Exploring the Role of Excited States' Degeneracy on Vibronic Coupling with Atomic-Scale Optics

. 2024 Oct 15 ; 18 (41) : 28052-28059. [epub] 20241003

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39363581

Interactions between molecular electronic and vibrational states manifest themselves in a variety of forms and have a strong impact on molecular physics and chemistry. For example, the efficiency of energy transfer between organic molecules, ubiquitous in biological systems and in organic optoelectronics, is strongly influenced by vibronic coupling. Using an approach based on scanning tunneling microscope-induced luminescence (STML), we reveal vibronic interactions in optical spectra of a series of single phthalocyanine derivative molecules featuring degenerate or near-degenerate excited states. Based on detailed theoretical simulations, we disentangle spectroscopic signatures belonging to Franck-Condon and Herzberg-Teller vibronic progressions in tip-position-resolved STML spectra, and we directly map out the vibronic coupling between the close-lying excited states of the molecules.

Zobrazit více v PubMed

Spano F. C. The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439. 10.1021/ar900233v. PubMed DOI

Dimitriev O. P. Dynamics of excitons in conjugated molecules and organic semiconductor systems. Chem. Rev. 2022, 122, 8487–8593. 10.1021/acs.chemrev.1c00648. PubMed DOI

Schultz J. D.; Shin J. Y.; Chen M.; O’Connor J. P.; Young R. M.; Ratner M. A.; Wasielewski M. R. Influence of Vibronic Coupling on Ultrafast Singlet Fission in a Linear Terrylenediimide Dimer. J. Am. Chem. Soc. 2021, 143, 2049–2058. 10.1021/jacs.0c12201. PubMed DOI

Xu Z.; Zhou Y.; Gross L.; De Sio A.; Yam C. Y.; Lienau C.; Frauenheim T.; Chen G. Coherent Real-Space Charge Transport Across a Donor-Acceptor Interface Mediated by Vibronic Couplings. Nano Lett. 2019, 19, 8630–8637. 10.1021/acs.nanolett.9b03194. PubMed DOI

Jacobs M.; Krumland J.; Valencia A. M.; Wang H.; Rossi M.; Cocchi C. Ultrafast charge transfer and vibronic coupling in a laser-excited hybrid inorganic/organic interface. Advances in Physics: X 2020, 5, 1749883.10.1080/23746149.2020.1749883. DOI

West B. A.; Womick J. M.; McNeil L. E.; Tan K. J.; Moran A. M. Influence of Vibronic Coupling on Band Structure and Exciton Self-Trapping in α-Perylene. J. Phys. Chem. B 2011, 115, 5157.10.1021/jp105115n. PubMed DOI

Halpin A.; Johnson P. J. M.; Tempelaar R.; Murphy R. S.; Knoester J.; Jansen T. L. C.; Miller R. J. D. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 2014, 6, 196–201. 10.1038/nchem.1834. PubMed DOI

Tiwari V.; Peters W. K.; Jonas D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1203.10.1073/pnas.1211157110. PubMed DOI PMC

Higgins J. S.; Lloyd L. T.; Sohail S. H.; Allodi M. A.; Otto J. P.; Saer R. G.; Wood R. E.; Massey S. C.; Ting P.-C.; Blankenship R. E.; Engel G. S.. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer; Proceedings of the National Academy of Sciences; 2021; Vol. 118. PubMed PMC

Arsenault E. A.; Yoneda Y.; Iwai M.; Niyogi K. K.; Fleming G. R. Vibronic mixing enables ultrafast energy flow in light-harvesting complex II. Nat. Commun. 2020, 11, 1460.10.1038/s41467-020-14970-1. PubMed DOI PMC

Arsenault E. A.; Schile A. J.; Limmer D. T.; Fleming G. R.. Vibronic coupling in energy transfer dynamics and two - dimensional electronic-vibrational spectra. J. Chem. Phys. 2021, 155, 10.1063/5.0056477 PubMed DOI

Cao S.; Rosławska A.; Doppagne B.; Romeo M.; Féron M.; Chérioux F.; Bulou H.; Scheurer F.; Schull G. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 2021, 13, 766–770. 10.1038/s41557-021-00697-z. PubMed DOI

Coane C. V.; Romanelli M.; Dall’Osto G.; Di Felice R.; Corni S. Unraveling the mechanism of tip-enhanced molecular energy transfer. Communications Chemistry 2024, 7, 32.10.1038/s42004-024-01118-1. PubMed DOI PMC

Meneghin E.; Leonardo C.; Volpato A.; Bolzonello L.; Collini E. Mechanistic insight into internal conversion process within Q-bands of chlorophyll a. Sci. Rep. 2017, 7, 11389.10.1038/s41598-017-11621-2. PubMed DOI PMC

Arsenault E. A.; Yoneda Y.; Iwai M.; Niyogi K. K.; Fleming G. R. The role of mixed vibronic Qy-Qx states in green light absorption of light-harvesting complex II. Nat. Commun. 2020, 11, 6011.10.1038/s41467-020-19800-y. PubMed DOI PMC

Petropoulos V.; Rukin P. S.; Quintela F.; Russo M.; Moretti L.; Moore A.; Moore T.; Gust D.; Prezzi D.; Scholes G. D.; Molinari E.; Cerullo G.; Troiani F.; Rozzi C. A.; Maiuri M. Vibronic Coupling Drives the Ultrafast Internal Conversion in a Functionalized Free-Base Porphyrin. J. Phys. Chem. Lett. 2024, 15, 4461–4467. 10.1021/acs.jpclett.4c00372. PubMed DOI

Bondybey V. E. Relaxation and Vibrational Energy Redistribution Processes in Polyatomic Molecules. Annu. Rev. Phys. Chem. 1984, 35, 591–612. 10.1146/annurev.pc.35.100184.003111. DOI

Negri F.; Orlandi G.. In Computational Photochemistry; Olivucci M., Ed.; Theoretical and Computational Chemistry; Elsevier, 2005; Vol. 16, pp 129–169.

Imada H.; Miwa K.; Imai-Imada M.; Kawahara S.; Kimura K.; Kim Y. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 2016, 538, 364–367. 10.1038/nature19765. PubMed DOI

Zhang Y.; Luo Y.; Zhang Y.; Yu Y.-J.; Kuang Y.-M.; Zhang L.; Meng Q.-S.; Luo Y.; Yang J.-L.; Dong Z.-C.; Hou J. G. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 2016, 531, 623–627. 10.1038/nature17428. PubMed DOI

Doppagne B.; Chong M. C.; Lorchat E.; Berciaud S.; Romeo M.; Bulou H.; Boeglin A.; Scheurer F.; Schull G. Vibronic Spectroscopy with Submolecular Resolution from STM-Induced Electroluminescence. Phys. Rev. Lett. 2017, 118, 127401.10.1103/PhysRevLett.118.127401. PubMed DOI

Doležal J.; Merino P.; Redondo J.; Ondič L.; Cahlík A.; Švec M. Charge Carrier Injection Electroluminescence with CO-Functionalized Tips on Single Molecular Emitters. Nano Lett. 2019, 19, 8605–8611. 10.1021/acs.nanolett.9b03180. PubMed DOI PMC

Rai V.; Gerhard L.; Sun Q.; Holzer C.; Repán T.; Krstić M.; Yang L.; Wegener M.; Rockstuhl C.; Wulfhekel W. Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging. Nano Lett. 2020, 20, 7600–7605. 10.1021/acs.nanolett.0c03121. PubMed DOI

Kong F.-F.; Tian X.-J.; Zhang Y.; Yu Y.-J.; Jing S.-H.; Zhang Y.; Tian G.-J.; Luo Y.; Yang J.-L.; Dong Z.-C.; et al. Probing intramolecular vibronic coupling through vibronic-state imaging. Nat. Commun. 2021, 12, 1280.10.1038/s41467-021-21571-z. PubMed DOI PMC

Isago H.Optical Spectra of Phthalocyanines and Related Compounds; Springer Tokyo, 2015.

Freyer W.; Mueller S.; Teuchner K. Photophysical properties of benzoannelated metal-free phthalocyanines. J. Photochem. Photobiol., A 2004, 163, 231–240. 10.1016/j.jphotochem.2003.12.003. DOI

Shimizu S.; Ito Y.; Oniwa K.; Hirokawa S.; Miura Y.; Matsushita O.; Kobayashi N. Synthesis of 5,10,15-triazaporphyrins - effect of benzo-annulation on the electronic structures. Chem. Commun. 2012, 48, 3851–3853. 10.1039/c2cc30625e. PubMed DOI

Hammer R. P.; Owens C. V.; Hwang S.-H.; Sayes C. M.; Soper S. A. Asymmetrical, Water-Soluble Phthalocyanine Dyes for Covalent Labeling of Oligonucleotides. Bioconjugate Chem. 2002, 13, 1244–1252. 10.1021/bc0155869. PubMed DOI

Michelsen U.; Schnurpfeil G.; Sobbi A. K.; Wöhrle D.; Kliesch H. Unsymmetrically Substituted Benzonaphthoporphyrazines: A New Class of Cationic Photosensitizers for the Photodynamic Therapy of Cancer. Photochem. Photobiol. 1996, 64, 694–701. 10.1111/j.1751-1097.1996.tb03126.x. PubMed DOI

Yu L.; Shi W.; Lin L.; Liu Y.; Li R.; Peng T.; Li X. Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells. Dalton Transactions 2014, 43, 8421–8430. 10.1039/C4DT00411F. PubMed DOI

Ishii K.; Takeuchi S.; Tahara T. Pronounced non-Condon effect as the origin of the quantum beat observed in the time-resolved absorption signal from excited-state cis-stilbene. J. Phys. Chem. A 2008, 112, 2219–2227. 10.1021/jp077402e. PubMed DOI

Grewal A.; Leon C. C.; Kuhnke K.; Kern K.; Gunnarsson O. Character of Electronic States in the Transport Gap of Molecules on Surfaces. ACS Nano 2023, 17, 13176–13184. 10.1021/acsnano.2c12447. PubMed DOI PMC

Doppagne B.; Chong M. C.; Bulou H.; Boeglin A.; Scheurer F.; Schull G. Electrofluorochromism at the single-molecule level. Science 2018, 361, 251–255. 10.1126/science.aat1603. PubMed DOI

Fatayer S.; Schuler B.; Steurer W.; Scivetti I.; Repp J.; Gross L.; Persson M.; Meyer G. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 2018, 13, 376–380. 10.1038/s41565-018-0087-1. PubMed DOI

Hernangómez-Pérez D.; Schlör J.; Egger D. A.; Patera L. L.; Repp J.; Evers F. Reorganization energy and polaronic effects of pentacene on NaCl films. Phys. Rev. B 2020, 102, 115419.10.1103/PhysRevB.102.115419. DOI

Mahan G. D.Many Particle Physics, Third ed.; Plenum: New York, 2000.

Miwa K.; Imada H.; Imai-Imada M.; Kimura K.; Galperin M.; Kim Y. Many-Body State Description of Single-Molecule Electroluminescence Driven by a Scanning Tunneling Microscope. Nano Lett. 2019, 19, 2803–2811. 10.1021/acs.nanolett.8b04484. PubMed DOI

Raunio G.; Rolandson S. Lattice Dynamics of NaCl, KCl, RbCl, and RbF. Phys. Rev. B 1970, 2, 2098–2103. 10.1103/PhysRevB.2.2098. DOI

Messaoudi I. S.; Zaoui A.; Ferhat M. Band-gap and phonon distribution in alkali halides. Phys. Status Solidi B Basic Res. 2015, 252, 490–495. 10.1002/pssb.201451268. DOI

Jiang S.; Neuman T.; Bretel R.; Boeglin A.; Scheurer F.; Le Moal E.; Schull G. Many-Body Description of STM-Induced Fluorescence of Charged Molecules. Phys. Rev. Lett. 2023, 130, 126202.10.1103/PhysRevLett.130.126202. PubMed DOI

Vasilev K.; Doppagne B.; Neuman T.; Rosławska A.; Bulou H.; Boeglin A.; Scheurer F.; Schull G. Internal Stark effect of single-molecule fluorescence. Nat. Commun. 2022, 13, 677.10.1038/s41467-022-28241-8. PubMed DOI PMC

Hung T.-C.; Robles R.; Kiraly B.; Strik J. H.; Rutten B. A.; Khajetoorians A. A.; Lorente N.; Wegner D. Bipolar single-molecule electroluminescence and electrofluorochromism. Physical Review Research 2023, 5, 033027.10.1103/PhysRevResearch.5.033027. DOI

Roy P. P.; Kundu S.; Makri N.; Fleming G. R. Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives. J. Phys. Chem. Lett. 2022, 13, 7413–7419. 10.1021/acs.jpclett.2c01963. PubMed DOI PMC

Chong M. C.; Reecht G.; Bulou H.; Boeglin A.; Scheurer F.; Mathevet F.; Schull G. Narrow-Line Single-Molecule Transducer between Electronic Circuits and Surface Plasmons. Phys. Rev. Lett. 2016, 116, 036802.10.1103/PhysRevLett.116.036802. PubMed DOI

Frisch M. J.; et al.Gaussian16 Revision C.01; 2016; Gaussian Inc.: Wallingford, CT.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace