Autophagy plays an antiviral defence role against tomato spotted wilt orthotospovirus and is counteracted by viral effector NSs
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
31630062
National Natural Science Foundation of China
32220103008
National Natural Science Foundation of China
32430088
National Natural Science Foundation of China
BZ2023030
Jiangsu Key Technology R & D Program and International Science and Technology Cooperation Project
BE2022369
Jiangsu Provincial Key Research and Development Plan
CX (22)2039
Funds from the Independent Innovation of Agricultural Science and Technology of Jiangsu Province
2021530000241015
Key Projects of YNTC
ZDKJ2021007
Key Research Program for Science and Technology of Hainan Province
NAUSY-MS09
Sanya Institute of Nanjing Agricultural University
PubMed
39350560
PubMed Central
PMC11442783
DOI
10.1111/mpp.70012
Knihovny.cz E-zdroje
- Klíčová slova
- TSWV, antiviral defence, autophagy, counterdefence, nonstructural protein NSs, nucleocapsid protein,
- MeSH
- autofagie * MeSH
- nemoci rostlin * virologie imunologie MeSH
- Solanum lycopersicum virologie imunologie genetika MeSH
- tabák virologie imunologie genetika MeSH
- Tospovirus * fyziologie patogenita MeSH
- virové nestrukturální proteiny metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- virové nestrukturální proteiny MeSH
Autophagy, an intracellular degradation process, has emerged as a crucial innate immune response against various plant pathogens, including viruses. Tomato spotted wilt orthotospovirus (TSWV) is a highly destructive plant pathogen that infects over 1000 plant species and poses a significant threat to global food security. However, the role of autophagy in defence against the TSWV pathogen, and whether the virus counteracts this defence, remains unknown. In this study, we report that autophagy plays an important role in antiviral defence against TSWV infection; however, this autophagy-mediated defence is counteracted by the viral effector NSs. Transcriptome profiling revealed the up-regulation of autophagy-related genes (ATGs) upon TSWV infection. Blocking autophagy induction by chemical treatment or knockout/down of ATG5/ATG7 significantly enhanced TSWV accumulation. Notably, the TSWV nucleocapsid (N) protein, a major component of the viral replication unit, strongly induced autophagy. However, the TSWV nonstructural protein NSs was able to effectively suppress N-induced autophagy in a dose-dependent manner. Further investigation revealed that NSs inhibited ATG6-mediated autophagy induction. These findings provide new insights into the defence role of autophagy against TSWV, a representative segmented negative-strand RNA virus, as well as the tospoviral pathogen counterdefence mechanism.
Zobrazit více v PubMed
Adams, M.J. , Lefkowitz, E.J. , King, A.M.Q. , Harrach, B. , Harrison, R.L. , Knowles, N.J. et al. (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses. Archives of Virology, 162, 2505–2538. PubMed
Adkins, S. , Quadt, R. , Choi, T.J. , Ahlquist, P. & German, T. (1995) An RNA‐dependent RNA polymerase activity associated with virions of tomato spotted wilt virus, a plant‐ and insect‐infecting bunyavirus. Virology, 207, 308–311. PubMed
Boya, P. , Reggiori, F. & Codogno, P. (2013) Emerging regulation and functions of autophagy. Nature Cell Biology, 15, 713–720. PubMed PMC
Bucher, E. , Sijen, T. , De Haan, P. , Goldbach, R. & Prins, M. (2003) Negative‐strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of Virology, 77, 1329–1336. PubMed PMC
Cao, B. , Ge, L. , Zhang, M. , Li, F. & Zhou, X. (2023) Geminiviral C2 proteins inhibit active autophagy to facilitate virus infection by impairing the interaction of ATG7 and ATG8. Journal of Integrative Plant Biology, 65, 1328–1343. PubMed
Contento, A.L. , Xiong, Y. & Bassham, D.C. (2005) Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP‐AtATG8e fusion protein. The Plant Journal, 42, 598–608. PubMed
Ding, S.W. (2010) RNA‐based antiviral immunity. Nature Reviews Immunology, 10, 632–644. PubMed
Feng, M. , Cheng, R. , Chen, M. , Guo, R. , Li, L. , Feng, Z. et al. (2020) Rescue of tomato spotted wilt virus entirely from complementary DNA clones. Proceedings of the National Academy of Sciences of the United States of America, 117, 1181–1190. PubMed PMC
Feng, Z. , Xue, F. , Xu, M. , Chen, X. , Zhao, W. , Garcia‐Murria, M.J. et al. (2016) The ER‐membrane transport system is critical for intercellular trafficking of the NSm movement protein and tomato spotted wilt tospovirus. PLoS Pathogens, 12, e1005443. PubMed PMC
Funderburk, S.F. , Wang, Q.J. & Yue, Z. (2010) The Beclin 1‐VPS34 complex—at the crossroads of autophagy and beyond. Trends in Cell Biology, 20, 355–362. PubMed PMC
Guo, Y. , Liu, B. , Ding, Z. , Li, G. , Liu, M. , Zhu, D. et al. (2017) Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus. Journal of Virology, 91, e00892. PubMed PMC
Hafrén, A. & Hofius, D. (2017) NBR1‐mediated antiviral xenophagy in plant immunity. Autophagy, 13, 2000–2001. PubMed PMC
Hafrén, A. , Macia, J.L. , Love, A.J. , Milner, J.J. , Drucker, M. & Hofius, D. (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1‐mediated targeting of viral capsid protein and particles. Proceedings of the National Academy of Sciences of the United States of America, 114, e2026–e2035. PubMed PMC
Hafrén, A. , Üstün, S. , Hochmuth, A. , Svenning, S. , Johansen, T. & Hofius, D. (2018) Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiology, 176, 649–662. PubMed PMC
Haxim, Y. , Ismayil, A. , Jia, Q. , Wang, Y. , Zheng, X. , Chen, T. et al. (2017) Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife, 6, e23897. PubMed PMC
Hong, H. , Wang, C. , Huang, Y. , Xu, M. , Yan, J. , Feng, M. et al. (2021) Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus. PLoS Pathogens, 17, e1009757. PubMed PMC
Ismayil, A. , Yang, M. , Haxim, Y. , Wang, Y. , Li, J. , Han, L. et al. (2020) Cotton leaf curl Multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy‐related protein 3 with glyceraldehyde‐3‐phosphate dehydrogenases. The Plant Cell, 32, 1124–1135. PubMed PMC
Jiang, L. , Lu, Y. , Zheng, X. , Yang, X. , Chen, Y. , Zhang, T. et al. (2021) The plant protein NbP3IP directs degradation of rice stripe virus p3 silencing suppressor protein to limit virus infection through interaction with the autophagy‐related protein NbATG8. New Phytologist, 229, 1036–1051. PubMed
Kellner, R. , De la Concepcion, J.C. , Maqbool, A. , Kamoun, S. & Dagdas, Y.F. (2017) ATG8 expansion: a driver of selective autophagy diversification? Trends in Plant Science, 22, 204–214. PubMed
Kikkert, M. , Van Lent, J. , Storms, M. , Bodegom, P. , Kormelink, R. & Goldbach, R. (1999) Tomato spotted wilt virus particle morphogenesis in plant cells. Journal of Virology, 73, 2288–2297. PubMed PMC
Komoda, K. , Narita, M. , Yamashita, K. , Tanaka, I. & Yao, M. (2017) Asymmetric trimeric ring structure of the nucleocapsid protein of tospovirus. Journal of Virology, 91, e01002–e01017. PubMed PMC
Kormelink, R. , Garcia, M.L. , Goodin, M. , Sasaya, T. & Haenni, A.L. (2011) Negative‐strand RNA viruses: the plant‐infecting counterparts. Virus Research, 162, 184–202. PubMed
Kormelink, R. , Storms, M. , Van Lent, J. , Peters, D. & Goldbach, R. (1994) Expression and subcellular location of the NSm protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology, 200, 56–65. PubMed
Kormelink, R. , Verchot, J. , Tao, X. & Desbiez, C. (2021) The Bunyavirales: the plant‐infecting counterparts. Viruses, 13, 842. PubMed PMC
Li, F. , Zhang, C. , Li, Y. , Wu, G. , Hou, X. , Zhou, X. et al. (2018) Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nature Communications, 9, 1268. PubMed PMC
Li, F. , Zhang, M. , Zhang, C. & Zhou, X. (2020) Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytologist, 225, 1746–1761. PubMed
Ma, Z. , Song, T. , Zhu, L. , Ye, W. , Wang, Y. , Shao, Y. et al. (2015) A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. The Plant Cell, 27, 2057–2072. PubMed PMC
Ma, Z. , Zhu, L. , Song, T. , Wang, Y. , Zhang, Q. , Xia, Y. et al. (2017) A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science, 355, 710–714. PubMed
Mandadi, K.K. & Scholthof, K.B. (2013) Plant immune responses against viruses: how does a virus cause disease? The Plant Cell, 25, 1489–1505. PubMed PMC
Meier, N. , Hatch, C. , Nagalakshmi, U. & Dinesh‐Kumar, S.P. (2019) Perspectives on intracellular perception of plant viruses. Molecular Plant Pathology, 20, 1185–1190. PubMed PMC
Mizushima, N. & Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell, 147, 728–741. PubMed
Mizushima, N. , Levine, B. , Cuervo, A.M. & Klionsky, D.J. (2008) Autophagy fights disease through cellular self‐digestion. Nature, 451, 1069–1075. PubMed PMC
Niu, E. , Ye, C. , Zhao, W. , Kondo, H. , Wu, Y. , Chen, J. et al. (2022) Coat protein of Chinese wheat mosaic virus upregulates and interacts with cytosolic glyceraldehyde‐3‐phosphate dehydrogenase, a negative regulator of plant autophagy, to promote virus infection. Journal of Integrative Plant Biology, 64, 1631–1645. PubMed
Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin‐like systems. Nature Reviews Molecular Cell Biology, 2, 211–216. PubMed
Qi, H. , Xia, F.N. & Xiao, S. (2021) Autophagy in plants: physiological roles and post‐translational regulation. Journal of Integrative Plant Biology, 63, 161–179. PubMed
Qian, X. , Xiang, Q. , Yang, T. , Ma, H. , Ding, X.S. & Tao, X. (2018) Molecular co‐chaperone SGT1 is critical for cell‐to‐cell movement and systemic infection of tomato spotted wild virus in Nicotiana benthamiana . Viruses, 10, 647. PubMed PMC
Schnettler, E. , Hemmes, H. , Huismann, R. , Goldbach, R. , Prins, M. & Kormelink, R. (2010) Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. Journal of Virology, 84, 11542–11554. PubMed PMC
Scholthof, K.B. , Adkins, S. , Czosnek, H. , Palukaitis, P. , Jacquot, E. , Hohn, T. et al. (2011) Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954. PubMed PMC
Sin, S.H. , McNulty, B.C. , Kennedy, G.G. & Moyer, J.W. (2005) Viral genetic determinants for thrips transmission of tomato spotted wilt virus. Proceedings of the National Academy of Sciences of the United States of America, 102, 5168–5173. PubMed PMC
Soellick, T. , Uhrig, J.F. , Bucher, G.L. , Kellmann, J.W. & Schreier, P.H. (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proceedings of the National Academy of Sciences of the United States of America, 97, 2373–2378. PubMed PMC
Storms, M.M. , Kormelink, R. , Peters, D. , Van Lent, J.W. & Goldbach, R.W. (1995) The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology, 214, 485–493. PubMed
Storms, M.M.H. , Va, C. , De, N. , Schoot, R. , Prins, M. , Kormelink, R. et al. (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. The Plant Journal, 13, 131–140.
Takeda, A. , Sugiyama, K. , Nagano, H. , Mori, M. , Kaido, M. , Mise, K. et al. (2002) Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Letters, 532, 75–79. PubMed
Walter, C.T. , Bento, D.F. , Alonso, A.G. & Barr, J.N. (2011) Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. Journal of General Virology, 92, 80–84. PubMed PMC
Wen, X. & Klionsky, D.J. (2016) An overview of macroautophagy in yeast. Journal of Molecular Biology, 428, 1681–1699. PubMed PMC
Xu, M. , Chen, J. , Huang, Y. , Shen, D. , Sun, P. , Xu, Y. et al. (2020) Dynamic transcriptional profiles of Arabidopsis thaliana infected by tomato spotted wilt virus. Phytopathology, 110, 153–163. PubMed
Yang, M. , Zhang, Y. , Xie, X. , Yue, N. , Li, J. , Wang, X.B. et al. (2018) Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7‐ATG8 interaction. The Plant Cell, 30, 1582–1595. PubMed PMC
Zhang, X. , Yin, Y. , Su, Y. , Jia, Z. , Jiang, L. , Lu, Y. et al. (2021) eIF4A, a target of siRNA derived from rice stripe virus, negatively regulates antiviral autophagy by interacting with ATG5 in Nicotiana benthamiana . PLoS Pathogens, 17, e1009963. PubMed PMC
Zhao, W. , Wang, L. , Li, L. , Zhou, T. , Yan, F. , Zhang, H. et al. (2023) Coat protein of rice stripe virus enhances autophagy activity through interaction with cytosolic glyceraldehyde‐3‐phosphate dehydrogenases, a negative regulator of plant autophagy. Stress Biology, 3, 3. PubMed PMC
Zhou, T. , Zhang, M. , Gong, P. , Li, F. & Zhou, X. (2021) Selective autophagic receptor NbNBR1 prevents NbRFP1‐mediated UPS‐dependent degradation of βC1 to promote geminivirus infection. PLoS Pathogens, 17, e1009956. PubMed PMC