Beyond the Surface: Interconnection of Viscosity, Crystal Growth, and Diffusion in Ge25Se75 Glass-Former

. 2024 Oct 17 ; 128 (41) : 10286-10296. [epub] 20241007

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39370932

The knowledge of viscosity behavior, crystal growth phenomenon, and diffusion is important in producing, processing, and practical applications of amorphous solids prepared in different forms (bulk glasses and thin films). This work uses microscopy to study volume crystal growth in Ge25Se75 bulk glasses and thermally evaporated thin films. The collected growth data measured over a wide temperature range show a significant increase in crystal growth rates in thin films. The crystal growth is analyzed using near-surface viscosities obtained in bulks and thin films using nanoindentation and melt viscosities measured by a pressure-assisted melt filling technique. The crystal growth analysis provides information on the size of the structural units incorporated into the growing crystals, essential for estimating the diffusion coefficients and explaining the difference in crystal growth rates in bulk and thin films. The crystal growth analysis also reveals the decoupling between diffusion and viscous flow described by the Stokes-Einstein-Eyring relation. Moreover, to the authors' best knowledge, the manuscript provides the first evaluation estimation of the effective self-diffusion coefficient directly from growth data in chalcogenide glass-formers. The present data show a similar relation between diffusion coefficients (D) and crystal growth rates (u): u ≈ D0.87, which is found in several molecular glasses.

Zobrazit více v PubMed

Zhang X.-H.; Guimond Y.; Bellec Y. Production of Complex Chalcogenide Glass Optics by Molding for Thermal Imaging. J. Non-Cryst. Solids 2003, 326, 519–523. 10.1016/S0022-3093(03)00464-2. DOI

Wuttig M.; Yamada N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6 (12), 1004.10.1038/nmat2077. PubMed DOI

Fantini P. Phase change memory applications: the history, the present and the future. J. Phys. D: Appl. Phys. 2020, 53 (28), 28300210.1088/1361-6463/ab83ba. DOI

Xu P.; Zheng J.; Doylend J. K.; Majumdar A. Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. ACS Photonics 2019, 6 (2), 553–557. 10.1021/acsphotonics.8b01628. DOI

Tittl A.; Michel A.-K. U.; Schäferling M.; Yin X.; Gholipour B.; Cui L.; Wuttig M.; Taubner T.; Neubrech F.; Giessen H. A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability. Adv. Mater. 2015, 27 (31), 4597–4603. 10.1002/adma.201502023. PubMed DOI

Michel A.-K. U.; Chigrin D. N.; Maß T. W. W.; Schönauer K.; Salinga M.; Wuttig M.; Taubner T. Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning. Nano Lett. 2013, 13 (8), 3470–3475. 10.1021/nl4006194. PubMed DOI

Wang Q.; Rogers E. T. F.; Gholipour B.; Wang C.-M.; Yuan G.; Teng J.; Zheludev N. I. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 2016, 10 (1), 60–65. 10.1038/nphoton.2015.247. DOI

Adhikari S.; Orrit M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS Photonics 2022, 9 (11), 3486–3497. 10.1021/acsphotonics.2c01205. PubMed DOI PMC

Liu S.-C.; Yang Y.; Li Z.; Xue D.-J.; Hu J.-S. GeSe thin-film solar cells. Mater. Chem. Front. 2020, 4 (3), 775–787. 10.1039/C9QM00727J. DOI

Xue D.-J.; Liu S.-C.; Dai C.-M.; Chen S.; He C.; Zhao L.; Hu J.-S.; Wan L.-J. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J. Am. Chem. Soc. 2017, 139 (2), 958–965. 10.1021/jacs.6b11705. PubMed DOI

Zi W.; Mu F.; Lu X.; Cao Y.; Xie Y.; Fang L.; Cheng N.; Zhao Z.; Xiao Z. Post-annealing treatment of a-GeSe thin films for photovoltaic application. Sol. Energy 2020, 199, 837–843. 10.1016/j.solener.2020.02.086. DOI

Wang K.; Huang D.; Yu L.; Feng K.; Li L.; Harada T.; Ikeda S.; Jiang F. Promising GeSe nanosheet-based thin-film photocathode for efficient and stable overall solar water splitting. ACS Catal. 2019, 9 (4), 3090–3097. 10.1021/acscatal.9b00035. DOI

Zhou Y.; Zhao M.; Chen Z. W.; Shi X. M.; Jiang Q. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys. Chem. Chem. Phys. 2018, 20 (48), 30290–30296. 10.1039/C8CP05484C. PubMed DOI

Nichol T.; Teteris J.; Reinfelde M.; Mitkova M. Dual effect of light irradiation for surface relief gratings formation in Se-rich Ge-Se thin films. Adv. Mater. Lett. 2019, 10 (12), 868–873. 10.5185/amlett.2019.0012. DOI

Guo P.; Li C.; Huang W.; Zhang W.; Zhang P.; Xu T. Thermal annealing of Ge-Se thin films and its influence on waveguide performance. Opt. Mater. Express 2020, 10 (1), 129–137. 10.1364/OME.10.000129. DOI

Wang Z.; Li M.; Gao X. P. A.; Zhang Z. Broadband photodetection of GeSe films of vertically grown nanoflakes. ACS Appl. Electron. Mater. 2019, 1 (11), 2236–2243. 10.1021/acsaelm.9b00442. DOI

Charpentier F.; Bureau B.; Troles J.; Boussard-Plédel C.; Michel-Le Pierrès K.; Smektala F.; Adam J.-L. Infrared monitoring of underground CO2 storage using chalcogenide glass fibers. Opt. Mater. 2009, 31 (3), 496–500. 10.1016/j.optmat.2007.10.014. DOI

Ailavajhala M. S.; Nichol T.; Gonzalez-Velo Y.; Poweleit C. D.; Barnaby H. J.; Kozicki M. N.; Butt D. P.; Mitkova M. Thin Ge–Se films as a sensing material for radiation doses. Phys. Status Solidi (B) 2014, 251 (7), 1347–1353. 10.1002/pssb.201350188. DOI

Simon A.-A. A.; Badamchi B.; Subbaraman H.; Sakaguchi Y.; Mitkova M. Phase change in Ge–Se chalcogenide glasses and its implications on optical temperature-sensing devices. J. Mater. Sci.: Mater. Electron. 2020, 31 (14), 11211–11226. 10.1007/s10854-020-03669-0. DOI

Badamchi B.; Simon A.-A. A.; Mitkova M.; Subbaraman H. Chalcogenide glass-capped fiber-optic sensor for real-time temperature monitoring in extreme environments. Sensors 2021, 21 (5), 161610.3390/s21051616. PubMed DOI PMC

Simon A. A.; Badamchi B.; Subbaraman H.; Sakaguchi Y.; Jones L.; Kunold H.; van Rooyen I. J.; Mitkova M. Introduction of chalcogenide glasses to additive manufacturing: Nanoparticle ink formulation, inkjet printing, and phase change devices fabrication. Sci. Rep. 2021, 11 (1), 1431110.1038/s41598-021-93515-y. PubMed DOI PMC

Liu G.; Wu L.; Chen X.; Li T.; Wang Y.; Guo T.; Ma Z.; Zhu M.; Song S.; Song Z. The investigations of characteristics of GeSe thin films and selector devices for phase change memory. J. Alloys Compd. 2019, 792, 510–518. 10.1016/j.jallcom.2019.04.041. DOI

Qashou S. I.; Ali A. M.; Somaily H. H.; Algarn H.; Hafiz M. M.; Rashad M. Linear and nonlinear optical investigations of Ge25Se75 thin films at different annealing temperatures. Phys. B 2022, 625, 41335110.1016/j.physb.2021.413351. DOI

Nam K.-H.; Kim J.-H.; Chung H.-B. Electrical Characteristics of Ge25Se75 Thin Films by Ag Ion Doping Methods for Resistance Random Access Memory Applications. Jpn. J. Appl. Phys. 2012, 51 (9S2), 09MF0410.1143/JJAP.51.09MF04. DOI

Barták J.; Valdés D.; Málek J.; Podzemná V.; Slang S.; Pálka K. Comparison of lateral crystal growth in selenium thin films and surface of bulk samples. Cryst. Growth Des. 2018, 18 (7), 4103–4110. 10.1021/acs.cgd.8b00505. DOI

Martinková S.; Včeláková M.; Vaculik D.; Pilný P.; Kurka M.; Barták J. Near-surface viscosity and complex crystal growth behavior in Se90Te10 thin films and bulk surface. Mater. Chem. Phys. 2024, 12901810.1016/j.matchemphys.2024.129018. DOI

Martinková S.; Valdés D.; Slang S.; Pálka K.; Barták J. Relationship between crystal growth and surface/volume mobilities in Se95Te5 bulk glasses and thin films. Acta Mater. 2021, 213, 11695310.1016/j.actamat.2021.116953. DOI

Barták J.; Málek J.; Bagchi K.; Ediger M. D.; Li Y.; Yu L. Surface mobility in amorphous selenium and comparison with organic molecular glasses. J. Chem. Phys. 2021, 154 (7), 07470310.1063/5.0041273. PubMed DOI

Hasebe M.; Musumeci D.; Powell C. T.; Cai T.; Gunn E.; Zhu L.; Yu L. Fast surface crystal growth on molecular glasses and its termination by the onset of fluidity. J. Phys. Chem. B 2014, 118 (27), 7638–7646. 10.1021/jp503110g. PubMed DOI

Ruan S.; Zhang W.; Sun Y.; Ediger M. D.; Yu L. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses. J. Chem. Phys. 2016, 145 (6), 06450310.1063/1.4960301. DOI

Huang C. B.; Ruan S. G.; Cai T.; Yu L. Fast surface diffusion and crystallization of amorphous griseofulvin. J. Phys. Chem. B 2017, 121 (40), 9463–9468. 10.1021/acs.jpcb.7b07319. PubMed DOI

Yu L. Surface mobility of molecular glasses and its importance in physical stability. Adv. Drug Delivery Rev. 2016, 100, 3–9. 10.1016/j.addr.2016.01.005. PubMed DOI

Cao C. R.; Lu Y. M.; Bai H. Y.; Wang W. H. High surface mobility and fast surface enhanced crystallization of metallic glass. Appl. Phys. Lett. 2015, 107 (14), 14160610.1063/1.4933036. DOI

Yuritsyn N. S.; Abyzov A. S.; Fokin V. M. Distinct crystal growth on the surface and in the interior of Na2O·2CaO·3SiO2 glass. J. Non-Cryst. Solids 2018, 498, 42–48. 10.1016/j.jnoncrysol.2018.06.008. DOI

Diaz-Mora N.; Zanotto E. D.; Hergt R.; Müller R. Surface crystallization and texture in cordierite glasses. J. Non-Cryst. Solids 2000, 273 (1), 81–93. 10.1016/S0022-3093(00)00147-2. DOI

Wittman E.; Zanotto E. D. Surface nucleation and growth in Anorthite glass. J. Non-Cryst. Solids 2000, 271 (1), 94–99. 10.1016/S0022-3093(00)00085-5. DOI

Fokin V. M.; Zanotto E. D. Surface and volume nucleation and growth in TiO2–cordierite glasses. J. Non-Cryst. Solids 1999, 246 (1), 115–127. 10.1016/S0022-3093(99)00007-1. DOI

Valdés D.; Martinková S.; Málek J.; Barták J. Crystal growth in Ge-Sb-Se glass and its relation to viscosity and surface diffusion. J. Non-Cryst. Solids 2021, 566, 12086510.1016/j.jnoncrysol.2021.120865. DOI

Barták J.; Valdés D.; Martinková S.; Shánelová J.; Koštál P. Competitive growth of Sb2Se3 and GeSe2 crystals in pseudobinary (GeSe2)x(Sb2Se3)1-x glass-forming materials. J. Non-Cryst. Solids 2023, 607, 12222910.1016/j.jnoncrysol.2023.122229. DOI

Málek J.; Podzemná V.; Shánelová J. Crystal growth kinetics in GeS2 glass and viscosity of supercooled liquid. J. Phys. Chem. B 2021, 125 (27), 7515–7526. 10.1021/acs.jpcb.1c03243. PubMed DOI

Martinková S.; Barták J.; Koštál P.; Málek J.; Segawa H. Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films. J. Phys. Chem. B 2017, 121 (33), 7978–7986. 10.1021/acs.jpcb.7b04429. PubMed DOI

Honcová P.; Koštál P.; Včeláková M.; Svoboda R.; Sádovská G.; Barták J.; Málek J. Structural interpretation of the viscous flow and relaxation kinetics in the As-Se and Ge-Se chalcogenide systems. J. Non-Cryst. Solids 2024, 643, 12318810.1016/j.jnoncrysol.2024.123188. DOI

Gueguen Y.; Rouxel T.; Gadaud P.; Bernard C.; Keryvin V.; Sangleboeuf J.-C. High-temperature elasticity and viscosity of GexSe1-x glasses in the transition range. Phys. Rev. B 2011, 84 (6), 06420110.1103/PhysRevB.84.064201. DOI

Nemilov S. V. Viscosity and structure of Se-Ge glasses. J. Appl. Chem. 1964, 37 (8), 1020–1024.

Wang S. Y.; Jain C.; Wondraczek L.; Wondraczek K.; Kobelke J.; Troles J.; Caillaud C.; Schmidt M. A. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry. Appl. Phys. Lett. 2015, 106 (20), 20190810.1063/1.4921708. DOI

Barták J.; Koštál P.; Valdés D.; Málek J.; Wieduwilt T.; Kobelke J.; Schmidt M. A. Analysis of viscosity data in As2Se3, Se and Se95Te5 chalcogenide melts using the pressure assisted melt filling technique. J. Non-Cryst. Solids 2019, 511, 100–108. 10.1016/j.jnoncrysol.2019.01.037. DOI

Koštál P.; Barták J.; Wieduwilt T.; Schmidt M. A.; Málek J. Viscosity and fragility of selected glass-forming chalcogenides. J. Non-Cryst. Solids 2022, 575, 12120510.1016/j.jnoncrysol.2021.121205. DOI

Koštál P.; Shánelová J.; Málek J. Viscosity of chalcogenide glass-formers. Int. Mater. Rev. 2020, 65 (2), 63–101. 10.1080/09506608.2018.1564545. DOI

Koštál P.; Hofírek T.; Málek J. Viscosity measurement by thermomechanical analyzer. J. Non-Cryst. Solids 2018, 480, 118–122. 10.1016/j.jnoncrysol.2017.05.027. DOI

Stephens R. B. Viscosity and structural relaxation rate of evaporated amorphous selenium. J. Appl. Phys. 1978, 49 (12), 5855–5864. 10.1063/1.324603. DOI

Molnar S.; Bohdan R.; Takats V.; Kaganovskii Y.; Kokenyesi S. Viscosity of As20Se80 amorphous chalcogenide films. Mater. Lett. 2018, 228, 384–386. 10.1016/j.matlet.2018.06.065. DOI

Mauro J. C.; Yue Y. Z.; Ellison A. J.; Gupta P. K.; Allan D. C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (47), 19780–19784. 10.1073/pnas.0911705106. PubMed DOI PMC

Angell C. A. Formation of glasses from liquids and biopolymers. Science 1995, 267 (5206), 1924–1935. 10.1126/science.267.5206.1924. PubMed DOI

Vogel H. Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z 1921, 22, 645–646.

Fulcher G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8 (6), 339–355. 10.1111/j.1151-2916.1925.tb16731.x. DOI

Tammann G.; Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156 (1), 245–257. 10.1002/zaac.19261560121. DOI

Shánelová J.; Málek J.; Alcalá M. D.; Criado J. M. Kinetics of crystal growth of germanium disulfide in Ge0.38S0.62 chalcogenide glass. J. Non-Cryst. Solids 2005, 351 (6–7), 557–567. 10.1016/j.jnoncrysol.2005.01.042. DOI

Azoulay R.; Thibierge H.; Brenac A. Devitrification characterisctics of GexSe1-x glasses. J. Non-Cryst. Solids 1975, 18 (1), 33–53. 10.1016/0022-3093(75)90006-X. DOI

Stolen S.; Johnsen H. B.; Boe C. S.; Grande T.; Karlsen O. B. Stable and metastable phase equilibria in the GeSe2-Se system. J. Phase Equilib. 1999, 20 (1), 17–28. 10.1361/105497199770335901. DOI

Fjellvag H.; Kongshaug K. O.; Stolen S. Crystal structure of Ge4Se9: a new germanium selenide with Se2 pairs breaking the edge-sharing GeSe4 tetrahedra in GeSe2. J. Chem. Soc., Dalton Trans. 2001, (7), 1043–1045. 10.1039/b009794m. DOI

Dembovskii S.; Vinogradova G.; Pashinkin A. Crystallization of glasses of the Ge-Se system. Russ. J. Inorg. Chem. 1965, 10, 903–905.

Ipser H.; Gambino M.; Schuster W. The germanium-seleium phase diagram. Monatsh. Chem. Chem. Mon. 1982, 113 (4), 389–398. 10.1007/BF00799914. DOI

Gokhale A. B.; Abbaschian R. The Ge-Se (Germanium-Selenium) system. Bull. Alloy Phase Diagrams 1990, 11 (3), 257–263. 10.1007/BF03029295. DOI

Zeidler A.; Salmon P. S.; Whittaker D. A. J.; Pizzey K. J.; Hannon A. C. Topological ordering and viscosity in the glass- forming Ge-Se system: The search for a structural or dynamical signature of the intermediate phase. Fornt. Mater. 2017, 4, 3210.3389/fmats.2017.00032. DOI

Esquerre M.; Carballes J. C.; Audiere J. P.; Mazieres C. Crystallization of amorphous (bulk and thin-films) GexSe1-x (0 < x < 0.20) alloys. J. Mater. Sci. 1978, 13 (6), 1217–1223. 10.1007/BF00544727. DOI

Jackson K. A.; Uhlmann D. R.; Hunt J. D. On the nature of crystal growth from the melt. J. Cryst. Growth 1967, 1, 1–36. 10.1016/0022-0248(67)90003-6. DOI

Uhlmann D. R.Crystal Growth in Glass Forming System. In Advances in Nucleation and Crystallization in Glasses; Hench L. L.; Freiman S. W., Eds.; American Ceramics Society, 1972; pp 91–115.

Barták J.; Martinková S.; Málek J. Crystal growth kinetics in Se–Te bulk glasses. Cryst. Growth Des. 2015, 15 (9), 4287–4295. 10.1021/acs.cgd.5b00598. DOI

Málek J.; Barták J.; Shánelová J. Spherulitic crystal growth velocity in selenium supercooled liquid. Cryst. Growth Des. 2016, 16 (10), 5811–5821. 10.1021/acs.cgd.6b00897. DOI

Málek J.; Shánelová J.; Martinková S.; Pilny P.; Kostál P. Crystal growth velocity in As2Se3 supercooled liquid. Cryst. Growth Des. 2017, 17 (9), 4990–4999. 10.1021/acs.cgd.7b01001. DOI

Turnbull D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 1950, 21, 1022–1028. 10.1063/1.1699435. DOI

Ediger M. D.; Harrowell P.; Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008, 128 (3), 03470910.1063/1.2815325. PubMed DOI

Gutzow I. S.; Schmelzer J. W. P.. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization; Springer Berlin Heidelberg, 2013.

Slezov V. V.Kinetics of First-Order Phase Transformation; Wiley-VCH Verlag GmbH&Co. KGaA, 2009.

Stephens R. B. Stress-enhanced crystallization in amorphous selenium films. J. Appl. Phys. 1980, 51 (12), 6197–6201. 10.1063/1.327654. DOI

Liu Y.; Wu J.; Yang G.; Zhao T.; Shi S. Predicting the onset temperature (Tg) of GexSe1–x glass transition: a feature selection based two-stage support vector regression method. Sci. Bull. 2019, 64 (16), 1195–1203. 10.1016/j.scib.2019.06.026. PubMed DOI

Podzemná V.; Barták J.; Málek J. Crystal growth kinetics in GeS2 amorphous thin films. J. Therm. Anal. Calorim. 2014, 118 (2), 775–781. 10.1007/s10973-014-3764-9. DOI

Schmelzer J. W. P.; Abyzov A. S.; Fokin V. M.; Schick C.; Zanotto E. D. Crystallization in glass-forming liquids: Effects of decoupling of diffusion and viscosity on crystal growth. J. Non-Cryst. Solids 2015, 429, 45–53. 10.1016/j.jnoncrysol.2015.08.027. DOI

Nascimento M. L. F.; Zanotto E. D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?. J. Chem. Phys. 2010, 133 (17), 17470110.1063/1.3490793. PubMed DOI

Ngai K. L.; Magill J. H.; Plazek D. J. Flow, diffusion and crystallization of supercooled liquids: Revisited. J. Chem. Phys. 2000, 112 (4), 1887–1892. 10.1063/1.480752. DOI

Nascimento M. L. F.; Fokin V. M.; Zanotto E. D.; Abyzov A. S. Dynamic processes in a silicate liquid from above melting to below the glass transition. J. Chem. Phys. 2011, 135 (19), 19470310.1063/1.3656696. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...