inconel 718: Review paper. J. Eng. Res. 2019;7:315–332.
Cantero J.L., Diaz-Alvarez J., Infante-Garcia D., Rodriguez M., Criado V. High speed finish turning of Inconel 718 Using PCBN tools under dry conditions. Metals. 2018;8:192. doi: 10.3390/met8030192. DOI
Devillez A., Schneider F., Dominiak S., Dudzinski D., Larrouquere D. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear. 2007;262:931–942. doi: 10.1016/j.wear.2006.10.009. DOI
Costes J.P., Guillet Y., Poulachon G., Dessoly M. Tool-life and wear mechanisms of CBN tools in machining of Inconel 718. Int. J. Mach. Tools Manuf. 2007;47:1081–1087. doi: 10.1016/j.ijmachtools.2006.09.031. DOI
D’Addona D.M., Raykar S.J., Narke M.M. High speed machining of Inconel 718: Tool wear and surface roughness analysis. Procedia CIRP. 2017;62:269–274. doi: 10.1016/j.procir.2017.03.004. DOI
Diaz-Alvarez J., Tapetado A., Vazquez C., Miguelez H. Temperature measurement and numerical prediction in machining Inconel 718. Sensors. 2017;17:1531. doi: 10.3390/s17071531. PubMed DOI PMC
Zhao J., Liu Z. Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage. J. Manuf. Process. 2020;56:1155–1165. doi: 10.1016/j.jmapro.2020.06.010. DOI
Szablewski P. Evaluation of the topography and load capacity of cylindrical surfaces shaped in the process of finish turning of the Inconel 718 alloy. Measurement. 2023;223:113749. doi: 10.1016/j.measurement.2023.113749. DOI
Pawade R.S., Joshi S.S., Brahmankar P.K., Rahman M. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. J. Mater. Process. Technol. 2007;192–193:139–146. doi: 10.1016/j.jmatprotec.2007.04.049. DOI
Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. ISO; Geneva, Switzerland: 2021.
Tool-Life Testing with Single-Point Turning Tools. ISO; Geneva, Switzerland: 2017.
Willems N., Easley J.T., Rolfe S.T. Strength of Materials. McGraw-Hill Book Company; New York, NY, USA: 1981.
Deshpande Y., Andhare A., Kumar Sahu N. Estimation of surface roughness using cutting parameters, force, sound and vibration in turning of Inconel 718. J. Braz. Soc. Mech. Sci. Eng. 2017;39:5087–5096. doi: 10.1007/s40430-017-0819-4. DOI
Yao C., Zhou Z., Zhang J., Wu D., Tan L. Experimental study on cutting force of face-turning Inconel718 with ceramic tools and carbide tools. Adv. Mech. Eng. 2017;9:1687814017716620. doi: 10.1177/1687814017716620. DOI
Dai X., Zhuang K., Ding H. A systemic investigation of tool edge geometries and cutting parameters on cutting forces in turning of Inconel 718. Int. J. Adv. Manuf. Technol. 2019;105:531–543. doi: 10.1007/s00170-019-04212-0. DOI
Jemielniak K. Mechanizm Zużycia Ostrza z PcBN Podczas Obróbki Stopu Inconel 718, Mechanik nr 05/06/2022—Z Działalności CIRP. [(accessed on 6 May 2022)]. Available online: https://www.mechanik.media.pl/pliki/do_pobrania/artykuly/23/2022_05_06_s0010.pdf.
Nieslony P., Krolczyk G.M., Wojciechowski S., Chudy R., Zak K., Maruda R.W. Surface quality and topographic inspection of variable compliance part after precise turning. Appl. Surf. Sci. 2018;434:91–101. doi: 10.1016/j.apsusc.2017.10.158. DOI
Rybicki M., Szablewski P. Investigation of chips morphology after turning of materials applied in aerospace industry. MATEC Web Conf. 2017;121:03020. doi: 10.1051/matecconf/201712103020. DOI
Szablewski P., Legutko S., Mróz A., Garbiec D., Czajka R., Smak K., Krawczyk B. Surface topography description after turning Inconel 718 with a conventional, wiper and special insert made by the SPS technique. Materials. 2023;16:949. doi: 10.3390/ma16030949. PubMed DOI PMC
Pawlus P., Reizer R., Zelasko W. Prediction of parameters of equivalent sum rough surfaces. Materials. 2020;13:4898. doi: 10.3390/ma13214898. PubMed DOI PMC
Lotfi M., Jahanbakhsh M., Farid A.A. Wear estimation of ceramic and coated carbide tools in turning of Inconel 625: 3D FE analysis. Tribol. Int. 2016;99:107–116. doi: 10.1016/j.triboint.2016.03.008. DOI
Hao Z.P., Fan Y., Lin J., Yu Z. Wear characteristics and wear control method of PVD-coated carbide tool in turning Inconel 718. Int. J. Adv. Manuf. Technol. 2015;78:1329–1336. doi: 10.1007/s00170-014-6752-0. DOI
Khochtali H., Ayed Y., Zemzemi F., Bensalem W. Tool wear characteristics in rough turning of Inconel 718 with coated carbide tool under conventional and high-pressure coolant supplies. Int. J. Adv. Manuf. Technol. 2021;114:2371–2386. doi: 10.1007/s00170-021-07002-9. DOI
Maruda R.W., Krolczyk G.M., Niesłony P., Krolczyk J.B., Legutko S. Chip formation zone analysis during the turning of austenitic stainless steel 316L under MQCL cooling condition. Procedia Eng. 2016;149:297–304. doi: 10.1016/j.proeng.2016.06.670. DOI
Peng Z., Zhang X., Zhang D. Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools. Tribol. Int. 2021;155:106766. doi: 10.1016/j.triboint.2020.106766. DOI
Grzesik W., Niesłony P., Habrat W., Sieniawski J., Laskowski P. Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement. Tribol. Int. 2018;118:337–346. doi: 10.1016/j.triboint.2017.10.005. DOI
[(accessed on 14 May 2019)]. Available online: www.walter-tools.com.
Cakiroglu R. Machinability analysis of Inconel 718 superalloy with AlTiN-coated carbide tool under different cutting environments. Arab. J. Sci. Eng. 2021;46:8055–8073. doi: 10.1007/s13369-021-05626-3. DOI
Zhou J., Bushlya V., Avdovic P., Stahl J.E. Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools. Int. J. Adv. Manuf. Technol. 2012;58:141–151. doi: 10.1007/s00170-011-3374-7. DOI
Chaabani S., Arrazola P.J., Ayed Y., Madariaga A., Tidu A., Germain G. Comparison between cryogenic coolants effect on tool wear and surface integrity in finish turning of Inconel 718. J. Mater. Process. Technol. 2020;285:116780. doi: 10.1016/j.jmatprotec.2020.116780. DOI
Yıldırım Ç.V., Sarıkaya M., Kıvak T., Sirin S. The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol. Int. 2019;134:443–456. doi: 10.1016/j.triboint.2019.02.027. DOI
Zhao J., Liu Z., Wang B., Qinhuq S., Xiaoping R., Wan Y. Effects of Al content in TiAlN coatings on tool wear and cutting temperature during dry machining IN718. Tribol. Int. 2022;171:107540. doi: 10.1016/j.triboint.2022.107540. DOI
Tomaszewski Ł., Urbanowicz A., Suszko T., Gulbiński W. TiAlN wear resistant coatings modified by vanadium addition. Inżynieria Mater. 2015;207:310–313. doi: 10.15199/28.2015.5.23. DOI
Zhang B., Njora M.J., Sato Y. High-speed turning of Inconel 718 by using TiAlN- and (Al, Ti) N-coated carbide tools. Int. J. Adv. Manuf. Technol. 2018;96:2141–2147. doi: 10.1007/s00170-018-1765-8. DOI