Exploring the Role of Excited States' Degeneracy on Vibronic Coupling with Atomic-Scale Optics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39363581
PubMed Central
PMC11483947
DOI
10.1021/acsnano.4c07136
Knihovny.cz E-zdroje
- Klíčová slova
- Herzberg−Teller, STM-induced luminescence, Zn-phthalocyanine derivatives, vibronic coupling, vibronic spectroscopy,
- Publikační typ
- časopisecké články MeSH
Interactions between molecular electronic and vibrational states manifest themselves in a variety of forms and have a strong impact on molecular physics and chemistry. For example, the efficiency of energy transfer between organic molecules, ubiquitous in biological systems and in organic optoelectronics, is strongly influenced by vibronic coupling. Using an approach based on scanning tunneling microscope-induced luminescence (STML), we reveal vibronic interactions in optical spectra of a series of single phthalocyanine derivative molecules featuring degenerate or near-degenerate excited states. Based on detailed theoretical simulations, we disentangle spectroscopic signatures belonging to Franck-Condon and Herzberg-Teller vibronic progressions in tip-position-resolved STML spectra, and we directly map out the vibronic coupling between the close-lying excited states of the molecules.
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
Université de Franche Comté CNRS FEMTO ST F 25000 Besançon France
Université de Strasbourg CNRS IPCMS UMR 7504 F 67000 Strasbourg France
Zobrazit více v PubMed
Spano F. C. The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439. 10.1021/ar900233v. PubMed DOI
Dimitriev O. P. Dynamics of excitons in conjugated molecules and organic semiconductor systems. Chem. Rev. 2022, 122, 8487–8593. 10.1021/acs.chemrev.1c00648. PubMed DOI
Schultz J. D.; Shin J. Y.; Chen M.; O’Connor J. P.; Young R. M.; Ratner M. A.; Wasielewski M. R. Influence of Vibronic Coupling on Ultrafast Singlet Fission in a Linear Terrylenediimide Dimer. J. Am. Chem. Soc. 2021, 143, 2049–2058. 10.1021/jacs.0c12201. PubMed DOI
Xu Z.; Zhou Y.; Gross L.; De Sio A.; Yam C. Y.; Lienau C.; Frauenheim T.; Chen G. Coherent Real-Space Charge Transport Across a Donor-Acceptor Interface Mediated by Vibronic Couplings. Nano Lett. 2019, 19, 8630–8637. 10.1021/acs.nanolett.9b03194. PubMed DOI
Jacobs M.; Krumland J.; Valencia A. M.; Wang H.; Rossi M.; Cocchi C. Ultrafast charge transfer and vibronic coupling in a laser-excited hybrid inorganic/organic interface. Advances in Physics: X 2020, 5, 1749883.10.1080/23746149.2020.1749883. DOI
West B. A.; Womick J. M.; McNeil L. E.; Tan K. J.; Moran A. M. Influence of Vibronic Coupling on Band Structure and Exciton Self-Trapping in α-Perylene. J. Phys. Chem. B 2011, 115, 5157.10.1021/jp105115n. PubMed DOI
Halpin A.; Johnson P. J. M.; Tempelaar R.; Murphy R. S.; Knoester J.; Jansen T. L. C.; Miller R. J. D. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 2014, 6, 196–201. 10.1038/nchem.1834. PubMed DOI
Tiwari V.; Peters W. K.; Jonas D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1203.10.1073/pnas.1211157110. PubMed DOI PMC
Higgins J. S.; Lloyd L. T.; Sohail S. H.; Allodi M. A.; Otto J. P.; Saer R. G.; Wood R. E.; Massey S. C.; Ting P.-C.; Blankenship R. E.; Engel G. S.. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer; Proceedings of the National Academy of Sciences; 2021; Vol. 118. PubMed PMC
Arsenault E. A.; Yoneda Y.; Iwai M.; Niyogi K. K.; Fleming G. R. Vibronic mixing enables ultrafast energy flow in light-harvesting complex II. Nat. Commun. 2020, 11, 1460.10.1038/s41467-020-14970-1. PubMed DOI PMC
Arsenault E. A.; Schile A. J.; Limmer D. T.; Fleming G. R.. Vibronic coupling in energy transfer dynamics and two - dimensional electronic-vibrational spectra. J. Chem. Phys. 2021, 155, 10.1063/5.0056477 PubMed DOI
Cao S.; Rosławska A.; Doppagne B.; Romeo M.; Féron M.; Chérioux F.; Bulou H.; Scheurer F.; Schull G. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat. Chem. 2021, 13, 766–770. 10.1038/s41557-021-00697-z. PubMed DOI
Coane C. V.; Romanelli M.; Dall’Osto G.; Di Felice R.; Corni S. Unraveling the mechanism of tip-enhanced molecular energy transfer. Communications Chemistry 2024, 7, 32.10.1038/s42004-024-01118-1. PubMed DOI PMC
Meneghin E.; Leonardo C.; Volpato A.; Bolzonello L.; Collini E. Mechanistic insight into internal conversion process within Q-bands of chlorophyll a. Sci. Rep. 2017, 7, 11389.10.1038/s41598-017-11621-2. PubMed DOI PMC
Arsenault E. A.; Yoneda Y.; Iwai M.; Niyogi K. K.; Fleming G. R. The role of mixed vibronic Qy-Qx states in green light absorption of light-harvesting complex II. Nat. Commun. 2020, 11, 6011.10.1038/s41467-020-19800-y. PubMed DOI PMC
Petropoulos V.; Rukin P. S.; Quintela F.; Russo M.; Moretti L.; Moore A.; Moore T.; Gust D.; Prezzi D.; Scholes G. D.; Molinari E.; Cerullo G.; Troiani F.; Rozzi C. A.; Maiuri M. Vibronic Coupling Drives the Ultrafast Internal Conversion in a Functionalized Free-Base Porphyrin. J. Phys. Chem. Lett. 2024, 15, 4461–4467. 10.1021/acs.jpclett.4c00372. PubMed DOI
Bondybey V. E. Relaxation and Vibrational Energy Redistribution Processes in Polyatomic Molecules. Annu. Rev. Phys. Chem. 1984, 35, 591–612. 10.1146/annurev.pc.35.100184.003111. DOI
Negri F.; Orlandi G.. In Computational Photochemistry; Olivucci M., Ed.; Theoretical and Computational Chemistry; Elsevier, 2005; Vol. 16, pp 129–169.
Imada H.; Miwa K.; Imai-Imada M.; Kawahara S.; Kimura K.; Kim Y. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 2016, 538, 364–367. 10.1038/nature19765. PubMed DOI
Zhang Y.; Luo Y.; Zhang Y.; Yu Y.-J.; Kuang Y.-M.; Zhang L.; Meng Q.-S.; Luo Y.; Yang J.-L.; Dong Z.-C.; Hou J. G. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 2016, 531, 623–627. 10.1038/nature17428. PubMed DOI
Doppagne B.; Chong M. C.; Lorchat E.; Berciaud S.; Romeo M.; Bulou H.; Boeglin A.; Scheurer F.; Schull G. Vibronic Spectroscopy with Submolecular Resolution from STM-Induced Electroluminescence. Phys. Rev. Lett. 2017, 118, 127401.10.1103/PhysRevLett.118.127401. PubMed DOI
Doležal J.; Merino P.; Redondo J.; Ondič L.; Cahlík A.; Švec M. Charge Carrier Injection Electroluminescence with CO-Functionalized Tips on Single Molecular Emitters. Nano Lett. 2019, 19, 8605–8611. 10.1021/acs.nanolett.9b03180. PubMed DOI PMC
Rai V.; Gerhard L.; Sun Q.; Holzer C.; Repán T.; Krstić M.; Yang L.; Wegener M.; Rockstuhl C.; Wulfhekel W. Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging. Nano Lett. 2020, 20, 7600–7605. 10.1021/acs.nanolett.0c03121. PubMed DOI
Kong F.-F.; Tian X.-J.; Zhang Y.; Yu Y.-J.; Jing S.-H.; Zhang Y.; Tian G.-J.; Luo Y.; Yang J.-L.; Dong Z.-C.; et al. Probing intramolecular vibronic coupling through vibronic-state imaging. Nat. Commun. 2021, 12, 1280.10.1038/s41467-021-21571-z. PubMed DOI PMC
Isago H.Optical Spectra of Phthalocyanines and Related Compounds; Springer Tokyo, 2015.
Freyer W.; Mueller S.; Teuchner K. Photophysical properties of benzoannelated metal-free phthalocyanines. J. Photochem. Photobiol., A 2004, 163, 231–240. 10.1016/j.jphotochem.2003.12.003. DOI
Shimizu S.; Ito Y.; Oniwa K.; Hirokawa S.; Miura Y.; Matsushita O.; Kobayashi N. Synthesis of 5,10,15-triazaporphyrins - effect of benzo-annulation on the electronic structures. Chem. Commun. 2012, 48, 3851–3853. 10.1039/c2cc30625e. PubMed DOI
Hammer R. P.; Owens C. V.; Hwang S.-H.; Sayes C. M.; Soper S. A. Asymmetrical, Water-Soluble Phthalocyanine Dyes for Covalent Labeling of Oligonucleotides. Bioconjugate Chem. 2002, 13, 1244–1252. 10.1021/bc0155869. PubMed DOI
Michelsen U.; Schnurpfeil G.; Sobbi A. K.; Wöhrle D.; Kliesch H. Unsymmetrically Substituted Benzonaphthoporphyrazines: A New Class of Cationic Photosensitizers for the Photodynamic Therapy of Cancer. Photochem. Photobiol. 1996, 64, 694–701. 10.1111/j.1751-1097.1996.tb03126.x. PubMed DOI
Yu L.; Shi W.; Lin L.; Liu Y.; Li R.; Peng T.; Li X. Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells. Dalton Transactions 2014, 43, 8421–8430. 10.1039/C4DT00411F. PubMed DOI
Ishii K.; Takeuchi S.; Tahara T. Pronounced non-Condon effect as the origin of the quantum beat observed in the time-resolved absorption signal from excited-state cis-stilbene. J. Phys. Chem. A 2008, 112, 2219–2227. 10.1021/jp077402e. PubMed DOI
Grewal A.; Leon C. C.; Kuhnke K.; Kern K.; Gunnarsson O. Character of Electronic States in the Transport Gap of Molecules on Surfaces. ACS Nano 2023, 17, 13176–13184. 10.1021/acsnano.2c12447. PubMed DOI PMC
Doppagne B.; Chong M. C.; Bulou H.; Boeglin A.; Scheurer F.; Schull G. Electrofluorochromism at the single-molecule level. Science 2018, 361, 251–255. 10.1126/science.aat1603. PubMed DOI
Fatayer S.; Schuler B.; Steurer W.; Scivetti I.; Repp J.; Gross L.; Persson M.; Meyer G. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 2018, 13, 376–380. 10.1038/s41565-018-0087-1. PubMed DOI
Hernangómez-Pérez D.; Schlör J.; Egger D. A.; Patera L. L.; Repp J.; Evers F. Reorganization energy and polaronic effects of pentacene on NaCl films. Phys. Rev. B 2020, 102, 115419.10.1103/PhysRevB.102.115419. DOI
Mahan G. D.Many Particle Physics, Third ed.; Plenum: New York, 2000.
Miwa K.; Imada H.; Imai-Imada M.; Kimura K.; Galperin M.; Kim Y. Many-Body State Description of Single-Molecule Electroluminescence Driven by a Scanning Tunneling Microscope. Nano Lett. 2019, 19, 2803–2811. 10.1021/acs.nanolett.8b04484. PubMed DOI
Raunio G.; Rolandson S. Lattice Dynamics of NaCl, KCl, RbCl, and RbF. Phys. Rev. B 1970, 2, 2098–2103. 10.1103/PhysRevB.2.2098. DOI
Messaoudi I. S.; Zaoui A.; Ferhat M. Band-gap and phonon distribution in alkali halides. Phys. Status Solidi B Basic Res. 2015, 252, 490–495. 10.1002/pssb.201451268. DOI
Jiang S.; Neuman T.; Bretel R.; Boeglin A.; Scheurer F.; Le Moal E.; Schull G. Many-Body Description of STM-Induced Fluorescence of Charged Molecules. Phys. Rev. Lett. 2023, 130, 126202.10.1103/PhysRevLett.130.126202. PubMed DOI
Vasilev K.; Doppagne B.; Neuman T.; Rosławska A.; Bulou H.; Boeglin A.; Scheurer F.; Schull G. Internal Stark effect of single-molecule fluorescence. Nat. Commun. 2022, 13, 677.10.1038/s41467-022-28241-8. PubMed DOI PMC
Hung T.-C.; Robles R.; Kiraly B.; Strik J. H.; Rutten B. A.; Khajetoorians A. A.; Lorente N.; Wegner D. Bipolar single-molecule electroluminescence and electrofluorochromism. Physical Review Research 2023, 5, 033027.10.1103/PhysRevResearch.5.033027. DOI
Roy P. P.; Kundu S.; Makri N.; Fleming G. R. Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives. J. Phys. Chem. Lett. 2022, 13, 7413–7419. 10.1021/acs.jpclett.2c01963. PubMed DOI PMC
Chong M. C.; Reecht G.; Bulou H.; Boeglin A.; Scheurer F.; Mathevet F.; Schull G. Narrow-Line Single-Molecule Transducer between Electronic Circuits and Surface Plasmons. Phys. Rev. Lett. 2016, 116, 036802.10.1103/PhysRevLett.116.036802. PubMed DOI
Frisch M. J.; et al.Gaussian16 Revision C.01; 2016; Gaussian Inc.: Wallingford, CT.