Beyond the Surface: Interconnection of Viscosity, Crystal Growth, and Diffusion in Ge25Se75 Glass-Former
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39370932
PubMed Central
PMC11492241
DOI
10.1021/acs.jpcb.4c04268
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The knowledge of viscosity behavior, crystal growth phenomenon, and diffusion is important in producing, processing, and practical applications of amorphous solids prepared in different forms (bulk glasses and thin films). This work uses microscopy to study volume crystal growth in Ge25Se75 bulk glasses and thermally evaporated thin films. The collected growth data measured over a wide temperature range show a significant increase in crystal growth rates in thin films. The crystal growth is analyzed using near-surface viscosities obtained in bulks and thin films using nanoindentation and melt viscosities measured by a pressure-assisted melt filling technique. The crystal growth analysis provides information on the size of the structural units incorporated into the growing crystals, essential for estimating the diffusion coefficients and explaining the difference in crystal growth rates in bulk and thin films. The crystal growth analysis also reveals the decoupling between diffusion and viscous flow described by the Stokes-Einstein-Eyring relation. Moreover, to the authors' best knowledge, the manuscript provides the first evaluation estimation of the effective self-diffusion coefficient directly from growth data in chalcogenide glass-formers. The present data show a similar relation between diffusion coefficients (D) and crystal growth rates (u): u ≈ D0.87, which is found in several molecular glasses.
Zobrazit více v PubMed
Zhang X.-H.; Guimond Y.; Bellec Y. Production of Complex Chalcogenide Glass Optics by Molding for Thermal Imaging. J. Non-Cryst. Solids 2003, 326, 519–523. 10.1016/S0022-3093(03)00464-2. DOI
Wuttig M.; Yamada N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6 (12), 1004.10.1038/nmat2077. PubMed DOI
Fantini P. Phase change memory applications: the history, the present and the future. J. Phys. D: Appl. Phys. 2020, 53 (28), 28300210.1088/1361-6463/ab83ba. DOI
Xu P.; Zheng J.; Doylend J. K.; Majumdar A. Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. ACS Photonics 2019, 6 (2), 553–557. 10.1021/acsphotonics.8b01628. DOI
Tittl A.; Michel A.-K. U.; Schäferling M.; Yin X.; Gholipour B.; Cui L.; Wuttig M.; Taubner T.; Neubrech F.; Giessen H. A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability. Adv. Mater. 2015, 27 (31), 4597–4603. 10.1002/adma.201502023. PubMed DOI
Michel A.-K. U.; Chigrin D. N.; Maß T. W. W.; Schönauer K.; Salinga M.; Wuttig M.; Taubner T. Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning. Nano Lett. 2013, 13 (8), 3470–3475. 10.1021/nl4006194. PubMed DOI
Wang Q.; Rogers E. T. F.; Gholipour B.; Wang C.-M.; Yuan G.; Teng J.; Zheludev N. I. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 2016, 10 (1), 60–65. 10.1038/nphoton.2015.247. DOI
Adhikari S.; Orrit M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS Photonics 2022, 9 (11), 3486–3497. 10.1021/acsphotonics.2c01205. PubMed DOI PMC
Liu S.-C.; Yang Y.; Li Z.; Xue D.-J.; Hu J.-S. GeSe thin-film solar cells. Mater. Chem. Front. 2020, 4 (3), 775–787. 10.1039/C9QM00727J. DOI
Xue D.-J.; Liu S.-C.; Dai C.-M.; Chen S.; He C.; Zhao L.; Hu J.-S.; Wan L.-J. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J. Am. Chem. Soc. 2017, 139 (2), 958–965. 10.1021/jacs.6b11705. PubMed DOI
Zi W.; Mu F.; Lu X.; Cao Y.; Xie Y.; Fang L.; Cheng N.; Zhao Z.; Xiao Z. Post-annealing treatment of a-GeSe thin films for photovoltaic application. Sol. Energy 2020, 199, 837–843. 10.1016/j.solener.2020.02.086. DOI
Wang K.; Huang D.; Yu L.; Feng K.; Li L.; Harada T.; Ikeda S.; Jiang F. Promising GeSe nanosheet-based thin-film photocathode for efficient and stable overall solar water splitting. ACS Catal. 2019, 9 (4), 3090–3097. 10.1021/acscatal.9b00035. DOI
Zhou Y.; Zhao M.; Chen Z. W.; Shi X. M.; Jiang Q. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys. Chem. Chem. Phys. 2018, 20 (48), 30290–30296. 10.1039/C8CP05484C. PubMed DOI
Nichol T.; Teteris J.; Reinfelde M.; Mitkova M. Dual effect of light irradiation for surface relief gratings formation in Se-rich Ge-Se thin films. Adv. Mater. Lett. 2019, 10 (12), 868–873. 10.5185/amlett.2019.0012. DOI
Guo P.; Li C.; Huang W.; Zhang W.; Zhang P.; Xu T. Thermal annealing of Ge-Se thin films and its influence on waveguide performance. Opt. Mater. Express 2020, 10 (1), 129–137. 10.1364/OME.10.000129. DOI
Wang Z.; Li M.; Gao X. P. A.; Zhang Z. Broadband photodetection of GeSe films of vertically grown nanoflakes. ACS Appl. Electron. Mater. 2019, 1 (11), 2236–2243. 10.1021/acsaelm.9b00442. DOI
Charpentier F.; Bureau B.; Troles J.; Boussard-Plédel C.; Michel-Le Pierrès K.; Smektala F.; Adam J.-L. Infrared monitoring of underground CO2 storage using chalcogenide glass fibers. Opt. Mater. 2009, 31 (3), 496–500. 10.1016/j.optmat.2007.10.014. DOI
Ailavajhala M. S.; Nichol T.; Gonzalez-Velo Y.; Poweleit C. D.; Barnaby H. J.; Kozicki M. N.; Butt D. P.; Mitkova M. Thin Ge–Se films as a sensing material for radiation doses. Phys. Status Solidi (B) 2014, 251 (7), 1347–1353. 10.1002/pssb.201350188. DOI
Simon A.-A. A.; Badamchi B.; Subbaraman H.; Sakaguchi Y.; Mitkova M. Phase change in Ge–Se chalcogenide glasses and its implications on optical temperature-sensing devices. J. Mater. Sci.: Mater. Electron. 2020, 31 (14), 11211–11226. 10.1007/s10854-020-03669-0. DOI
Badamchi B.; Simon A.-A. A.; Mitkova M.; Subbaraman H. Chalcogenide glass-capped fiber-optic sensor for real-time temperature monitoring in extreme environments. Sensors 2021, 21 (5), 161610.3390/s21051616. PubMed DOI PMC
Simon A. A.; Badamchi B.; Subbaraman H.; Sakaguchi Y.; Jones L.; Kunold H.; van Rooyen I. J.; Mitkova M. Introduction of chalcogenide glasses to additive manufacturing: Nanoparticle ink formulation, inkjet printing, and phase change devices fabrication. Sci. Rep. 2021, 11 (1), 1431110.1038/s41598-021-93515-y. PubMed DOI PMC
Liu G.; Wu L.; Chen X.; Li T.; Wang Y.; Guo T.; Ma Z.; Zhu M.; Song S.; Song Z. The investigations of characteristics of GeSe thin films and selector devices for phase change memory. J. Alloys Compd. 2019, 792, 510–518. 10.1016/j.jallcom.2019.04.041. DOI
Qashou S. I.; Ali A. M.; Somaily H. H.; Algarn H.; Hafiz M. M.; Rashad M. Linear and nonlinear optical investigations of Ge25Se75 thin films at different annealing temperatures. Phys. B 2022, 625, 41335110.1016/j.physb.2021.413351. DOI
Nam K.-H.; Kim J.-H.; Chung H.-B. Electrical Characteristics of Ge25Se75 Thin Films by Ag Ion Doping Methods for Resistance Random Access Memory Applications. Jpn. J. Appl. Phys. 2012, 51 (9S2), 09MF0410.1143/JJAP.51.09MF04. DOI
Barták J.; Valdés D.; Málek J.; Podzemná V.; Slang S.; Pálka K. Comparison of lateral crystal growth in selenium thin films and surface of bulk samples. Cryst. Growth Des. 2018, 18 (7), 4103–4110. 10.1021/acs.cgd.8b00505. DOI
Martinková S.; Včeláková M.; Vaculik D.; Pilný P.; Kurka M.; Barták J. Near-surface viscosity and complex crystal growth behavior in Se90Te10 thin films and bulk surface. Mater. Chem. Phys. 2024, 12901810.1016/j.matchemphys.2024.129018. DOI
Martinková S.; Valdés D.; Slang S.; Pálka K.; Barták J. Relationship between crystal growth and surface/volume mobilities in Se95Te5 bulk glasses and thin films. Acta Mater. 2021, 213, 11695310.1016/j.actamat.2021.116953. DOI
Barták J.; Málek J.; Bagchi K.; Ediger M. D.; Li Y.; Yu L. Surface mobility in amorphous selenium and comparison with organic molecular glasses. J. Chem. Phys. 2021, 154 (7), 07470310.1063/5.0041273. PubMed DOI
Hasebe M.; Musumeci D.; Powell C. T.; Cai T.; Gunn E.; Zhu L.; Yu L. Fast surface crystal growth on molecular glasses and its termination by the onset of fluidity. J. Phys. Chem. B 2014, 118 (27), 7638–7646. 10.1021/jp503110g. PubMed DOI
Ruan S.; Zhang W.; Sun Y.; Ediger M. D.; Yu L. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses. J. Chem. Phys. 2016, 145 (6), 06450310.1063/1.4960301. DOI
Huang C. B.; Ruan S. G.; Cai T.; Yu L. Fast surface diffusion and crystallization of amorphous griseofulvin. J. Phys. Chem. B 2017, 121 (40), 9463–9468. 10.1021/acs.jpcb.7b07319. PubMed DOI
Yu L. Surface mobility of molecular glasses and its importance in physical stability. Adv. Drug Delivery Rev. 2016, 100, 3–9. 10.1016/j.addr.2016.01.005. PubMed DOI
Cao C. R.; Lu Y. M.; Bai H. Y.; Wang W. H. High surface mobility and fast surface enhanced crystallization of metallic glass. Appl. Phys. Lett. 2015, 107 (14), 14160610.1063/1.4933036. DOI
Yuritsyn N. S.; Abyzov A. S.; Fokin V. M. Distinct crystal growth on the surface and in the interior of Na2O·2CaO·3SiO2 glass. J. Non-Cryst. Solids 2018, 498, 42–48. 10.1016/j.jnoncrysol.2018.06.008. DOI
Diaz-Mora N.; Zanotto E. D.; Hergt R.; Müller R. Surface crystallization and texture in cordierite glasses. J. Non-Cryst. Solids 2000, 273 (1), 81–93. 10.1016/S0022-3093(00)00147-2. DOI
Wittman E.; Zanotto E. D. Surface nucleation and growth in Anorthite glass. J. Non-Cryst. Solids 2000, 271 (1), 94–99. 10.1016/S0022-3093(00)00085-5. DOI
Fokin V. M.; Zanotto E. D. Surface and volume nucleation and growth in TiO2–cordierite glasses. J. Non-Cryst. Solids 1999, 246 (1), 115–127. 10.1016/S0022-3093(99)00007-1. DOI
Valdés D.; Martinková S.; Málek J.; Barták J. Crystal growth in Ge-Sb-Se glass and its relation to viscosity and surface diffusion. J. Non-Cryst. Solids 2021, 566, 12086510.1016/j.jnoncrysol.2021.120865. DOI
Barták J.; Valdés D.; Martinková S.; Shánelová J.; Koštál P. Competitive growth of Sb2Se3 and GeSe2 crystals in pseudobinary (GeSe2)x(Sb2Se3)1-x glass-forming materials. J. Non-Cryst. Solids 2023, 607, 12222910.1016/j.jnoncrysol.2023.122229. DOI
Málek J.; Podzemná V.; Shánelová J. Crystal growth kinetics in GeS2 glass and viscosity of supercooled liquid. J. Phys. Chem. B 2021, 125 (27), 7515–7526. 10.1021/acs.jpcb.1c03243. PubMed DOI
Martinková S.; Barták J.; Koštál P.; Málek J.; Segawa H. Extended study on crystal growth and viscosity in Ge-Sb-Se bulk glasses and thin films. J. Phys. Chem. B 2017, 121 (33), 7978–7986. 10.1021/acs.jpcb.7b04429. PubMed DOI
Honcová P.; Koštál P.; Včeláková M.; Svoboda R.; Sádovská G.; Barták J.; Málek J. Structural interpretation of the viscous flow and relaxation kinetics in the As-Se and Ge-Se chalcogenide systems. J. Non-Cryst. Solids 2024, 643, 12318810.1016/j.jnoncrysol.2024.123188. DOI
Gueguen Y.; Rouxel T.; Gadaud P.; Bernard C.; Keryvin V.; Sangleboeuf J.-C. High-temperature elasticity and viscosity of GexSe1-x glasses in the transition range. Phys. Rev. B 2011, 84 (6), 06420110.1103/PhysRevB.84.064201. DOI
Nemilov S. V. Viscosity and structure of Se-Ge glasses. J. Appl. Chem. 1964, 37 (8), 1020–1024.
Wang S. Y.; Jain C.; Wondraczek L.; Wondraczek K.; Kobelke J.; Troles J.; Caillaud C.; Schmidt M. A. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry. Appl. Phys. Lett. 2015, 106 (20), 20190810.1063/1.4921708. DOI
Barták J.; Koštál P.; Valdés D.; Málek J.; Wieduwilt T.; Kobelke J.; Schmidt M. A. Analysis of viscosity data in As2Se3, Se and Se95Te5 chalcogenide melts using the pressure assisted melt filling technique. J. Non-Cryst. Solids 2019, 511, 100–108. 10.1016/j.jnoncrysol.2019.01.037. DOI
Koštál P.; Barták J.; Wieduwilt T.; Schmidt M. A.; Málek J. Viscosity and fragility of selected glass-forming chalcogenides. J. Non-Cryst. Solids 2022, 575, 12120510.1016/j.jnoncrysol.2021.121205. DOI
Koštál P.; Shánelová J.; Málek J. Viscosity of chalcogenide glass-formers. Int. Mater. Rev. 2020, 65 (2), 63–101. 10.1080/09506608.2018.1564545. DOI
Koštál P.; Hofírek T.; Málek J. Viscosity measurement by thermomechanical analyzer. J. Non-Cryst. Solids 2018, 480, 118–122. 10.1016/j.jnoncrysol.2017.05.027. DOI
Stephens R. B. Viscosity and structural relaxation rate of evaporated amorphous selenium. J. Appl. Phys. 1978, 49 (12), 5855–5864. 10.1063/1.324603. DOI
Molnar S.; Bohdan R.; Takats V.; Kaganovskii Y.; Kokenyesi S. Viscosity of As20Se80 amorphous chalcogenide films. Mater. Lett. 2018, 228, 384–386. 10.1016/j.matlet.2018.06.065. DOI
Mauro J. C.; Yue Y. Z.; Ellison A. J.; Gupta P. K.; Allan D. C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (47), 19780–19784. 10.1073/pnas.0911705106. PubMed DOI PMC
Angell C. A. Formation of glasses from liquids and biopolymers. Science 1995, 267 (5206), 1924–1935. 10.1126/science.267.5206.1924. PubMed DOI
Vogel H. Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z 1921, 22, 645–646.
Fulcher G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8 (6), 339–355. 10.1111/j.1151-2916.1925.tb16731.x. DOI
Tammann G.; Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156 (1), 245–257. 10.1002/zaac.19261560121. DOI
Shánelová J.; Málek J.; Alcalá M. D.; Criado J. M. Kinetics of crystal growth of germanium disulfide in Ge0.38S0.62 chalcogenide glass. J. Non-Cryst. Solids 2005, 351 (6–7), 557–567. 10.1016/j.jnoncrysol.2005.01.042. DOI
Azoulay R.; Thibierge H.; Brenac A. Devitrification characterisctics of GexSe1-x glasses. J. Non-Cryst. Solids 1975, 18 (1), 33–53. 10.1016/0022-3093(75)90006-X. DOI
Stolen S.; Johnsen H. B.; Boe C. S.; Grande T.; Karlsen O. B. Stable and metastable phase equilibria in the GeSe2-Se system. J. Phase Equilib. 1999, 20 (1), 17–28. 10.1361/105497199770335901. DOI
Fjellvag H.; Kongshaug K. O.; Stolen S. Crystal structure of Ge4Se9: a new germanium selenide with Se2 pairs breaking the edge-sharing GeSe4 tetrahedra in GeSe2. J. Chem. Soc., Dalton Trans. 2001, (7), 1043–1045. 10.1039/b009794m. DOI
Dembovskii S.; Vinogradova G.; Pashinkin A. Crystallization of glasses of the Ge-Se system. Russ. J. Inorg. Chem. 1965, 10, 903–905.
Ipser H.; Gambino M.; Schuster W. The germanium-seleium phase diagram. Monatsh. Chem. Chem. Mon. 1982, 113 (4), 389–398. 10.1007/BF00799914. DOI
Gokhale A. B.; Abbaschian R. The Ge-Se (Germanium-Selenium) system. Bull. Alloy Phase Diagrams 1990, 11 (3), 257–263. 10.1007/BF03029295. DOI
Zeidler A.; Salmon P. S.; Whittaker D. A. J.; Pizzey K. J.; Hannon A. C. Topological ordering and viscosity in the glass- forming Ge-Se system: The search for a structural or dynamical signature of the intermediate phase. Fornt. Mater. 2017, 4, 3210.3389/fmats.2017.00032. DOI
Esquerre M.; Carballes J. C.; Audiere J. P.; Mazieres C. Crystallization of amorphous (bulk and thin-films) GexSe1-x (0 < x < 0.20) alloys. J. Mater. Sci. 1978, 13 (6), 1217–1223. 10.1007/BF00544727. DOI
Jackson K. A.; Uhlmann D. R.; Hunt J. D. On the nature of crystal growth from the melt. J. Cryst. Growth 1967, 1, 1–36. 10.1016/0022-0248(67)90003-6. DOI
Uhlmann D. R.Crystal Growth in Glass Forming System. In Advances in Nucleation and Crystallization in Glasses; Hench L. L.; Freiman S. W., Eds.; American Ceramics Society, 1972; pp 91–115.
Barták J.; Martinková S.; Málek J. Crystal growth kinetics in Se–Te bulk glasses. Cryst. Growth Des. 2015, 15 (9), 4287–4295. 10.1021/acs.cgd.5b00598. DOI
Málek J.; Barták J.; Shánelová J. Spherulitic crystal growth velocity in selenium supercooled liquid. Cryst. Growth Des. 2016, 16 (10), 5811–5821. 10.1021/acs.cgd.6b00897. DOI
Málek J.; Shánelová J.; Martinková S.; Pilny P.; Kostál P. Crystal growth velocity in As2Se3 supercooled liquid. Cryst. Growth Des. 2017, 17 (9), 4990–4999. 10.1021/acs.cgd.7b01001. DOI
Turnbull D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 1950, 21, 1022–1028. 10.1063/1.1699435. DOI
Ediger M. D.; Harrowell P.; Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008, 128 (3), 03470910.1063/1.2815325. PubMed DOI
Gutzow I. S.; Schmelzer J. W. P.. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization; Springer Berlin Heidelberg, 2013.
Slezov V. V.Kinetics of First-Order Phase Transformation; Wiley-VCH Verlag GmbH&Co. KGaA, 2009.
Stephens R. B. Stress-enhanced crystallization in amorphous selenium films. J. Appl. Phys. 1980, 51 (12), 6197–6201. 10.1063/1.327654. DOI
Liu Y.; Wu J.; Yang G.; Zhao T.; Shi S. Predicting the onset temperature (Tg) of GexSe1–x glass transition: a feature selection based two-stage support vector regression method. Sci. Bull. 2019, 64 (16), 1195–1203. 10.1016/j.scib.2019.06.026. PubMed DOI
Podzemná V.; Barták J.; Málek J. Crystal growth kinetics in GeS2 amorphous thin films. J. Therm. Anal. Calorim. 2014, 118 (2), 775–781. 10.1007/s10973-014-3764-9. DOI
Schmelzer J. W. P.; Abyzov A. S.; Fokin V. M.; Schick C.; Zanotto E. D. Crystallization in glass-forming liquids: Effects of decoupling of diffusion and viscosity on crystal growth. J. Non-Cryst. Solids 2015, 429, 45–53. 10.1016/j.jnoncrysol.2015.08.027. DOI
Nascimento M. L. F.; Zanotto E. D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?. J. Chem. Phys. 2010, 133 (17), 17470110.1063/1.3490793. PubMed DOI
Ngai K. L.; Magill J. H.; Plazek D. J. Flow, diffusion and crystallization of supercooled liquids: Revisited. J. Chem. Phys. 2000, 112 (4), 1887–1892. 10.1063/1.480752. DOI
Nascimento M. L. F.; Fokin V. M.; Zanotto E. D.; Abyzov A. S. Dynamic processes in a silicate liquid from above melting to below the glass transition. J. Chem. Phys. 2011, 135 (19), 19470310.1063/1.3656696. PubMed DOI