A Genetic Study of Spillovers in the Bean Common Mosaic Subgroup of Potyviruses

. 2024 Aug 23 ; 16 (9) : . [epub] 20240823

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39339828

Nine viruses of the bean common mosaic virus subgroup of potyviruses are major international crop pathogens, but their phylogenetically closest relatives from non-crop plants have mostly been found only in SE Asia and Oceania, which is thus likely to be their "centre of emergence". We have compared over 700 of the complete genomic ORFs of the crop pandemic and the non-crop viruses in various ways. Only one-third of crop virus genomes are non-recombinant, but more than half the non-crop virus genomes are. Four of the viruses were from crops domesticated in the Old World (Africa to SE Asia), and the other five were from New World crops. There was a temporal signal in only three of the crop virus datasets, but it confirmed that the most recent common ancestors of all the crop viruses were before inter-continental marine trade started after 1492 CE, whereas all the crown clusters of the phylogenies are from after that date. The non-crop virus datasets are genetically more diverse than those of the crop viruses, and Tajima's D analyses showed that their populations were contracting, and only one of the crop viruses had a significantly expanding population. dN/dS analyses showed that most of the genes and codons in all the viruses were under significant negative selection, and the few that were under significant positive selection were mostly in the PIPO-encoding region of the P3 protein, or the PIPO protein itself. Interestingly, more positively selected codons were found in non-crop than in crop viruses, and, as the hosts of the former were taxonomically more diverse than the latter, this may indicate that the positively selected codons are involved in host range determination; AlphaFold3 modelling was used to investigate this possibility.

Zobrazit více v PubMed

Jones R.A.C. Global Plant Virus Disease Pandemics and Epidemics. Plants. 2021;10:233. doi: 10.3390/plants10020233. PubMed DOI PMC

Nguyen H.D., Tomitaka Y., Ho S.Y.W., Duchêne S., Vetten H.J., Lesemann D., Walsh J.A., Gibbs A.J., Ohshima K. Turnip Mosaic Potyvirus Probably First Spread to Eurasian Brassica Crops from Wild Orchids about 1000 Years Ago. PLoS ONE. 2013;8:e55336. doi: 10.1371/journal.pone.0055336. PubMed DOI PMC

Smith K. A Textbook of Plant Virus Diseases. 2nd ed. J&A Churchill; London, UK: 1957.

Stewart V.B., Reddick D. Bean Mosaic. Phytopathology. 1917;7:61.

Pierce W.H. Viruses of the Bean. Phytopathology. 1934;24:87–115.

Pierce W.H., Hungerford C.W. Symptomatology, Transmission, Infection and Control of Bean Mosaic in Idaho. Agricultural Experiment Station of the University of Idaho; Moscow, ID, USA: 1929. Research Bulletin 7.

Zaumeyer W.J., Kearns C.W. The Relation of Aphids to the Transmission of Bean Mosaic. Phytopathology. 1936;26:614–629.

Beemster A.B.R., van der Want J.P.H. Serological Investigations of the Phaseolus Viruses 1 and 2. Antonie Leeuwenhoek J. Microbiol. Serol. 1951;17:285–296. doi: 10.1007/BF02062276. PubMed DOI

Brandes J., Wetter C. Classification of Elongated Plant Viruses on the Basis of Particle Morphology. Virology. 1959;8:99–115. doi: 10.1016/0042-6822(59)90022-4. PubMed DOI

Brandes J., Quantz L. Elektronenmikroskopische Untersuchungen Des Weißkleevirus Und Des Steinkleevirus. Arch. Mikrobiol. 1957;26:369–372. doi: 10.1007/BF00407587. PubMed DOI

Harrison B.D., Finch J.T., Gibbs A.J., Hollings M., Shepherd R.J., Valenta V., Wetter C. Sixteen Groups of Plant Viruses. Virology. 1971;45:356–363. doi: 10.1016/0042-6822(71)90336-9. PubMed DOI

McKern N.M., Ward C.W., Shukla D.D. Strains of Bean Common Mosaic Virus Consist of at Least Two Distinct Potyviruses. Volume 5. Springer; Berlin/Heidelberg, Germany: 1992. pp. 407–414. Archives of Virology (ARCHIVES SUPPL.) PubMed

McKern N.M., Mink G.I., Barnett O.W., Mishra A., Whittaker L.A., Silbernagel M.J., Ward C.W., Shukla D.D. Isolates of Bean Common Mosaic Virus Comprising Two Distinct Potyviruses. Phytopathology. 1992;82:923–929. doi: 10.1094/Phyto-82-923. DOI

Vetten H.J., Lesemann D.E., Maiss E. Serotype A and B Strains of Bean Common Mosaic Virus Are Two Distinct Potyviruses. Volume 5. Springer; Berlin/Heidelberg, Germany: 1992. pp. 415–431. Archives of Virology (ARCHIVES SUPPL.) PubMed

Khan J.A., Lohuis D., Goldbach R., Dijkstra J. Sequence Data to Settle the Taxonomic Position of Bean Common Mosaic Virus and Blackeye Cowpea Mosaic Virus Isolates. J. Gen. Virol. 1993;74:2243–2249. doi: 10.1099/0022-1317-74-10-2243. PubMed DOI

Dijkstra J., Khan J.A. A Proposal for a Bean Common Mosaic Subgroup of Potyviruses. Volume 5. Springer; Berlin/Heidelberg, Germany: 1992. pp. 389–395. Archives of Virology (ARCHIVES SUPPL.) PubMed

Gibbs A.J., Trueman J.W.H., Gibbs M.J. The Bean Common Mosaic Virus Lineage of Potyviruses: Where Did It Arise and When? Arch. Virol. 2008;153:2177–2187. doi: 10.1007/s00705-008-0256-x. PubMed DOI

Inoue-Nagata A.K., Jordan R., Kreuze J., Li F., López-Moya J.J., Mäkinen K., Ohshima K., Wylie S.J., Siddell S.G., Lefkowitz E.J., et al. ICTV Virus Taxonomy Profile: Potyviridae 2022. J. Gen. Virol. 2022;103:001738. doi: 10.1099/jgv.0.001738. PubMed DOI

Revers F., García J.A. Advances in Virus Research. Volume 92. Elsevier; Amsterdam, The Netherlands: 2015. Chapter Three—Molecular Biology of Potyviruses; pp. 101–199. PubMed

Chung B.Y.W., Miller W.A., Atkins J.F., Firth A.E. An Overlapping Essential Gene in the Potyviridae. Proc. Natl. Acad. Sci. USA. 2008;105:5897–5902. doi: 10.1073/pnas.0800468105. PubMed DOI PMC

Clark C.A., Davis J.A., Abad J.A., Cuellar W.J., Fuentes S., Kreuze J.F., Gibson R.W., Mukasa S.B., Tugume A.K., Tairo F.D., et al. Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. Plant Dis. 2012;96:168–185. doi: 10.1094/PDIS-07-11-0550. PubMed DOI

Li F., Xu D., Abad J., Li R. Phylogenetic Relationships of Closely Related Potyviruses Infecting Sweet Potato Determined by Genomic Characterization of Sweet Potato Virus G and Sweet Potato Virus 2. Virus Genes. 2012;45:118–125. doi: 10.1007/s11262-012-0749-2. PubMed DOI

Chai M., Wu X., Liu J., Fang Y., Luan Y., Cui X., Zhou X., Wang A., Cheng X. P3N-PIPO Interacts with P3 via the Shared N-Terminal Domain to Recruit Viral Replication Vesicles for Cell-to-Cell Movement. J. Virol. 2020;94:1110–1128. doi: 10.1128/JVI.01898-19. PubMed DOI PMC

Mingot A., Valli A., Rodamilans B., San León D., Baulcombe D., García J.A., López-Moya J.J. The P1N-PISPO Trans-Frame Gene of Sweet Potato Feathery Mottle Potyvirus Is Produced during Virus Infection and Functions as an RNA Silencing Suppressor. J. Virol. 2016;90:3543–3557. doi: 10.1128/JVI.02360-15. PubMed DOI PMC

Untiveros M., Olspert A., Artola K., Firth A.E., Kreuze J.F., Valkonen J.P.T. A Novel Sweet Potato Potyvirus Open Reading Frame (ORF) Is Expressed via Polymerase Slippage and Suppresses RNA Silencing. Mol. Plant Pathol. 2016;17:1111–1123. doi: 10.1111/mpp.12366. PubMed DOI PMC

Vijayapalani P., Maeshima M., Nagasaki-Takekuchi N., Miller W.A. Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement. PLoS Pathog. 2012;8:e1002639. doi: 10.1371/journal.ppat.1002639. PubMed DOI PMC

Wen R.H., Hajimorad M.R. Mutational Analysis of the Putative Pipo of Soybean Mosaic Virus Suggests Disruption of PIPO Protein Impedes Movement. Virology. 2010;400:1–7. doi: 10.1016/j.virol.2010.01.022. PubMed DOI

Gibbs A.J., Hajizadeh M., Ohshima K., Jones R.A.C. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses. 2020;12:132. doi: 10.3390/v12020132. PubMed DOI PMC

Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.

Katoh K., Rozewicki J., Yamada K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2018;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC

Suyama M., Torrents D., Bork P. PAL2NAL: Robust Conversion of Protein Sequence Alignments into the Corresponding Codon Alignments. Nucleic Acids Res. 2006;34:609–612. doi: 10.1093/nar/gkl315. PubMed DOI PMC

Martin D.P., Varsani A., Roumagnac P., Botha G., Maslamoney S., Schwab T., Kelz Z., Kumar V., Murrell B. RDP5: A Computer Program for Analyzing Recombination in, and Removing Signals of Recombination from, Nucleotide Sequence Datasets. Virus Evol. 2020;7:veaa087. doi: 10.1093/ve/veaa087. PubMed DOI PMC

Ben Mansour K., Gibbs A.J., Komínková M., Komínek P., Brožová J., Kazda J., Zouhar M., Ryšánek P. Watermelon Mosaic Virus in the Czech Republic, Its Recent and Historical Origins. Plant Pathol. 2023;72:1528–1538. doi: 10.1111/ppa.13766. DOI

Shokri S., Shujaei K., Gibbs A.J., Hajizadeh M. Evolution and Biogeography of Apple Stem Grooving Virus. Virol. J. 2023;20:105. doi: 10.1186/s12985-023-02075-2. PubMed DOI PMC

Jeanmougin F., Thompson J.D., Gouy M., Higgins D.G., Gibson T.J. Multiple Sequence Alignment with Clustal, X. Trends Biochem. Sci. 1998;23:403–405. doi: 10.1016/S0968-0004(98)01285-7. PubMed DOI

Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., Von Haeseler A., Lanfear R., Teeling E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC

Shimodaira H., Hasegawa M. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Mol. Biol. Evol. 1999;16:1114–1116. doi: 10.1093/oxfordjournals.molbev.a026201. DOI

Fourment M., Gibbs M.J. PATRISTIC: A Program for Calculating Patristic Distances and Graphically Comparing the Components of Genetic Change. BMC Evol. Biol. 2006;6:1. doi: 10.1186/1471-2148-6-1. PubMed DOI PMC

Librado P., Rozas J. DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Murrell B., Moola S., Mabona A., Weighill T., Sheward D., Kosakovsky Pond S.L., Scheffler K. FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol. Biol. Evol. 2013;30:1196–1205. doi: 10.1093/molbev/mst030. PubMed DOI PMC

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature. 2024;630:493–500. doi: 10.1038/s41586-024-07487-w. PubMed DOI PMC

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. The Proteomics Protocols Handbook. Springer; Berlin/Heidelberg, Germany: 2005. (Springer Protocols Handbooks).

Acosta-Leal R., Duffy S., Xiong Z., Hammond R.W., Elena S.F. Advances in Plant Virus Evolution: Translating Evolutionary Insights into Better Disease Management. Phytopathology. 2011;101:1136–1148. doi: 10.1094/PHYTO-01-11-0017. PubMed DOI

Pérez-losada M., Arenas M., Galán J.C., Palero F., González-Candelas F. Recombination in Viruses: Mechanisms, Methods of Study, and Evolutionary Consequences. Infect. Genet. Evol. 2015;30:296–307. doi: 10.1016/j.meegid.2014.12.022. PubMed DOI PMC

Jaya F.R., Brito B.P., Darling A.E. Evaluation of Recombination Detection Methods for Viral Sequencing. Virus Evol. 2023;9:vead066. doi: 10.1093/ve/vead066. PubMed DOI PMC

Mohammadi M., Gibbs A.J., Hosseini A., Hosseini S. An Iranian Genomic Sequence of Beet Mosaic Virus Provides Insights into Diversity and Evolution of the World Population. Virus Genes. 2018;54:272–279. doi: 10.1007/s11262-018-1533-8. PubMed DOI

Hajizadeh M., Gibbs A.J., Amirnia F., Glasa M. The Global Phylogeny of Plum Pox Virus Is Emerging. J. Gen. Virol. 2019;100:1457–1468. doi: 10.1099/jgv.0.001308. PubMed DOI

Ohshima K., Tomitaka Y., Wood J.T., Minematsu Y., Kajiyama H., Tomimura K., Gibbs A.J. Patterns of Recombination in Turnip Mosaic Virus Genomic Sequences Indicate Hotspots of Recombination. J. Gen. Virol. 2007;88:298–315. doi: 10.1099/vir.0.82335-0. PubMed DOI

Kawakubo S., Tomitaka Y., Tomimura K., Koga R., Matsuoka H., Uematsu S., Yamashita K., Ho S.Y.W., Ohshima K. The Recombinogenic History of Turnip Mosaic Potyvirus Reveals Its Introduction to Japan in the 19th Century. Virus Evol. 2022;8:veac060. doi: 10.1093/ve/veac060. PubMed DOI PMC

Gibbs A.J., Ohshima K. Potyviruses and the Digital Revolution. Annu. Rev. Phytopathol. 2010;48:205–223. doi: 10.1146/annurev-phyto-073009-114404. PubMed DOI

Abadkhah M., Hajizadeh M., Koolivand D. Global population genetic structure of Bean common mosaic virus. Arch. Phytopathol. Plant Prot. 2020;53:266–281. doi: 10.1080/03235408.2020.1743525. DOI

Eckshtain-Levi N., Weisberg A.J., Vinatzer B.A. The Population Genetic Test Tajima’s D Identifies Genes Encoding Pathogen-Associated Molecular Patterns and Other Virulence-Related Genes in Ralstonia Solanacearum. Mol. Plant Pathol. 2018;19:2187–2192. doi: 10.1111/mpp.12688. PubMed DOI PMC

Xue M., Arvy N., German-Retana S. The Mystery Remains: How Do Potyviruses Move within and between Cells? Mol. Plant Pathol. 2023;24:1560–1574. doi: 10.1111/mpp.13383. PubMed DOI PMC

Cui X., Yaghmaiean H., Wu G., Wu X., Chen X., Thorn G., Wang A. The C-Terminal Region of the Turnip Mosaic Virus P3 Protein Is Essential for Viral Infection via Targeting P3 to the Viral Replication Complex. Virology. 2017;510:147–155. doi: 10.1016/j.virol.2017.07.016. PubMed DOI

Kärblane K., Firth A.E., Olspert A. Turnip Mosaic Virus Transcriptional Slippage Dynamics and Distribution in RNA Subpopulations. Mol. Plant-Microbe Interact. 2022;35:835–844. doi: 10.1094/MPMI-03-22-0060-R. PubMed DOI

Xu J., Zhang Y. How Significant Is a Protein Structure Similarity with TM-Score = 0.5? Bioinformatics. 2010;26:889–895. doi: 10.1093/bioinformatics/btq066. PubMed DOI PMC

Herniter I.A., Muñoz-Amatriaín M., Close T.J. Genetic, Textual, and Archeological Evidence of the Historical Global Spread of Cowpea (Vigna Unguiculata [L.] Walp.) Legume Sci. 2020;2:e57. doi: 10.1002/leg3.57. DOI

Loy H., Spriggs M., Wickler S. Direct Eveidence for Human Use of Plants 28,000 Years Ago: Starch Residues on Stone Artefacts from the Northern Solomon Islands. Antiquity. 1992;66:898–912. doi: 10.1017/S0003598X00044811. DOI

Chaïr H., Traore R.E., Duval M.F., Rivallan R., Mukherjee A., Aboagye L.M., Van Rensburg W.J., Andrianavalona V., De Pinheiro Carvalho M.A.A., Saborio F., et al. Genetic Diversification and Dispersal of Taro (Colocasia Esculenta (l.) Schott) PLoS ONE. 2016;11:e0157712. doi: 10.1371/journal.pone.0157712. PubMed DOI PMC

Kreike C.M., Van Eck H.J., Lebot V. Genetic Diversity of Taro, Colocasia Esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor. Appl. Genet. 2004;109:761–768. doi: 10.1007/s00122-004-1691-z. PubMed DOI

Piperno D.R. The Origins of Plant Cultivation and Domestication in the New World Tropics Patterns, Process, and New Developments. Curr. Anthropol. 2011;52:S453–S470. doi: 10.1086/659998. DOI

Jones R.A.C. Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses. 2020;12:1388. doi: 10.3390/v12121388. PubMed DOI PMC

Salvaggio J.E. Fauna, Flora, Fowl, and Fruit: Effects of the Columbian Exchange on the Allergic Response of New and Old World Inhabitants. Allergy Proc. 1992;13:335–344. doi: 10.2500/108854192778816861. PubMed DOI

Phaseolus Vulgaris. 2024. [(accessed on 30 June 2024)]. Available online: https://en.wikipedia.org/wiki/phaseolus_vulgaris.

Ho S.Y., Lanfear R., Bromham L., Phillips M.J., Soubrier J., Rodrigo A.G., Cooper A. Time-dependent rates of molecular evolution. Mol Ecol. 2011;20:3087–3101. doi: 10.1111/j.1365-294X.2011.05178.x. PubMed DOI

Maina S., Coutts B.A., Edwards O.R., de Almeida L., Kehoe M.A., Ximenes A., Jones R.A.C. Zucchini Yellow Mosaic Virus Populations from East Timorese and Northern Australian Cucurbit Crops: Molecular Properties, Genetic Connectivity, and Biosecurity Implications. Plant Dis. 2017;101:1236–1245. doi: 10.1094/PDIS-11-16-1672-RE. PubMed DOI

Maina S., Barbetti M.J., Edwards O.R., Minemba D., Areke M.W., Jones R.A.C. Zucchini Yellow Mosaic Virus Genomic Sequences from Papua New Guinea: Lack of Genetic Connectivity with Northern Australian or East Timorese Genomes, and New Recombination Findings. Plant Dis. 2019;103:1326–1336. doi: 10.1094/PDIS-09-18-1666-RE. PubMed DOI

Peters D., Matsumura E.E., van Vredendaal P., van der Vlugt R.A.A. The plant virus transmissions database. J. Gen. Virol. 2024;105:001957. doi: 10.1099/jgv.0.001957. PubMed DOI PMC

Bujarski J.J. Genetic Recombination in Plant-Infecting Messenger-Sense RNA Viruses: Overview and Research Perspectives. Front. Plant Sci. 2013;4:42516. doi: 10.3389/fpls.2013.00068. PubMed DOI PMC

Simon-Loriere E., Holmes E.C. Why Do RNA Viruses Recombine? Nat. Rev. Microbiol. 2011;9:617–626. doi: 10.1038/nrmicro2614. PubMed DOI PMC

Wylie S.J., Jones R.A.C. Role of Recombination in the Evolution of Host Specialization within Bean Yellow Mosaic Virus. Phytopathology. 2009;99:512–518. doi: 10.1094/PHYTO-99-5-0512. PubMed DOI

Gibbs A.J., Ohshima K., Yasaka R., Mohammadi M., Gibbs M.J., Jones R.A.C. The Phylogenetics of the Global Population of Potato Virus y and Its Necrogenic Recombinants. Virus Evol. 2017;3:vex002. doi: 10.1093/ve/vex002. PubMed DOI PMC

Moreno I.M., Malpica J.M., Díaz-Pendón J.A., Moriones E., Fraile A., García-Arenal F. Variability and Genetic Structure of the Population of Watermelon Mosaic Virus Infecting Melon in Spain. Virology. 2004;318:451–460. doi: 10.1016/j.virol.2003.10.002. PubMed DOI

Desbiez C., Lecoq H. The Nucleotide Sequence of Watermelon Mosaic Virus (WMV, Potyvirus) Reveals Interspecific Recombination between Two Related Potyviruses in the 5′ Part of the Genome. Arch. Virol. 2004;149:1619–1632. doi: 10.1007/s00705-004-0340-9. PubMed DOI

Zuntini A.R., Carruthers T., Maurin O., Bailey P.C., Leempoel K., Brewer G.E., Epitawalage N., Françoso E., Gallego-Paramo B., McGinnie C., et al. Phylogenomics and the Rise of the Angiosperms. Nature. 2024;629:843–850. doi: 10.1038/s41586-024-07324-0. PubMed DOI PMC

Morozov S.Y., Solovyev A.G. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol. 2020;6:305–329. doi: 10.3934/microbiol.2020019. PubMed DOI PMC

Pasin F., Daròs J.-A., Tzanetakis I.E. Proteome expansion in the Potyviridae evolutionary radiation. FEMS Microbiol. Rev. 2022;46:fuac011. doi: 10.1093/femsre/fuac011. PubMed DOI PMC

Qin L., Liu H., Liu P., Jiang L., Cheng X., Li F., Shen W., Qiu W., Dai Z., Cui H. Rubisco small subunit (RbCS) is coopted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog. 2024;20:e1012064. doi: 10.1371/journal.ppat.1012064. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High-Throughput Sequencing Reveals Apple Virome Diversity and Novel Viruses in the Czech Republic

. 2025 Apr 29 ; 17 (5) : . [epub] 20250429

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...