Effects of sowing date and nitrogen applications on the energy efficiency of facultative wheat (Triticum aestivum L.) in a Pannonian environment

. 2024 Oct 15 ; 10 (19) : e37923. [epub] 20240920

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39386789
Odkazy

PubMed 39386789
PubMed Central PMC11462256
DOI 10.1016/j.heliyon.2024.e37923
PII: S2405-8440(24)13954-0
Knihovny.cz E-zdroje

Energy efficiency analysis provides a deeper understanding of non-renewable energy dependent cropping systems. In this study, we examined the crop yield and energy efficiency of facultative rainfed wheat (WW - winter wheat, WS - spring wheat) and mineral nitrogen (N) fertilization (0, 50, 100, 150, and 200 kg N ha-1) in two growing seasons 2019/20 and 2020/21 in Central Europe. WW out performed WS significantly overall (2019/20: +30.3 to +47.9 %; 2020/21: +18.9 to +37.3 %) in terms of energy efficiency indicators. The impact of N fertilization on energy efficiency was minimal, largely due to one dose application of mineral N fertilizer. The highest estimated net-energy output (NEO) was observed at 160.2 kg N ha-1, which may not sustainable for this pedo-climatic region due to potential N emissions risks. Zero N fertilization showed best performance in terms of energy use efficiency (EUE), energy intensity (EI), and energy productivity (EP). The ERG z-score, which combines NEO and EUE into a single bi-dimensional indicator, indicated an optimal N fertilization level of 72.0 kg N ha-1.

Zobrazit více v PubMed

European Commission . the European Economic and Social Committee and the Committee of the regions; Brussels: 2020. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System: Communication from the Commission to the European Parliament, the Council.

Pelizzi G., Cavalchini A., Lazzari M. Elsevier Applied Sciences; London, New York: 1988. Energy in Agricultural Machinery and Mechanization.

Hausherr Lüder R.-M., Qin R., Richner W., Stamp P., Streit B., Herrera J.M., et al. Small-scale variation in nitrogen use efficiency parameters in winter wheat as affected by N fertilization and tillage intensity. Sustainability. 2020;12(9):3621. doi: 10.3390/su12093621. DOI

Hülsbergen K.-J., Feil B., Diepenbrock W. Rates of nitrogen application required to achieve maximum energy efficiency for various crops: results of a long-term experiment. Field Crops Res. 2002;77(1):61–76. doi: 10.1016/S0378-4290(02)00050-3. DOI

Moitzi G., Spiegel H., Sandén T., Vuolo F., Essl L., Neugschwandtner R.W., Wagentristl H. Energieeinsatz und Energieeffizienz von Winterweizen bei unterschiedlicher mineralischer Stickstoffdüngung im Marchfeld. Bodenkultur: Journal of Land Management. Food and Environment. 2020;71(2):55–67.

Rathke G.-W. Tillage and rotation effect on corn–soybean energy balances in eastern Nebraska. Soil Tillage Res. 2007;97(1):60–70.

Zentner R.P., Basnyat P., Brandt S.A., Thomas A.G., Ulrich D., Campbell C.A., et al. Effects of input management and crop diversity on non-renewable energy use efficiency of cropping systems in the Canadian Prairie. Eur. J. Agron. 2011;34(2):113–123. doi: 10.1016/j.eja.2010.11.004. DOI

Dal Ferro N., Zanin G., Borin M. Crop yield and energy use in organic and conventional farming: a case study in north-east Italy. Eur. J. Agron. 2017;86:37–47. doi: 10.1016/j.eja.2017.03.002. DOI

FAOSTAT. Food and agriculture data . 2023. Food and Agriculture Organization of the United Nations Statistics Division.https://www.fao.org/faostat/en/#data

Koppensteiner L.J., Kaul H.-P., Piepho H.-P., Barta N., Euteneuer P., Bernas J., et al. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. Eur. J. Agron. 2022;140 doi: 10.1016/j.eja.2022.126591. DOI

Neugschwandtner R.W., Böhm K., Hall R.M., Kaul H.-P. Development, growth, and nitrogen use of autumn- and spring-sown facultative wheat. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015;65(1):6–13. doi: 10.1080/09064710.2014.958522. DOI

Neugschwandtner R.W., Bernhuber A., Kammlander S., Wagentristl H., Klimek-Kopyra A., Kaul H.-P. Yield structure components of autumn- and spring-sown pea (Pisum sativum L.) Acta Agric. Scand. Sect. B Soil Plant Sci. 2020;70(2):109–116. doi: 10.1080/09064710.2019.1676463. DOI

Bernas J., Koppensteiner L.J., Tichá M., Kaul H.-P., Klimek-Kopyra A., Euteneuer P., et al. Optimal environmental design of nitrogen application rate for facultative wheat using life cycle assessment. Eur. J. Agron. 2023;146 doi: 10.1016/j.eja.2023.126813. DOI

WRB . 2006. World Reference Base for Soil Resources: World Soil Resources Reports No. 103. Rome.

ZAMG. Klimaübersichten: Zentralanstalt für Meterologie und Geodynamik (ZAMG). Vienna, Austria.

Austrian Association for Agricultural Engineering and Landscape Development. ÖKL-Richtwerte für die Maschinenselbstkosten 2021; Vienna, Austria: 2021.

Kuratorium für Technik und Bauwesen in der Landwirtschaft. KTBL-Taschenbuch Landwirtschaft. twenty-second ed. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL); Darmstadt: 2015.

Hülsbergen K.-J., Feil B., Biermann S., Rathke G.-W., Kalk W.-D., Diepenbrock W. A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric. Ecosyst. Environ. 2001;86(3):303–321. doi: 10.1016/S0167-8809(00)00286-3. DOI

Alluvione F., Moretti B., Sacco D., Grignani C. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy. 2011;36(7):4468–4481. doi: 10.1016/j.energy.2011.03.075. DOI

Hoeppner J.W., Entz M.H., McConkey B.G., Zentner R.P., Nagy C.N. Energy use and efficiency in two Canadian organic and conventional crop production systems. Renew. Agric. Food Syst. 2006;21(1):60–67. doi: 10.1079/RAF2005118. DOI

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. Eur. J. Agron. 2019;103:24–31. doi: 10.1016/j.eja.2018.11.002. DOI

Tabatabaeefar A., Emamzadeh H., Ghasemi Varnamkhasti M., Rahimizadeh R., Karimi M. Comparison of energy of tillage systems in wheat production. Energy. 2009;34(1):41–45. doi: 10.1016/j.energy.2008.09.023. DOI

Fluck R.C. Elsevier; Amsterdam, London, New York, Tokyo: 1992. Energy in Farm Production.

Hoeppner J.W., Entz M.H., McConkey B.G., Zentner R.P., Nagy C.N. Energy use and efficiency in two Canadian organic and conventional crop production systems. Renew. Agric. Food Syst. 2006;21(1):60–67. doi: 10.1079/RAF2005118. DOI

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. Efficiency of mineral nitrogen fertilization in winter wheat under pannonian climate conditions. Agriculture. 2020;10(11):541. doi: 10.3390/agriculture10110541. DOI

Yuan S., Peng S., Wang D., Man J. Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China. Energy. 2018;160:184–191. doi: 10.1016/j.energy.2018.07.006. DOI

Arvidsson J. Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. Eur. J. Agron. 2010;33(3):250–256. doi: 10.1016/j.eja.2010.06.003. DOI

DLG. Futterwerttabellen Wiederkäuer . 1997. erweiterte und überarbeitete Auflage; p. 7.

Biedermann G. University of Natural Resources and Life Sciences (BOKU); Vienna, Austria: 2009. Kumulierter Energieaufwand (KEA) der Weizenproduktion bei verschiedenen Produktionssystemen (konventionell und ökologisch) und verschiedenen Bodenbearbeitungssystemen (Pflug, Mulchsaat, Direktsaat) [Master thesis]

Stolarski M.J., Krzyżaniak M., Tworkowski J., Załuski D., Kwiatkowski J., Szczukowski S. Camelina and crambe production – energy efficiency indices depending on nitrogen fertilizer application. Ind. Crop. Prod. 2019;137:386–395. doi: 10.1016/j.indcrop.2019.05.047. DOI

Sørensen C.G., Halberg N., Oudshoorn F.W., Petersen B.M., Dalgaard R. Energy inputs and GHG emissions of tillage systems. Biosyst. Eng. 2014;120:2–14. doi: 10.1016/j.biosystemseng.2014.01.004. DOI

Jenssen T.K.K.G. Proceedings No. 509. The International Fertiliser Society. Colchester; United Kingdom: 2003. Energy consumption and greenhouse gas emissions in fertilizer production.

Saling P., Kölsch D. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. Energieeffiziente Landwirtschaft; Darmstadt, Deutschland: 2008. Ökobilanzierung: Energieverbräuche und CO2-Emissionen von Pflanzenschutzmitteln; pp. 65–71.

Khakbazan M., Mohr R.M., Huang J., Xie R., Volkmar K.M., Tomasiewicz D.J., et al. Effects of crop rotation on energy use efficiency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res. 2019;195 doi: 10.1016/j.still.2019.104357. DOI

Rossner H., Ritz C., Astover A. Optimization of fertiliser rates in crop production against energy use indicators. Eur. J. Agron. 2014;55:72–76. doi: 10.1016/j.eja.2014.01.003. DOI

Szalay T.A., Moitzi G., Weingartmann H., Liebhard P. Einfluss unterschiedlicher Bodenbearbeitungssysteme Einfluss unterschiedlicher Bodenbearbeitungssysteme auf Kraftstoffverbrauch und Arbeitszeitbedarf für den Winterweizenanbau im semiariden Produktionsgebiet. Die Bodenkultur: Journal of Land Management. Food and Environment. 2015;(66):39–48.

Moitzi G., Refenner K., Wagentristl H. Arbeitsgemeinschaft für Lebensmittel-, Veterinär- und Agrarwesen. ALVA Jahrestagung; Vienna, Austria: 2017. Kraftstoffverbrauch bei unterschiedlicher Saatbettbereitung in Bodenbearbeitungssystemen; pp. 142–144.

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. Energy efficiency of continuous rye, rotational rye and barley in different fertilization systems in a long-term field experiment. Agronomy. 2021;11(2):229. doi: 10.3390/agronomy11020229. DOI

Pittelkow C.M., Liang X., Linquist B.A., van Groenigen K.J., Lee J., Lundy M.E., et al. Productivity limits and potentials of the principles of conservation agriculture. Nature. 2015;517(7534):365–368. doi: 10.1038/nature13809. PubMed DOI

Lin H.-C., Huber J.A., Gerl G., Hülsbergen K.-J. Effects of changing farm management and farm structure on energy balance and energy-use efficiency—a case study of organic and conventional farming systems in southern Germany. Eur. J. Agron. 2017;82:242–253. doi: 10.1016/j.eja.2016.06.003. DOI

Kazlauskas M., Bručienė I., Jasinskas A., Šarauskis E. Comparative analysis of energy and GHG emissions using fixed and variable fertilization rates. Agronomy. 2021;11(1):138. doi: 10.3390/agronomy11010138. DOI

Pimentel D. Energy inputs in food crop production in developing and developed nations. Energies. 2009;2(1):1–24. doi: 10.3390/en20100001. DOI

Bodner G., Nakhforoosh A., Kaul H.-P. Management of crop water under drought. a review. Agron. Sustain. Dev. 2015;35(2):401–442. doi: 10.1007/s13593-015-0283-4. DOI

Thaler S., Eitzinger J., Trnka M., Dubrovsky M. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J. Agric. Sci. 2012;150(5):537–555. doi: 10.1017/S0021859612000093. DOI

Moitzi G., Spiegel H., Sandén T., Vuolo F., Essl L., Neugschwandtner R.W., et al. Energieeinsatz und Energieeffizienz von Winterweizen bei unterschiedlicher mineralischer Stickstoffdüngung im Marchfeld. Bodenkultur. 2020;71(2):55–67. doi: 10.2478/boku-2020-0006. DOI

Jankowski K.J., Budzyński W.S., Kijewski Ł. An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland. Energy. 2015;81:674–681. doi: 10.1016/j.energy.2015.01.012. DOI

Mitscherlich E.A. Akademie-Verlag; Berlin, Deutschland: 1948. Die Ertragsgesetze.

Baumgarten Andreas. Auflage; Wien: 2022. Richtlinie für die sachgerechte Düngung im Ackerbau und Grünland: 8.

Moitzi G., Thünauer G., Robier J., Gronauer A. Energieeinsatz und Energieeffizienz in der Körnermaisproduktion bei unterschiedlicher Stickstoffdüngung in der Südsteiermark. Die Bodenkultur: Journal of Land Management. Food and Environment. 2015;66(1–2):25–37.

Sartori L., Basso B., Bertocco M., Oliviero G. Energy use and economic evaluation of a three year crop rotation for conservation and organic farming in NE Italy. Biosyst. Eng. 2005;91(2):245–256. doi: 10.1016/j.biosystemseng.2005.03.010. DOI

Soltani S., Mosavi S.H., Saghaian S.H., Azhdari S., Alamdarlo H.N., Khalilian S. Climate change and energy use efficiency in arid and semiarid agricultural areas: a case study of Hamadan-Bahar plain in Iran. Energy. 2023;268 doi: 10.1016/j.energy.2022.126553. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...