Investigating Exposure and Hazards of Micro- and Nanoplastics During Pregnancy and Early Life (AURORA Project): Protocol for an Interdisciplinary Study
Jazyk angličtina Země Kanada Médium electronic
Typ dokumentu časopisecké články
PubMed
39378424
PubMed Central
PMC11496927
DOI
10.2196/63176
PII: v13i1e63176
Knihovny.cz E-zdroje
- Klíčová slova
- epidemiology, microplastics, placenta, pregnancy, risk assessment, toxicology,
- MeSH
- dospělí MeSH
- hodnocení rizik MeSH
- lidé MeSH
- matka - expozice noxám škodlivé účinky MeSH
- mikroplasty * škodlivé účinky toxicita MeSH
- nanočástice škodlivé účinky toxicita MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikroplasty * MeSH
BACKGROUND: Micro- and nanoplastics (MNPs) are emerging pollutants of concern with ubiquitous presence in global ecosystems. MNPs pose potential implications for human health; however, the health impacts of MNP exposures are not yet understood. Recent evidence suggests that MNPs can cross the placental barrier, underlying the urgent need to understand their impact on reproductive health and development. OBJECTIVE: The Actionable eUropean ROadmap for early-life health Risk Assessment of micro- and nanoplastics (AURORA) project will investigate MNP exposures and their biological and health effects during pregnancy and early life, which are critical periods due to heightened vulnerability to environmental stressors. The AURORA project will enhance exposure assessment capabilities for measuring MNPs, MNP-associated chemicals, and plastic additives in human tissues, including placenta and blood. METHODS: In this interdisciplinary project, we will advance methods for in-depth characterization and scalable chemical analytical strategies, enabling high-resolution and large-scale toxicological, exposure assessment, and epidemiological studies. The AURORA project performs observational studies to investigate determinants and health impacts of MNPs by including 800 mother-child pairs from 2 existing birth cohorts and 110 women of reproductive age from a newly established cohort. This will be complemented by toxicological studies using a tiered-testing approach and epidemiological investigations to evaluate associations between maternal and prenatal MNP exposures and health perturbations, such as placental function, immune-inflammatory responses, oxidative stress, accelerated aging, endocrine disruption, and child growth and development. The ultimate goal of the AURORA project is to create an MNP risk assessment framework and identify the remaining knowledge gaps and priorities needed to comprehensively assess the impact of MNPs on early-life health. RESULTS: In the first 3 years of this 5-year project (2021-2026), progress was made toward all objectives. This includes completion of recruitment and data collection for new and existing cohorts, development of analytical methodological protocols, and initiation of the toxicological tiered assessments. As of September 2024, data analysis is ongoing and results are expected to be published starting in 2025. CONCLUSIONS: As plastic pollution increases globally, it is imperative to understand the impact of MNPs on human health, particularly during vulnerable developmental stages such as early life. The contributions of the AURORA project will inform future risk assessment. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/63176.
Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
Department of Public Health and Primary Care Leuven University Leuven Belgium
Division of Toxicology Institute for Risk Assessment Sciences Utrecht University Utrecht Netherlands
Food Packaging Forum Foundation Zurich Switzerland
Institute of Occupational Medicine Edinburgh United Kingdom
RECETOX Faculty of Science Masaryk University Brno Czech Republic
School of Pharmacy University of Eastern Finland Kuopio Finland
Spanish Consortium for Research on Epidemiology and Public Health Madrid Spain
Zobrazit více v PubMed
Plastics Europe. Plastics - The Facts 2023. 2023. [2024-08-14]. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/
Lau WWY, Shiran Y, Bailey RM, Cook E, Stuchtey MR, Koskella J, Velis CA, Godfrey L, Boucher J, Murphy MB, Thompson RC, Jankowska E, Castillo Castillo A, Pilditch TD, Dixon B, Koerselman L, Kosior E, Favoino E, Gutberlet J, Baulch S, Atreya ME, Fischer D, He KK, Petit MM, Sumaila UR, Neil E, Bernhofen MV, Lawrence K, Palardy JE. Evaluating scenarios toward zero plastic pollution. Science. 2020;369(6510):1455–1461. doi: 10.1126/science.aba9475. science.aba9475 PubMed DOI
MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373(6550):61–65. doi: 10.1126/science.abg5433.373/6550/61 PubMed DOI
Geyer R. Production, use, and fate of synthetic polymers. In: Letcher TM, editor. Plastic Waste and Recycling. California: Academic Press; 2020. pp. 13–32.
DeWit W, Burns ET, Guinchard JC, Ahmed N. Plastics: The Costs to Society, the Environment and the Economy. Gland, Switzerland: World Wide Fund for Nature; 2021. [2024-08-14]. https://media.wwf.no/assets/attachments/Plastics-the-cost-to-so ciety-the-environment-and-the-economy-WWF-report.pdf .
Arp HPH, Kühnel D, Rummel C, MacLeod M, Potthoff A, Reichelt S, Rojo-Nieto E, Schmitt-Jansen M, Sonnenberg J, Toorman E, Jahnke A. Weathering plastics as a planetary boundary threat: exposure, fate, and hazards. Environ Sci Technol. 2021;55(11):7246–7255. doi: 10.1021/acs.est.1c01512. doi: 10.1021/acs.est.1c01512. PubMed DOI
Sewwandi M, Wijesekara H, Rajapaksha AU, Soysa S, Vithanage M. Microplastics and plastics-associated contaminants in food and beverages; global trends, concentrations, and human exposure. Environmental Pollution. 2023;317:120747. doi: 10.1016/j.envpol.2022.120747.S0269-7491(22)01961-3 PubMed DOI
Zarus GM, Muianga C, Hunter CM, Pappas RS. A review of data for quantifying human exposures to micro and nanoplastics and potential health risks. Science of the Total Environment. 2021;756:144010. doi: 10.1016/j.scitotenv.2020.144010. S0048-9697(20)37541-0 PubMed DOI PMC
Vethaak AD, Legler J. Microplastics and human health. Science. 2021;371(6530):672–674. doi: 10.1126/science.abe5041.371/6530/672 PubMed DOI
World Health Organization . World Health Organization. Geneva: World Health Organization; 2022. Sep, [2024-08-14]. Dietary and inhalation exposure to nano- and microplastic particles and potential implications for human health. https://www.who.int/publications/i/item/9789240054608 .
Brachner A, Fragouli D, Duarte IF, Farias PMA, Dembski S, Ghosh M, Barisic I, Zdzieblo D, Vanoirbeek J, Schwabl P, Neuhaus W. Assessment of human health risks posed by nano-and microplastics is currently not feasible. Int J Environ Res Public Health. 2020;17(23):8832. doi: 10.3390/ijerph17238832. ijerph17238832 PubMed DOI PMC
Noventa S, Boyles MSP, Seifert A, Belluco S, Jiménez AS, Johnston HJ, Tran L, Fernandes TF, Mughini-Gras L, Orsini M, Corami F, Castro K, Mutinelli F, Boldrin M, Puntes V, Sotoudeh M, Mascarello G, Tiozzo B, McLean P, Ronchi F, Booth AM, Koelmans AA, Losasso C. Paradigms to assess the human health risks of nano- and microplastics. Micropl & Nanopl. 2021;1(1):9. doi: 10.1186/s43591-021-00011-1. DOI
Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, Leslie HA, Maffini M, Slunge D, Trasande L, Warhurst AM, Muncke J. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651(Pt 2):3253–3268. doi: 10.1016/j.scitotenv.2018.10.015. S0048-9697(18)33882-8 PubMed DOI
Wiesinger H, Wang Z, Hellweg S. Deep dive into plastic monomers, additives, and processing aids. Environ Sci Technol. 2021;55(13):9339–9351. doi: 10.1021/acs.est.1c00976. doi: 10.1021/acs.est.1c00976. PubMed DOI
Shi X, Chen Z, Wei W, Chen J, Ni BJ. Toxicity of micro/nanoplastics in the environment: roles of plastisphere and eco-corona. Soil & Environmental Health. 2023;1(1):100002. doi: 10.1016/j.seh.2023.100002. DOI
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: a human-centric insight. Sci Total Environ. 2024;916:170262. doi: 10.1016/j.scitotenv.2024.170262.S0048-9697(24)00397-8 PubMed DOI
Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. S0160-4120(22)00125-8 PubMed DOI
Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S, D'Amore E, Rinaldo D, Matta M, Giorgini E. Plasticenta: first evidence of microplastics in human placenta. Environ Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274. S0160-4120(20)32229-7 PubMed DOI
Huber MJ, Ivleva NP, Booth AM, Beer I, Bianchi I, Drexel R, Geiss O, Mehn D, Meier F, Molska A, Parot J, Sørensen L, Vella G, Prina-Mello A, Vogel R, Caputo F. Physicochemical characterization and quantification of nanoplastics: applicability, limitations and complementarity of batch and fractionation methods. Anal Bioanal Chem. 2023;415(15):3007–3031. doi: 10.1007/s00216-023-04689-5. 10.1007/s00216-023-04689-5 PubMed DOI PMC
Mandemaker LDB, Meirer F. Spectro-microscopic techniques for studying nanoplastics in the environment and in organisms. Angew Chem Int Ed Engl. 2023;62(2):e202210494. doi: 10.1002/anie.202210494. PubMed DOI PMC
Ivleva NP. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem Rev. 2021;121(19):11886–11936. doi: 10.1021/acs.chemrev.1c00178. doi: 10.1021/acs.chemrev.1c00178. PubMed DOI
Liu S, Guo J, Liu X, Yang R, Wang H, Sun Y, Chen B, Dong R. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: a pilot prospective study. Sci Total Environ. 2023;854:158699. doi: 10.1016/j.scitotenv.2022.158699.S0048-9697(22)05798-9 PubMed DOI
Provencher JF, Covernton GA, Moore RC, Horn DA, Conkle JL, Lusher AL. Proceed with caution: the need to raise the publication bar for microplastics research. Sci Total Environ. 2020;748:141426. doi: 10.1016/j.scitotenv.2020.141426.S0048-9697(20)34955-X PubMed DOI
Lite C, Raja GL, Juliet M, Sridhar VV, Subhashree KD, Kumar P, Chakraborty P, Arockiaraj J. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects. Environ Toxicol Pharmacol. 2022;89:103779. doi: 10.1016/j.etap.2021.103779.S1382-6689(21)00197-6 PubMed DOI
Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–417. doi: 10.1111/j.1365-2796.2007.01809.x. JIM1809 PubMed DOI
Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114(5-6):397–407. doi: 10.1016/j.thromres.2004.06.038.S0049-3848(04)00342-1 PubMed DOI
Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, Van Eyken P, Plusquin M, Roeffaers MBJ, Ameloot M, Nawrot TS. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):3866. doi: 10.1038/s41467-019-11654-3. doi: 10.1038/s41467-019-11654-3.10.1038/s41467-019-11654-3 PubMed DOI PMC
Aengenheister L, Favaro RR, Morales-Prieto DM, Furer LA, Gruber M, Wadsack C, Markert UR, Buerki-Thurnherr T. Research on nanoparticles in human perfused placenta: state of the art and perspectives. Placenta. 2021;104:199–207. doi: 10.1016/j.placenta.2020.12.014. S0143-4004(20)30467-7 PubMed DOI
Medley EA, Spratlen MJ, Yan B, Herbstman JB, Deyssenroth MA. A systematic review of the placental translocation of micro- and nanoplastics. Curr Environ Health Rep. 2023;10(2):99–111. doi: 10.1007/s40572-023-00391-x. 10.1007/s40572-023-00391-x PubMed DOI PMC
Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, Schwabl P, Liebmann B. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics. 2021;13(7):921. doi: 10.3390/pharmaceutics13070921. pharmaceutics13070921 PubMed DOI PMC
Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, Blondeel C, Zucchelli E, De Luca C, D'Avino S, Gulotta A, Carnevali O, Giorgini E. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers (Basel) 2022;14(13):2700. doi: 10.3390/polym14132700. polym14132700 PubMed DOI PMC
Halfar J, Čabanová K, Vávra K, Delongová P, Motyka O, Špaček R, Kukutschová J, Šimetka O, Heviánková S. Microplastics and additives in patients with preterm birth: the first evidence of their presence in both human amniotic fluid and placenta. Chemosphere. 2023;343:140301. doi: 10.1016/j.chemosphere.2023.140301. S0045-6535(23)02571-7 PubMed DOI
Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, Diener P, Zisch A, Krug HF, von Mandach U. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2010;118(3):432–436. doi: 10.1289/ehp.0901200. PubMed DOI PMC
Dusza HM, van Boxel J, van Duursen MB, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. Sci Total Environ. 2023;860:160403. doi: 10.1016/j.scitotenv.2022.160403. S0048-9697(22)07505-2 PubMed DOI
Zhang J, Wang L, Trasande L, Kannan K. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environ Sci Technol Lett. 2021;8(11):989–994. doi: 10.1021/acs.estlett.1c00559. DOI
AURORA Researching Early Life Health Impacts of Micro- and Nanoplastics. AURORA Research. 2024. [2024-08-14]. https://auroraresearch.eu/
BioRender. [2024-10-01]. https://www.biorender.com/
CUSP research. CUSP. 2023. [2024-01-30]. https://cusp-research.eu/
Janssen BG, Madhloum N, Gyselaers W, Bijnens E, Clemente DB, Cox B, Hogervorst J, Luyten L, Martens DS, Peusens M, Plusquin M, Provost EB, Roels HA, Saenen ND, Tsamou M, Vriens A, Winckelmans E, Vrijens K, Nawrot TS. Cohort Profile: the ENVIRonmental influence ON early AGEing (ENVIRONAGE): a birth cohort study. Int J Epidemiol. 2017;46(5):1386–1387. doi: 10.1093/ije/dyw269.dyw269 PubMed DOI
Dadvand P, Gascon M, Bustamante M, Rivas I, Foraster M, Basagaña X, Cosín M, Eixarch E, Ferrer M, Gratacós E, Gómez Herrera L, Jimenez-Arenas P, Júlvez J, Morillas À, Nieuwenhuijsen MJ, Persavento C, Pujol J, Querol X, Sánchez García O, Vrijheid M, Llurba E, Gómez-Roig MD, Sunyer J, BiSC Group Cohort profile: Barcelona life study cohort (BiSC) Int J Epidemiol. 2024;53(3):dyae063. doi: 10.1093/ije/dyae063.7667946 PubMed DOI
Brander SM, Renick VC, Foley MM, Steele C, Woo M, Lusher A, Carr S, Helm P, Box C, Cherniak S, Andrews RC, Rochman CM. Sampling and quality assurance and quality control: a guide for scientists investigating the occurrence of microplastics across matrices. Appl Spectrosc. 2020;74(9):1099–1125. doi: 10.1177/0003702820945713. PubMed DOI
Bové H, Steuwe C, Fron E, Slenders E, D'Haen Jan, Fujita Y, Uji-I H, vandeVen M, Roeffaers M, Ameloot M. Biocompatible label-free detection of carbon black particles by femtosecond pulsed laser microscopy. Nano Lett. 2016;16(5):3173–3178. doi: 10.1021/acs.nanolett.6b00502. doi: 10.1021/acs.nanolett.6b00502. PubMed DOI
Sifat AA, Jahng J, Potma EO. Photo-induced force microscopy (PiFM) - principles and implementations. Chem Soc Rev. 2022;51(11):4208–4222. doi: 10.1039/d2cs00052k. PubMed DOI
Prata JC, da Costa JP, Duarte AC, Rocha-Santos T. Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends in Analytical Chemistry. 2019;110:150–159. doi: 10.1016/j.trac.2018.10.029. DOI
Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JK, Wu C, Lam PK. Understanding plastic degradation and microplastic formation in the environment: a review. Environ Pollut. 2021;274:116554. doi: 10.1016/j.envpol.2021.116554.S0269-7491(21)00132-9 PubMed DOI
Renner G, Schmidt TC, Schram J. Analytical methodologies for monitoring micro(nano)plastics: which are fit for purpose? Current Opinion in Environmental Science & Health. 2018;1:55–61. doi: 10.1016/j.coesh.2017.11.001. DOI
Parker LA, Höppener EM, van Amelrooij EF, Henke S, Kooter IM, Grigoriadi K, Nooijens MGA, Brunner AM, Boersma A. Protocol for the production of micro- and nanoplastic test materials. Micropl & Nanopl. 2023;3(1):10. doi: 10.1186/s43591-023-00058-2. DOI
Rozman U, Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle - the most comprehensive review on microplastic laboratory research. J Hazard Mater. 2022;424(Pt C):127529. doi: 10.1016/j.jhazmat.2021.127529. S0304-3894(21)02497-3 PubMed DOI
Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome. Environ Int. 2017;100:32–61. doi: 10.1016/j.envint.2016.11.026. S0160-4120(16)30902-3 PubMed DOI PMC
Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP. The metabolome: a key measure for exposome research in epidemiology. Curr Epidemiol Rep. 2019;6:93–103. PubMed PMC
Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, Cassone AL, Laurentie M, Paul-Pont I, Soudant P, Dehaut A, Duflos G. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal Bioanal Chem. 2018;410(25):6663–6676. doi: 10.1007/s00216-018-1279-0.10.1007/s00216-018-1279-0 PubMed DOI
Fischer M, Scholz-Böttcher BM. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry. Environ Sci Technol. 2017;51(9):5052–5060. doi: 10.1021/acs.est.6b06362. PubMed DOI
Fournier SB, D'Errico JN, Adler DS, Kollontzi S, Goedken MJ, Fabris L, Yurkow EJ, Stapleton PA. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol. 2020;17(1):55. doi: 10.1186/s12989-020-00385-9. 10.1186/s12989-020-00385-9 PubMed DOI PMC
Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol. 2020;17(1):56. doi: 10.1186/s12989-020-00386-8. 10.1186/s12989-020-00386-8 PubMed DOI PMC
Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model. Environ Health Perspect. 2015;123(12):1280–1286. doi: 10.1289/ehp.1409271. PubMed DOI PMC
Dusza HM, Katrukha EA, Nijmeijer SM, Akhmanova A, Vethaak AD, Walker DI, Legler J. Uptake, transport, and toxicity of pristine and weathered micro- and nanoplastics in human placenta cells. Environ Health Perspect. 2022;130(9):97006. doi: 10.1289/EHP10873. PubMed DOI PMC
Wong MK, Li EW, Adam M, Selvaganapathy PR, Raha S. Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels. Mol Hum Reprod. 2020;26(5):353–365. doi: 10.1093/molehr/gaaa018. 5802692 PubMed DOI PMC
Vazakidou P, Koopmans C, Grimberg S, Evangelista S, Koekkoek J, Lamoree M, Leonards P, van Duursen M. Expanding the H295R steroidogenic assay using LC-MS/MS and an ER-alpha reporter gene assay as read-outs using azole fungicides as test compounds. Toxicology Letters. 2021;350:S65–S66. doi: 10.1016/s0378-4274(21)00401-x. DOI
Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, Kabayama Y, Suyama M, Sasaki H, Arima T. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018;22(1):50–63.e6. doi: 10.1016/j.stem.2017.11.004. S1934-5909(17)30456-3 PubMed DOI
Karttunen V, Sahlman H, Repo JK, Woo C, Myöhänen K, Myllynen P, Vähäkangas KH. Criteria and challenges of the human placental perfusion – data from a large series of perfusions. Toxicol In Vitro. 2015;29(7):1482–1491. doi: 10.1016/j.tiv.2015.06.001.S0887-2333(15)00128-9 PubMed DOI
Bhagat J, Zang L, Nishimura N, Shimada Y. Zebrafish: an emerging model to study microplastic and nanoplastic toxicity. Sci Total Environ. 2020;728:138707. doi: 10.1016/j.scitotenv.2020.138707.S0048-9697(20)32224-5 PubMed DOI
Chaibub Neto E, Bare JC, Margolin AA. Simulation studies as designed experiments: the comparison of penalized regression models in the "large p, small n" setting. PLoS One. 2014;9(10):e107957. doi: 10.1371/journal.pone.0107957. PONE-D-14-17293 PubMed DOI PMC
Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ Health Perspect. 2016;124(12):1848–1856. doi: 10.1289/EHP172. EHP172 PubMed DOI PMC
Lenters V, Vermeulen R, Portengen L. Performance of variable selection methods for assessing the health effects of correlated exposures in case-control studies. Occup Environ Med. 2018;75(7):522–529. doi: 10.1136/oemed-2016-104231.oemed-2016-104231 PubMed DOI
van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. doi: 10.1186/1471-2164-7-142. 1471-2164-7-142 PubMed DOI PMC
Chadeau-Hyam M, Ebbels TMD, Brown IJ, Chan Q, Stamler J, Huang CC, Daviglus ML, Ueshima H, Zhao L, Holmes E, Nicholson JK, Elliott P, De Iorio M. Metabolic profiling and the metabolome-wide association study: significance level for biomarker identification. J Proteome Res. 2010;9(9):4620–4627. doi: 10.1021/pr1003449. PubMed DOI PMC
Cai A, Remy S, Lenters V, Cox B, Schoeters G, Covaci A, Vermeulen R, Portengen L. Exposure to a mixture of endocrine-disrupting chemicals and metabolic outcomes in Belgian adolescents. Environ Sci Technol. 2023;57(48):19871–19880. doi: 10.1021/acs.est.3c07607. doi: 10.1021/acs.est.3c07607. PubMed DOI PMC
Bellavia A, Valeri L. Decomposition of the total effect in the presence of multiple mediators and interactions. Am J Epidemiol. 2018;187(6):1311–1318. doi: 10.1093/aje/kwx355. 4622592 PubMed DOI PMC
Spolidoro GCI, Amera YT, Ali MM, Nyassi S, Lisik D, Ioannidou A, Rovner G, Khaleva E, Venter C, van Ree R, Worm M, Vlieg-Boerstra B, Sheikh A, Muraro A, Roberts G, Nwaru BI. Frequency of food allergy in Europe: an updated systematic review and meta-analysis. Allergy. 2023;78(2):351–368. doi: 10.1111/all.15560. PubMed DOI PMC
González-de Paz L, Valdesoiro-Navarrete L, Roma J, Blat-Guimerà E, Benavent-Areu J, Bartra J, Sisó-Almirall A. Prevalence and impact of asthma and allergy on daily life, health outcomes and use of healthcare services in children: a population-based study. Arch Bronconeumol. 2023;59(8):481–487. doi: 10.1016/j.arbres.2023.05.005.S0300-2896(23)00163-1 PubMed DOI
Selroos O, Kupczyk M, Kuna P, Łacwik P, Bousquet J, Brennan D, Palkonen S, Contreras J, FitzGerald M, Hedlin G, Johnston SL, Louis R, Metcalf L, Walker S, Moreno-Galdó A, Papadopoulos NG, Rosado-Pinto J, Powell P, Haahtela T. National and regional asthma programmes in Europe. Eur Respir Rev. 2015;24(137):474–483. doi: 10.1183/16000617.00008114. 24/137/474 PubMed DOI PMC
Navaranjan G, Diamond ML, Harris SA, Jantunen LM, Bernstein S, Scott JA, Takaro TK, Dai R, Lefebvre DL, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Simons E, Turvey SE, Sears MR, Subbarao P, Brook JR. Early life exposure to phthalates and the development of childhood asthma among Canadian children. Environ Res. 2021;197:110981. doi: 10.1016/j.envres.2021.110981.S0013-9351(21)00275-9 PubMed DOI
Koelmans AA, Redondo-Hasselerharm PE, Nor NHM, de Ruijter VN, Mintenig SM, Kooi M. Risk assessment of microplastic particles. Nat Rev Mater. 2022;7(2):138–152. doi: 10.1038/s41578-021-00411-y. DOI
World Health Organization . WHO Human Health Risk Assessment Toolkit: Chemical Hazards. USA: World Health Organization; 2021. [2024-08-14]. https://www.who.int/publications/i/item/9789240035720 .
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJ, Groth P, Goble C, Grethe JS, Heringa J, 't Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. doi: 10.1038/sdata.2016.18.sdata201618 PubMed DOI PMC
Hubrecht RC, Carter E. The 3Rs and humane experimental technique: implementing change. Animals (Basel) 2019;9(10):754. doi: 10.3390/ani9100754. ani9100754 PubMed DOI PMC
Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals Used for Scientific Purposes. 2010. [2010-09-22]. https://www.fao.org/faolex/results/details/en/c/LEX-FAOC098296/
Christopher EA, Christopher-de Vries Y, Devadoss A, Mandemaker LD, van Boxel J, Copsey HM, Dusza HM, Legler J, Meirer F, Muncke J, Nawrot TS, Saenen ND, Scholz-Böttcher BM, Tran L, Weckhuysen BM, Zou R, Zimmermann L, Galea KS, Vermeulen R, Boyles MSP. Impacts of micro- and nanoplastics on early-life health: a roadmap towards risk assessment. Micropl.&Nanopl. 2024 Jul 02;4(1):13. doi: 10.1186/s43591-024-00089-3. DOI
Yang J, Kamstra J, Legler J, Aardema H. The impact of microplastics on female reproduction and early life. Anim Reprod. 2023;20(2):e20230037. doi: 10.1590/1984-3143-AR2023-0037. arAR20230037_EN PubMed DOI PMC
Chen G, Xiong S, Jing Q, van Gestel CAM, van Straalen NM, Roelofs D, Sun L, Qiu H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci Total Environ. 2023;854:158666. doi: 10.1016/j.scitotenv.2022.158666.S0048-9697(22)05765-5 PubMed DOI
Dibbon KC, Mercer GV, Maekawa AS, Hanrahan J, Steeves KL, Ringer LCM, Simpson AJ, Simpson MJ, Baschat AA, Kingdom JC, Macgowan CK, Sled JG, Jobst KJ, Cahill LS. Polystyrene micro- and nanoplastics cause placental dysfunction in mice†. Biol Reprod. 2024;110(1):211–218. doi: 10.1093/biolre/ioad126.7277078 PubMed DOI
Xue J, Xu Z, Hu X, Lu Y, Zhao Y, Zhang H. Microplastics in maternal amniotic fluid and their associations with gestational age. Sci Total Environ. 2024;920:171044. doi: 10.1016/j.scitotenv.2024.171044.S0048-9697(24)01183-5 PubMed DOI
Amereh F, Amjadi N, Mohseni-Bandpei A, Isazadeh S, Mehrabi Y, Eslami A, Naeiji Z, Rafiee M. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ Pollut. 2022;314:120174. doi: 10.1016/j.envpol.2022.120174.S0269-7491(22)01388-4 PubMed DOI
Microplastics are everywhere - we need to understand how they affect human health. Nat Med. 2024;30(4):913. doi: 10.1038/s41591-024-02968-x.10.1038/s41591-024-02968-x PubMed DOI
eNanoMapper. [2024-08-14]. https://enanomapper.adma.ai/
European Commission A European strategy for plastics in a circular economy. 2018. [2018-01-16]. https://research-and-innovation.ec.europa.eu/research-area/environment/circular-economy/plastics-circular-economy_en .
European Commission . A Sustainable Bioeconomy for Europe Strengthening the Connection Between Economy, Society and the Environment : Updated Bioeconomy Strategy. Europe: Publications Office of the European Union; 2018. [2024-08-14]. https://www.qualenergia.it/wp-content/uploads/2018/10/ec_bioeconomy_strategy_2018.pdf .
de Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ Sci Technol. 2020;54(19):11692–11705. doi: 10.1021/acs.est.0c03057. doi: 10.1021/acs.est.0c03057. PubMed DOI PMC
Cowger W, Booth AM, Hamilton BM, Thaysen C, Primpke S, Munno K, Lusher AL, Dehaut A, Vaz VP, Liboiron M, Devriese LI, Hermabessiere L, Rochman C, Athey SN, Lynch JM, De Frond H, Gray A, Jones OA, Brander S, Steele C, Moore S, Sanchez A, Nel H. Reporting guidelines to increase the reproducibility and comparability of research on microplastics. Appl Spectrosc. 2020;74(9):1066–1077. doi: 10.1177/0003702820930292. PubMed DOI PMC