Autophagy plays an antiviral defence role against tomato spotted wilt orthotospovirus and is counteracted by viral effector NSs

. 2024 Oct ; 25 (10) : e70012.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39350560

Grantová podpora
31630062 National Natural Science Foundation of China
32220103008 National Natural Science Foundation of China
32430088 National Natural Science Foundation of China
BZ2023030 Jiangsu Key Technology R & D Program and International Science and Technology Cooperation Project
BE2022369 Jiangsu Provincial Key Research and Development Plan
CX (22)2039 Funds from the Independent Innovation of Agricultural Science and Technology of Jiangsu Province
2021530000241015 Key Projects of YNTC
ZDKJ2021007 Key Research Program for Science and Technology of Hainan Province
NAUSY-MS09 Sanya Institute of Nanjing Agricultural University

Autophagy, an intracellular degradation process, has emerged as a crucial innate immune response against various plant pathogens, including viruses. Tomato spotted wilt orthotospovirus (TSWV) is a highly destructive plant pathogen that infects over 1000 plant species and poses a significant threat to global food security. However, the role of autophagy in defence against the TSWV pathogen, and whether the virus counteracts this defence, remains unknown. In this study, we report that autophagy plays an important role in antiviral defence against TSWV infection; however, this autophagy-mediated defence is counteracted by the viral effector NSs. Transcriptome profiling revealed the up-regulation of autophagy-related genes (ATGs) upon TSWV infection. Blocking autophagy induction by chemical treatment or knockout/down of ATG5/ATG7 significantly enhanced TSWV accumulation. Notably, the TSWV nucleocapsid (N) protein, a major component of the viral replication unit, strongly induced autophagy. However, the TSWV nonstructural protein NSs was able to effectively suppress N-induced autophagy in a dose-dependent manner. Further investigation revealed that NSs inhibited ATG6-mediated autophagy induction. These findings provide new insights into the defence role of autophagy against TSWV, a representative segmented negative-strand RNA virus, as well as the tospoviral pathogen counterdefence mechanism.

Zobrazit více v PubMed

Adams, M.J. , Lefkowitz, E.J. , King, A.M.Q. , Harrach, B. , Harrison, R.L. , Knowles, N.J. et al. (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses. Archives of Virology, 162, 2505–2538. PubMed

Adkins, S. , Quadt, R. , Choi, T.J. , Ahlquist, P. & German, T. (1995) An RNA‐dependent RNA polymerase activity associated with virions of tomato spotted wilt virus, a plant‐ and insect‐infecting bunyavirus. Virology, 207, 308–311. PubMed

Boya, P. , Reggiori, F. & Codogno, P. (2013) Emerging regulation and functions of autophagy. Nature Cell Biology, 15, 713–720. PubMed PMC

Bucher, E. , Sijen, T. , De Haan, P. , Goldbach, R. & Prins, M. (2003) Negative‐strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of Virology, 77, 1329–1336. PubMed PMC

Cao, B. , Ge, L. , Zhang, M. , Li, F. & Zhou, X. (2023) Geminiviral C2 proteins inhibit active autophagy to facilitate virus infection by impairing the interaction of ATG7 and ATG8. Journal of Integrative Plant Biology, 65, 1328–1343. PubMed

Contento, A.L. , Xiong, Y. & Bassham, D.C. (2005) Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP‐AtATG8e fusion protein. The Plant Journal, 42, 598–608. PubMed

Ding, S.W. (2010) RNA‐based antiviral immunity. Nature Reviews Immunology, 10, 632–644. PubMed

Feng, M. , Cheng, R. , Chen, M. , Guo, R. , Li, L. , Feng, Z. et al. (2020) Rescue of tomato spotted wilt virus entirely from complementary DNA clones. Proceedings of the National Academy of Sciences of the United States of America, 117, 1181–1190. PubMed PMC

Feng, Z. , Xue, F. , Xu, M. , Chen, X. , Zhao, W. , Garcia‐Murria, M.J. et al. (2016) The ER‐membrane transport system is critical for intercellular trafficking of the NSm movement protein and tomato spotted wilt tospovirus. PLoS Pathogens, 12, e1005443. PubMed PMC

Funderburk, S.F. , Wang, Q.J. & Yue, Z. (2010) The Beclin 1‐VPS34 complex—at the crossroads of autophagy and beyond. Trends in Cell Biology, 20, 355–362. PubMed PMC

Guo, Y. , Liu, B. , Ding, Z. , Li, G. , Liu, M. , Zhu, D. et al. (2017) Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus. Journal of Virology, 91, e00892. PubMed PMC

Hafrén, A. & Hofius, D. (2017) NBR1‐mediated antiviral xenophagy in plant immunity. Autophagy, 13, 2000–2001. PubMed PMC

Hafrén, A. , Macia, J.L. , Love, A.J. , Milner, J.J. , Drucker, M. & Hofius, D. (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1‐mediated targeting of viral capsid protein and particles. Proceedings of the National Academy of Sciences of the United States of America, 114, e2026–e2035. PubMed PMC

Hafrén, A. , Üstün, S. , Hochmuth, A. , Svenning, S. , Johansen, T. & Hofius, D. (2018) Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiology, 176, 649–662. PubMed PMC

Haxim, Y. , Ismayil, A. , Jia, Q. , Wang, Y. , Zheng, X. , Chen, T. et al. (2017) Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife, 6, e23897. PubMed PMC

Hong, H. , Wang, C. , Huang, Y. , Xu, M. , Yan, J. , Feng, M. et al. (2021) Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus. PLoS Pathogens, 17, e1009757. PubMed PMC

Ismayil, A. , Yang, M. , Haxim, Y. , Wang, Y. , Li, J. , Han, L. et al. (2020) Cotton leaf curl Multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy‐related protein 3 with glyceraldehyde‐3‐phosphate dehydrogenases. The Plant Cell, 32, 1124–1135. PubMed PMC

Jiang, L. , Lu, Y. , Zheng, X. , Yang, X. , Chen, Y. , Zhang, T. et al. (2021) The plant protein NbP3IP directs degradation of rice stripe virus p3 silencing suppressor protein to limit virus infection through interaction with the autophagy‐related protein NbATG8. New Phytologist, 229, 1036–1051. PubMed

Kellner, R. , De la Concepcion, J.C. , Maqbool, A. , Kamoun, S. & Dagdas, Y.F. (2017) ATG8 expansion: a driver of selective autophagy diversification? Trends in Plant Science, 22, 204–214. PubMed

Kikkert, M. , Van Lent, J. , Storms, M. , Bodegom, P. , Kormelink, R. & Goldbach, R. (1999) Tomato spotted wilt virus particle morphogenesis in plant cells. Journal of Virology, 73, 2288–2297. PubMed PMC

Komoda, K. , Narita, M. , Yamashita, K. , Tanaka, I. & Yao, M. (2017) Asymmetric trimeric ring structure of the nucleocapsid protein of tospovirus. Journal of Virology, 91, e01002–e01017. PubMed PMC

Kormelink, R. , Garcia, M.L. , Goodin, M. , Sasaya, T. & Haenni, A.L. (2011) Negative‐strand RNA viruses: the plant‐infecting counterparts. Virus Research, 162, 184–202. PubMed

Kormelink, R. , Storms, M. , Van Lent, J. , Peters, D. & Goldbach, R. (1994) Expression and subcellular location of the NSm protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology, 200, 56–65. PubMed

Kormelink, R. , Verchot, J. , Tao, X. & Desbiez, C. (2021) The Bunyavirales: the plant‐infecting counterparts. Viruses, 13, 842. PubMed PMC

Li, F. , Zhang, C. , Li, Y. , Wu, G. , Hou, X. , Zhou, X. et al. (2018) Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nature Communications, 9, 1268. PubMed PMC

Li, F. , Zhang, M. , Zhang, C. & Zhou, X. (2020) Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytologist, 225, 1746–1761. PubMed

Ma, Z. , Song, T. , Zhu, L. , Ye, W. , Wang, Y. , Shao, Y. et al. (2015) A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. The Plant Cell, 27, 2057–2072. PubMed PMC

Ma, Z. , Zhu, L. , Song, T. , Wang, Y. , Zhang, Q. , Xia, Y. et al. (2017) A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science, 355, 710–714. PubMed

Mandadi, K.K. & Scholthof, K.B. (2013) Plant immune responses against viruses: how does a virus cause disease? The Plant Cell, 25, 1489–1505. PubMed PMC

Meier, N. , Hatch, C. , Nagalakshmi, U. & Dinesh‐Kumar, S.P. (2019) Perspectives on intracellular perception of plant viruses. Molecular Plant Pathology, 20, 1185–1190. PubMed PMC

Mizushima, N. & Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell, 147, 728–741. PubMed

Mizushima, N. , Levine, B. , Cuervo, A.M. & Klionsky, D.J. (2008) Autophagy fights disease through cellular self‐digestion. Nature, 451, 1069–1075. PubMed PMC

Niu, E. , Ye, C. , Zhao, W. , Kondo, H. , Wu, Y. , Chen, J. et al. (2022) Coat protein of Chinese wheat mosaic virus upregulates and interacts with cytosolic glyceraldehyde‐3‐phosphate dehydrogenase, a negative regulator of plant autophagy, to promote virus infection. Journal of Integrative Plant Biology, 64, 1631–1645. PubMed

Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin‐like systems. Nature Reviews Molecular Cell Biology, 2, 211–216. PubMed

Qi, H. , Xia, F.N. & Xiao, S. (2021) Autophagy in plants: physiological roles and post‐translational regulation. Journal of Integrative Plant Biology, 63, 161–179. PubMed

Qian, X. , Xiang, Q. , Yang, T. , Ma, H. , Ding, X.S. & Tao, X. (2018) Molecular co‐chaperone SGT1 is critical for cell‐to‐cell movement and systemic infection of tomato spotted wild virus in Nicotiana benthamiana . Viruses, 10, 647. PubMed PMC

Schnettler, E. , Hemmes, H. , Huismann, R. , Goldbach, R. , Prins, M. & Kormelink, R. (2010) Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. Journal of Virology, 84, 11542–11554. PubMed PMC

Scholthof, K.B. , Adkins, S. , Czosnek, H. , Palukaitis, P. , Jacquot, E. , Hohn, T. et al. (2011) Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954. PubMed PMC

Sin, S.H. , McNulty, B.C. , Kennedy, G.G. & Moyer, J.W. (2005) Viral genetic determinants for thrips transmission of tomato spotted wilt virus. Proceedings of the National Academy of Sciences of the United States of America, 102, 5168–5173. PubMed PMC

Soellick, T. , Uhrig, J.F. , Bucher, G.L. , Kellmann, J.W. & Schreier, P.H. (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proceedings of the National Academy of Sciences of the United States of America, 97, 2373–2378. PubMed PMC

Storms, M.M. , Kormelink, R. , Peters, D. , Van Lent, J.W. & Goldbach, R.W. (1995) The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology, 214, 485–493. PubMed

Storms, M.M.H. , Va, C. , De, N. , Schoot, R. , Prins, M. , Kormelink, R. et al. (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. The Plant Journal, 13, 131–140.

Takeda, A. , Sugiyama, K. , Nagano, H. , Mori, M. , Kaido, M. , Mise, K. et al. (2002) Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Letters, 532, 75–79. PubMed

Walter, C.T. , Bento, D.F. , Alonso, A.G. & Barr, J.N. (2011) Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. Journal of General Virology, 92, 80–84. PubMed PMC

Wen, X. & Klionsky, D.J. (2016) An overview of macroautophagy in yeast. Journal of Molecular Biology, 428, 1681–1699. PubMed PMC

Xu, M. , Chen, J. , Huang, Y. , Shen, D. , Sun, P. , Xu, Y. et al. (2020) Dynamic transcriptional profiles of Arabidopsis thaliana infected by tomato spotted wilt virus. Phytopathology, 110, 153–163. PubMed

Yang, M. , Zhang, Y. , Xie, X. , Yue, N. , Li, J. , Wang, X.B. et al. (2018) Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7‐ATG8 interaction. The Plant Cell, 30, 1582–1595. PubMed PMC

Zhang, X. , Yin, Y. , Su, Y. , Jia, Z. , Jiang, L. , Lu, Y. et al. (2021) eIF4A, a target of siRNA derived from rice stripe virus, negatively regulates antiviral autophagy by interacting with ATG5 in Nicotiana benthamiana . PLoS Pathogens, 17, e1009963. PubMed PMC

Zhao, W. , Wang, L. , Li, L. , Zhou, T. , Yan, F. , Zhang, H. et al. (2023) Coat protein of rice stripe virus enhances autophagy activity through interaction with cytosolic glyceraldehyde‐3‐phosphate dehydrogenases, a negative regulator of plant autophagy. Stress Biology, 3, 3. PubMed PMC

Zhou, T. , Zhang, M. , Gong, P. , Li, F. & Zhou, X. (2021) Selective autophagic receptor NbNBR1 prevents NbRFP1‐mediated UPS‐dependent degradation of βC1 to promote geminivirus infection. PLoS Pathogens, 17, e1009956. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...