• This record comes from PubMed

Subjective visual sensitivity in neurotypical adults: insights from a magnetic resonance spectroscopy study

. 2024 ; 18 () : 1417996. [epub] 20240925

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

INTRODUCTION: Altered subjective visual sensitivity manifests as feelings of discomfort or overload elicited by intense and irritative visual stimuli. This can result in a host of visual aberrations including visual distortions, elementary visual hallucinations and visceral responses like dizziness and nausea, collectively referred to as "pattern glare." Current knowledge of the underlying neural mechanisms has focused on overall excitability of the visual cortex, but the individual contribution of excitatory and inhibitory systems has not yet been quantified. METHODS: In this study, we focus on the role of glutamate and γ-aminobutyric acid (GABA) as potential mediators of individual differences in subjective visual sensitivity, measured by a computerized Pattern Glare Test-a series of monochromatic square-wave gratings with three different spatial frequencies, while controlling for psychological variables related to sensory sensitivity with multiple questionnaires. Resting neurotransmitter concentrations in primary visual cortex (V1) and right anterior insula were studied in 160 healthy participants using magnetic resonance spectroscopy. RESULTS: Data showed significant differences in the perception of visual distortions (VD) and comfort scores between men and women, with women generally reporting more VD, and therefore the modulatory effect of sex was considered in a further examination. A general linear model analysis showed a negative effect of occipital glutamate on a number of reported visual distortions, but also a significant role of several background psychological traits. When assessing comfort scores in women, an important intervening variable was the menstrual cycle. DISCUSSION: Our findings do not support that baseline neurotransmitter levels have a significant role in overreactivity to aversive stimuli in neurotypical population. However, we demonstrated that biological sex can have a significant impact on subjective responses. Based on this additional finding, we suggest that future studies investigate aversive visual stimuli while examining the role of biological sex.

See more in PubMed

Abramov I., Gordon J., Feldman O., Chavarga A. (2012a). Sex and vision II: color appearance of monochromatic lights. Biol. Sex Differ. 3:21. doi: 10.1186/2042-6410-3-21, PMID: PubMed DOI PMC

Abramov I., Gordon J., Feldman O., Chavarga A. (2012b). Sex and vision I: Spatio-temporal resolution. Biol. Sex Differ. 3:20. doi: 10.1186/2042-6410-3-20, PMID: PubMed DOI PMC

Adjamian P., Holliday I. E., Barnes G. R., Hillebrand A., Hadjipapas A., Singh K. D. (2004). Induced visual illusions and gamma oscillations in human primary visual cortex. Eur. J. Neurosci. 20, 587–592. doi: 10.1111/j.1460-9568.2004.03495.x PubMed DOI

Allen P. M., Hussain A., Usherwood C., Wilkins A. J. (2010). Pattern-related visual stress, chromaticity, and accommodation. Investig. Ophthalmol. Vis. Sci. 51, 6843–6849. doi: 10.1167/iovs.09-5086 PubMed DOI

Aurora S. K., Wilkinson F. (2007). The brain is hyperexcitable in migraine. Cephalalgia 27, 1442–1453. doi: 10.1111/j.1468-2982.2007.01502.x PubMed DOI

Badawy R. A. B., Loetscher T., Macdonell R. A. L., Brodtmann A. (2012). Cortical excitability and neurology: insights into the pathophysiology. Funct. Neurol. 27, 131–145. PubMed PMC

Beasley I. G., Davies L. N. (2012). Susceptibility to pattern glare following stroke. J. Neurol. 259, 1832–1839. doi: 10.1007/s00415-012-6418-5 PubMed DOI PMC

Bell V., Halligan P. W., Ellis H. D. (2006). The Cardiff anomalous perceptions scale (CAPS): a new validated measure of anomalous perceptual experience. Schizophr. Bull. 32, 366–377. doi: 10.1093/schbul/sbj014 PubMed DOI PMC

Braithwaite J. J., Broglia E., Bagshaw A. P., Wilkins A. J. (2013). Evidence for elevated cortical hyperexcitability and its association with out-of-body experiences in the non-clinical population: new findings from a pattern-glare task. Cortex 49, 793–805. doi: 10.1016/j.cortex.2011.11.013 PubMed DOI

Braithwaite J. J., Mevorach C., Takahashi C. (2015). Stimulating the aberrant brain: evidence for increased cortical hyperexcitability from a transcranial direct current stimulation (tDCS) study of individuals predisposed to anomalous perceptions. Cortex 69, 1–13. doi: 10.1016/j.cortex.2015.03.023 PubMed DOI

Campbell M. E. J., Mehrkanoon S., Cunnington R. (2018). Intentionally not imitating: insula cortex engaged for top-down control of action mirroring. Neuropsychologia 111, 241–251. doi: 10.1016/j.neuropsychologia.2018.01.037 PubMed DOI

Cauda F., D’Agata F., Sacco K., Duca S., Geminiani G., Vercelli A. (2011). Functional connectivity of the insula in the resting brain. NeuroImage 55, 8–23. doi: 10.1016/j.neuroimage.2010.11.049 PubMed DOI

Cebeiro and Rodríguez (2019). Mirror neurons: a biological genesis of relational. Papeles del psicólogo 40, 226–232. doi: 10.23923/PAP.PSICOL2019.2900 DOI

Chan Y. M., Glarin R., Moffat B. A., Bode S., McKendrick A. M. (2022). Relating the cortical visual contrast gain response to spectroscopy-measured excitatory and inhibitory metabolites in people who experience migraine. PLoS One 17:e0266130. doi: 10.1371/journal.pone.0266130 PubMed DOI PMC

Cohen J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates.

Conlon E., Lovegrove W., Barker S., Chekaluk E. (2001). Visual discomfort: the influence of spatial frequency. Perception 30, 571–581. doi: 10.1068/p2954 PubMed DOI

Costa P. T. (1989). NEO PI/FFI manual supplement for use with the NEO personality inventory and the NEO five-factor inventory. Lutz, FL: Psychological Assessment Resources.

Costa P. T., McCrae R. R. (1985). The NEO personality inventory: Manual form S and form R. Lutz, FL: Psychological Assessment Resources.

Costa P. T., McCrae R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEP five-factor inventory (NEO-FFI): professional manual. Lutz, FL: Psychological Assessment Resources.

Craig A. D. B. (2009). How do you feel--now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70. doi: 10.1038/nrn2555 PubMed DOI

Cueva A. S., Galhardoni R., Cury R. G., Parravano D. C., Correa G., Araujo H., et al. . (2016). Normative data of cortical excitability measurements obtained by transcranial magnetic stimulation in healthy subjects. Neurophysiol. Clin. 46, 43–51. doi: 10.1016/j.neucli.2015.12.003, PMID: PubMed DOI

Dance C. J., Ward J., Simner J. (2021). What is the link between mental imagery and sensory sensitivity? Insights from Aphantasia. Perception 50, 757–782. doi: 10.1177/03010066211042186, PMID: PubMed DOI PMC

De Valois R. L., Morgan H., Snodderly D. M. (1974). Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. Vis. Res. 14, 75–81. doi: 10.1016/0042-6989(74)90118-7 PubMed DOI

Dhamala E., Abdelkefi I., Nguyen M., Hennessy T. J., Nadeau H., Near J. (2019). Validation of in vivo MRS measures of metabolite concentrations in the human brain. NMR Biomed. 32:e4058. doi: 10.1002/nbm.4058 PubMed DOI

Dickinson A., Jones M., Milne E. (2016). Measuring neural excitation and inhibition in autism: different approaches, different findings and different interpretations. Brain Res. 1648, 277–289. doi: 10.1016/j.brainres.2016.07.011, PMID: PubMed DOI

Douglas R. J., Martin K. A. C. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451. doi: 10.1146/annurev.neuro.27.070203.144152 PubMed DOI

Downar J., Crawley A. P., Mikulis D. J., Davis K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nat. Neurosci. 3, 277–283. doi: 10.1038/72991 PubMed DOI

Duncan N. W., Wiebking C., Muñoz-Torres Z., Northoff G. (2014). How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging. J. Neurosci. Methods 221, 183–188. doi: 10.1016/j.jneumeth.2013.10.011 PubMed DOI

Edden R. A. E., Puts N. A. J., Harris A. D., Barker P. B., Evans C. J. (2014). Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J. Magn. Reson. Imaging 40, 1445–1452. doi: 10.1002/jmri.24478 PubMed DOI PMC

Evans B. J. W., Stevenson S. J. (2008). The pattern glare test: a review and determination of normative values. Ophthalmic. Physiol. Opt. 28, 295–309. doi: 10.1111/j.1475-1313.2008.00578.x PubMed DOI

Faul F., Erdfelder E., Buchner A., Lang A.-E. (2009). Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160. doi: 10.3758/BRM.41.4.1149 PubMed DOI

Fermin A. S. R., Friston K., Yamawaki S. (2021). Insula interoception, active inference and feeling representation. arXiv. doi: 10.48550/arXiv.2112.12290 DOI

Fider N. A., Komarova N. L. (2019). Differences in color categorization manifested by males and females: a quantitative world color survey study. Palgrave Commun. 5, 1–10. doi: 10.1057/s41599-019-0341-7 DOI

Fong C. Y., Law W. H. C., Braithwaite J. J., Mazaheri A. (2020). Differences in early and late pattern-onset visual-evoked potentials between self-reported migraineurs and controls. NeuroImage. Clin. 25:102122. doi: 10.1016/j.nicl.2019.102122 PubMed DOI PMC

Fong C. Y., Takahashi C., Braithwaite J. J. (2019). Evidence for distinct clusters of diverse anomalous experiences and their selective association with signs of elevated cortical hyperexcitability. Conscious. Cogn. 71, 1–17. doi: 10.1016/j.concog.2019.03.003, PMID: PubMed DOI

Foutch B. K., Peck C. K. (2013). Gender differences in contrast thresholds to biased stimuli. JSM Ophthalmol. 1:1007.

Geisler W. S. (2008). Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59, 167–192. doi: 10.1146/annurev.psych.58.110405.085632, PMID: PubMed DOI

Gogolla N. (2017). The insular cortex. Curr. Biol. 27, R580–R586. doi: 10.1016/j.cub.2017.05.010 PubMed DOI

Green S. A., Wood E. T. (2019). The role of regulation and attention in atypical sensory processing. Cogn. Neurosci. 10, 160–162. doi: 10.1080/17588928.2019.1592141 PubMed DOI PMC

Gröhn H., Gillick B. T., Tkáč I., Bednařík P., Mascali D., Deelchand D. K., et al. . (2019). Influence of repetitive transcranial magnetic stimulation on human neurochemistry and functional connectivity: a pilot MRI/MRS study at 7 T. Front. Neurosci. 13:1260. doi: 10.3389/fnins.2019.01260, PMID: PubMed DOI PMC

Haigh S. M., Barningham L., Berntsen M., Coutts L. V., Hobbs E. S. T., Irabor J., et al. . (2013). Discomfort and the cortical haemodynamic response to coloured gratings. Vis. Res. 89, 47–53. doi: 10.1016/j.visres.2013.07.003 PubMed DOI

Haigh S. M., Cooper N. R., Wilkins A. J. (2015). Cortical excitability and the shape of the haemodynamic response. NeuroImage 111, 379–384. doi: 10.1016/j.neuroimage.2015.02.034 PubMed DOI

Harris A. D., Puts N. A. J., Edden R. A. E. (2015). Tissue correction for GABA-edited MRS: considerations of voxel composition, tissue segmentation, and tissue relaxations. J. Magn. Reson. Imaging 42, 1431–1440. doi: 10.1002/jmri.24903 PubMed DOI PMC

Hattemer K., Knake S., Reis J., Rochon J., Oertel W. H., Rosenow F., et al. . (2007). Excitability of the motor cortex during ovulatory and anovulatory cycles: a transcranial magnetic stimulation study. Clin. Endocrinol. 66, 387–393. doi: 10.1111/j.1365-2265.2007.02744.x, PMID: PubMed DOI

Hibbard P. B., O’Hare L. (2015). Uncomfortable images produce non-sparse responses in a model of primary visual cortex. R. Soc. Open Sci. 2:140535. doi: 10.1098/rsos.140535, PMID: PubMed DOI PMC

Huang J., Cooper T. G., Satana B., Kaufman D. I., Cao Y. (2003). Visual distortion provoked by a stimulus in migraine associated with hyperneuronal activity. Headache 43, 664–671. doi: 10.1046/j.1526-4610.2003.03110.x PubMed DOI

Huang J., Zong X., Wilkins A., Jenkins B., Bozoki A., Cao Y. (2011). fMRI evidence that precision ophthalmic tints reduce cortical hyperactivation in migraine. Cephalalgia 31, 925–936. doi: 10.1177/0333102411409076, PMID: PubMed DOI PMC

Hui C. L.-M., Wong S. M.-Y., Yu T. Y.-T., Lau T. T.-Y., Choi O., Tsang S., et al. . (2023). Visual-stress-related cortical excitability as a prospective marker for symptoms of depression and anxiety in young people. Eur. Arch. Psychiatry Clin. Neurosci. 273, 1051–1060. doi: 10.1007/s00406-022-01469-7 PubMed DOI

Inghilleri M., Conte A., Currà A., Frasca V., Lorenzano C., Berardelli A. (2004). Ovarian hormones and cortical excitability. An rTMS study in humans. Clin. Neurophysiol. 115, 1063–1068. doi: 10.1016/j.clinph.2003.12.003, PMID: PubMed DOI

Johansson L. H., Skoog I., Zetterberg M. (2018). Gender differences in objective and subjective visual function. Investig. Ophthalmol. Vis. Sci. 59:1090.

Kreis R. (2016). The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn. Reson. Med. 75, 15–18. doi: 10.1002/mrm.25568 PubMed DOI

Kurcyus K., Annac E., Hanning N. M., Harris A. D., Oeltzschner G., Edden R., et al. . (2018). Opposite dynamics of GABA and glutamate levels in the occipital cortex during visual processing. J. Neurosci. Off. J. Soc. Neurosci. 38, 9967–9976. doi: 10.1523/JNEUROSCI.1214-18.2018 PubMed DOI PMC

Le A. T. D., Payne J., Clarke C., Kelly M. A., Prudenziati F., Armsby E., et al. . (2017). Discomfort from urban scenes: metabolic consequences. Landsc. Urban Plan. 160, 61–68. doi: 10.1016/j.landurbplan.2016.12.003 DOI

Lin A., Andronesi O., Bogner W., Choi I. Y., Coello E., Cudalbu C., et al. . (2021). Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR Biomed. 34:e4484. doi: 10.1002/nbm.4484 PubMed DOI PMC

Mehling W. E., Price C., Daubenmier J. J., Acree M., Bartmess E., Stewart A. (2012). The multidimensional assessment of interoceptive awareness (MAIA). PLoS One 7:e48230. doi: 10.1371/journal.pone.0048230 PubMed DOI PMC

Meisel C., Schulze-Bonhage A., Freestone D., Cook M. J., Achermann P., Plenz D. (2015). Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. USA 112, 14694–14699. doi: 10.1073/pnas.1513716112, PMID: PubMed DOI PMC

Mekle R., Mlynárik V., Gambarota G., Hergt M., Krueger G., Gruetter R. (2009). MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn. Reson. Med. 61, 1279–1285. doi: 10.1002/mrm.21961 PubMed DOI

Near J., Andersson J., Maron E., Mekle R., Gruetter R., Cowen P., et al. . (2013). Unedited in vivo detection and quantification of γ-aminobutyric acid in the occipital cortex using short-TE MRS at 3 T. NMR Biomed. 26, 1353–1362. doi: 10.1002/nbm.2960 PubMed DOI

Near J., Simpson R., Cowen P., Jezzard P. (2011). Efficient γ-aminobutyric acid editing at 3T without macromolecule contamination: MEGA-SPECIAL. NMR Biomed. 24, 1277–1285. doi: 10.1002/nbm.1688, PMID: PubMed DOI

Nguyen B. N., McKendrick A. M., Vingrys A. J. (2016). Abnormal inhibition-excitation imbalance in migraine. Cephalalgia 36, 5–14. doi: 10.1177/0333102415576725, PMID: PubMed DOI

O’Hare L. (2017). Steady-state VEP responses to uncomfortable stimuli. Eur. J. Neurosci. 45, 410–422. doi: 10.1111/ejn.13479 PubMed DOI

O’Hare L., Clarke A. D. F., Pollux P. M. J. (2015). VEP responses to Op-art stimuli. PLoS One 10:e0139400. doi: 10.1371/journal.pone.0139400, PMID: PubMed DOI PMC

Orekhova E. V., Stroganova T. A., Schneiderman J. F., Lundström S., Riaz B., Sarovic D., et al. . (2019). Neural gain control measured through cortical gamma oscillations is associated with sensory sensitivity. Hum. Brain Mapp. 40, 1583–1593. doi: 10.1002/hbm.24469 PubMed DOI PMC

Öz G., Deelchand D. K., Wijnen J. P., Mlynárik V., Xin L., Mekle R., et al. . (2020). Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: experts’ consensus recommendations. NMR Biomed.:e4236. doi: 10.1002/nbm.4236, PMID: PubMed DOI PMC

Park Y. W., Deelchand D. K., Joers J. M., Soher B. J., Barker P. B., Park H., et al. . (2016). Fast automatic voxel positioning with non-rigid registrations for improved between-subject consistency in MRS. In: Proceedings of the International Society for Magnetic Resonance in Medicine.

Pewsey A., Neuhäuser M., Ruxton G. D. (2013). Circular statistics in R. Oxford: OUP Oxford.

Pfeuffer J., Tkác I., Provencher S. W., Gruetter R. (1999). Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J. Magn. Reson. 141, 104–120. doi: 10.1006/jmre.1999.1895 PubMed DOI

Provencher S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679. doi: 10.1002/mrm.1910300604, PMID: PubMed DOI

Provencher S. W. (2001). Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14, 260–264. doi: 10.1002/nbm.698 PubMed DOI

Qi X., Fan H., Yang X., Chen Y., Deng W., Guo W., et al. . (2019). High level of pattern glare in major depressive disorder. BMC Psychiatry 19:415. doi: 10.1186/s12888-019-2399-6 PubMed DOI PMC

Radhakrishnan K., St Louis E. K., Johnson J. A., McClelland R. L., Westmoreland B. F., Klass D. W. (2005). Pattern-sensitive epilepsy: electroclinical characteristics, natural history, and delineation of the epileptic syndrome. Epilepsia 46, 48–58. doi: 10.1111/j.0013-9580.2005.26604.x PubMed DOI

Rahmani M., Rahmani F. (2019). “Cortex, insula, and Interoception” in Biophysics and neurophysiology of the sixth sense. eds. Rezaei N., Saghazadeh A. (Cham: Springer International Publishing; ), 59–68.

Robertson A. E., Simmons D. R. (2013). The relationship between sensory sensitivity and autistic traits in the general population. J. Autism Dev. Disord. 43, 775–784. doi: 10.1007/s10803-012-1608-7 PubMed DOI

Ruggeri P., Nguyen N., Pegna A. J., Brandner C. (2020). Interindividual differences in brain dynamics of early visual processes: impact on score accuracy in the mental rotation task. Psychophysiology 57:e13658. doi: 10.1111/psyp.13658 PubMed DOI

Saffin J. M., Tohid H. (2016). Walk like me, talk like me. The connection between mirror neurons and autism spectrum disorder. Neurosciences 21, 108–119. doi: 10.17712/nsj.2016.2.20150472 PubMed DOI PMC

Schwarz G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464. doi: 10.1214/aos/1176344136 DOI

Selya A. S., Rose J. S., Dierker L. C., Hedeker D., Mermelstein R. J. (2012). A practical guide to calculating Cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3:111. doi: 10.3389/fpsyg.2012.00111 PubMed DOI PMC

Shaqiri A., Roinishvili M., Grzeczkowski L., Chkonia E., Pilz K., Mohr C., et al. . (2018). Sex-related differences in vision are heterogeneous. Sci. Rep. 8:7521. doi: 10.1038/s41598-018-25298-8 PubMed DOI PMC

Silvestro M., Tessitore A., Di Nardo F., Scotto di Clemente F., Trojsi F., Cirillo M., et al. . (2022). Functional connectivity changes in complex migraine aura: beyond the visual network. Eur. J. Neurol. 29, 295–304. doi: 10.1111/ene.15061, PMID: PubMed DOI PMC

Simpson R., Devenyi G. A., Jezzard P., Hennessy T. J., Near J. (2017). Advanced processing and simulation of MRS data using the FID appliance (FID-A)-an open source, MATLAB-based toolkit. Magn. Reson. Med. 77, 23–33. doi: 10.1002/mrm.26091 PubMed DOI

Smith M. J., Adams L. F., Schmidt P. J., Rubinow D. R., Wassermann E. M. (2002). Effects of ovarian hormones on human cortical excitability. Ann. Neurol. 51, 599–603. doi: 10.1002/ana.10180, PMID: PubMed DOI

Smith M. J., Keel J. C., Greenberg B. D., Adams L. F., Schmidt P. J., Rubinow D. A., et al. . (1999). Menstrual cycle effects on cortical excitability. Neurology 53, 2069–2072. doi: 10.1212/wnl.53.9.2069 PubMed DOI

Song C., Sandberg K., Andersen L. M., Blicher J. U., Rees G. (2017). Human occipital and parietal GABA selectively influence visual perception of orientation and size. J. Neurosci. Off. J. Soc. Neurosci. 37, 8929–8937. doi: 10.1523/JNEUROSCI.3945-16.2017 PubMed DOI PMC

Stagg C. J., Bachtiar V., Johansen-Berg H. (2011a). What are we measuring with GABA magnetic resonance spectroscopy? Commun. Integr. Biol. 4, 573–575. doi: 10.4161/cib.4.5.16213 PubMed DOI PMC

Stagg C. J., Bestmann S., Constantinescu A. O., Moreno L. M., Allman C., Mekle R., et al. . (2011b). Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol. 589, 5845–5855. doi: 10.1113/jphysiol.2011.216978 PubMed DOI PMC

Stahl S. M. (2008). Depression and bipolar disorder: Stahl’s essential psychopharmacology. 3rd Edn. Cambridge: Cambridge University Press.

Szmajda B. A., Devries S. H. (2011). Glutamate spillover between mammalian cone photoreceptors. J. Neurosci. Off. J. Soc. Neurosci. 31, 13431–13441. doi: 10.1523/JNEUROSCI.2105-11.2011 PubMed DOI PMC

Tkác I., Oz G., Adriany G., Uğurbil K., Gruetter R. (2009). In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn. Reson. Med. 62, 868–879. doi: 10.1002/mrm.22086 PubMed DOI PMC

Tkác I., Starcuk Z., Choi I. Y., Gruetter R. (1999). In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656. doi: 10.1002/(sici)1522-2594(199904)41:4<649::aid-mrm2>3.0.co;2-g PubMed DOI

Tso A. R., Trujillo A., Guo C. C., Goadsby P. J., Seeley W. W. (2015). The anterior insula shows heightened interictal intrinsic connectivity in migraine without aura. Neurology 84, 1043–1050. doi: 10.1212/WNL.0000000000001330 PubMed DOI PMC

Uddin L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61. doi: 10.1038/nrn3857 PubMed DOI

Wang M., Qi X., Yang X., Fan H., Dou Y., Guo W., et al. . (2022). The pattern glare and visual memory are disrupted in patients with major depressive disorder. BMC Psychiatry 22:518. doi: 10.1186/s12888-022-04167-9 PubMed DOI PMC

Ward J. (2019). Individual differences in sensory sensitivity: a synthesizing framework and evidence from normal variation and developmental conditions. Cogn. Neurosci. 10, 139–157. doi: 10.1080/17588928.2018.1557131, PMID: PubMed DOI

Wilkins A. J., Evans B. J. W. (2010). Visual stress, its treatment with spectral filters, and its relationship to visually induced motion sickness. Appl. Ergon. 41, 509–515. doi: 10.1016/J.APERGO.2009.01.011 PubMed DOI

Wilkins A., Huang J., Cao Y. (2004). Visual stress theory and its application to reading and reading tests. J. Res. Read. 27, 152–162. doi: 10.1111/j.1467-9817.2004.00223.x DOI

Wilkins A., Nimmo-Smith I., Tait A., McManus C., Della Sala S., Tilley A., et al. . (1984). A neurological basis for visual discomfort. Brain J. Neurol. 107, 989–1017. doi: 10.1093/brain/107.4.989 PubMed DOI

Wolde E. T. (2014). Effects of caffeine on health and nutrition: A Review. Food Sci. Qual. Manag. (2014). 30, 59–65.

Wood E. T., Cummings K. K., Jung J., Patterson G., Okada N., Guo J., et al. . (2021). Sensory over-responsivity is related to GABAergic inhibition in thalamocortical circuits. Transl. Psychiatry. 11, 39. doi: 10.1038/s41398-020-01154-0 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

The effect of individual visual sensitivity on time perception

. 2025 Feb 24 ; 15 (1) : 6589. [epub] 20250224

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...