Subjective visual sensitivity in neurotypical adults: insights from a magnetic resonance spectroscopy study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39391756
PubMed Central
PMC11465554
DOI
10.3389/fnins.2024.1417996
Knihovny.cz E-resources
- Keywords
- GABA, Pattern Glare Test, cortical excitability, glutamate, magnetic resonance spectroscopy, visual discomfort,
- Publication type
- Journal Article MeSH
INTRODUCTION: Altered subjective visual sensitivity manifests as feelings of discomfort or overload elicited by intense and irritative visual stimuli. This can result in a host of visual aberrations including visual distortions, elementary visual hallucinations and visceral responses like dizziness and nausea, collectively referred to as "pattern glare." Current knowledge of the underlying neural mechanisms has focused on overall excitability of the visual cortex, but the individual contribution of excitatory and inhibitory systems has not yet been quantified. METHODS: In this study, we focus on the role of glutamate and γ-aminobutyric acid (GABA) as potential mediators of individual differences in subjective visual sensitivity, measured by a computerized Pattern Glare Test-a series of monochromatic square-wave gratings with three different spatial frequencies, while controlling for psychological variables related to sensory sensitivity with multiple questionnaires. Resting neurotransmitter concentrations in primary visual cortex (V1) and right anterior insula were studied in 160 healthy participants using magnetic resonance spectroscopy. RESULTS: Data showed significant differences in the perception of visual distortions (VD) and comfort scores between men and women, with women generally reporting more VD, and therefore the modulatory effect of sex was considered in a further examination. A general linear model analysis showed a negative effect of occipital glutamate on a number of reported visual distortions, but also a significant role of several background psychological traits. When assessing comfort scores in women, an important intervening variable was the menstrual cycle. DISCUSSION: Our findings do not support that baseline neurotransmitter levels have a significant role in overreactivity to aversive stimuli in neurotypical population. However, we demonstrated that biological sex can have a significant impact on subjective responses. Based on this additional finding, we suggest that future studies investigate aversive visual stimuli while examining the role of biological sex.
CEITEC Central European Institute of Technology Masaryk University Brno Czechia
Center of Functionally Integrative Neuroscience Aarhus University Aarhus Denmark
Department of Psychology Faculty of Arts Masaryk University Brno Czechia
Department of Psychology Lancaster University Lancaster United Kingdom
Physical Sciences Sunnybrook Research Institute Toronto ON Canada
See more in PubMed
Abramov I., Gordon J., Feldman O., Chavarga A. (2012a). Sex and vision II: color appearance of monochromatic lights. Biol. Sex Differ. 3:21. doi: 10.1186/2042-6410-3-21, PMID: PubMed DOI PMC
Abramov I., Gordon J., Feldman O., Chavarga A. (2012b). Sex and vision I: Spatio-temporal resolution. Biol. Sex Differ. 3:20. doi: 10.1186/2042-6410-3-20, PMID: PubMed DOI PMC
Adjamian P., Holliday I. E., Barnes G. R., Hillebrand A., Hadjipapas A., Singh K. D. (2004). Induced visual illusions and gamma oscillations in human primary visual cortex. Eur. J. Neurosci. 20, 587–592. doi: 10.1111/j.1460-9568.2004.03495.x PubMed DOI
Allen P. M., Hussain A., Usherwood C., Wilkins A. J. (2010). Pattern-related visual stress, chromaticity, and accommodation. Investig. Ophthalmol. Vis. Sci. 51, 6843–6849. doi: 10.1167/iovs.09-5086 PubMed DOI
Aurora S. K., Wilkinson F. (2007). The brain is hyperexcitable in migraine. Cephalalgia 27, 1442–1453. doi: 10.1111/j.1468-2982.2007.01502.x PubMed DOI
Badawy R. A. B., Loetscher T., Macdonell R. A. L., Brodtmann A. (2012). Cortical excitability and neurology: insights into the pathophysiology. Funct. Neurol. 27, 131–145. PubMed PMC
Beasley I. G., Davies L. N. (2012). Susceptibility to pattern glare following stroke. J. Neurol. 259, 1832–1839. doi: 10.1007/s00415-012-6418-5 PubMed DOI PMC
Bell V., Halligan P. W., Ellis H. D. (2006). The Cardiff anomalous perceptions scale (CAPS): a new validated measure of anomalous perceptual experience. Schizophr. Bull. 32, 366–377. doi: 10.1093/schbul/sbj014 PubMed DOI PMC
Braithwaite J. J., Broglia E., Bagshaw A. P., Wilkins A. J. (2013). Evidence for elevated cortical hyperexcitability and its association with out-of-body experiences in the non-clinical population: new findings from a pattern-glare task. Cortex 49, 793–805. doi: 10.1016/j.cortex.2011.11.013 PubMed DOI
Braithwaite J. J., Mevorach C., Takahashi C. (2015). Stimulating the aberrant brain: evidence for increased cortical hyperexcitability from a transcranial direct current stimulation (tDCS) study of individuals predisposed to anomalous perceptions. Cortex 69, 1–13. doi: 10.1016/j.cortex.2015.03.023 PubMed DOI
Campbell M. E. J., Mehrkanoon S., Cunnington R. (2018). Intentionally not imitating: insula cortex engaged for top-down control of action mirroring. Neuropsychologia 111, 241–251. doi: 10.1016/j.neuropsychologia.2018.01.037 PubMed DOI
Cauda F., D’Agata F., Sacco K., Duca S., Geminiani G., Vercelli A. (2011). Functional connectivity of the insula in the resting brain. NeuroImage 55, 8–23. doi: 10.1016/j.neuroimage.2010.11.049 PubMed DOI
Cebeiro and Rodríguez (2019). Mirror neurons: a biological genesis of relational. Papeles del psicólogo 40, 226–232. doi: 10.23923/PAP.PSICOL2019.2900 DOI
Chan Y. M., Glarin R., Moffat B. A., Bode S., McKendrick A. M. (2022). Relating the cortical visual contrast gain response to spectroscopy-measured excitatory and inhibitory metabolites in people who experience migraine. PLoS One 17:e0266130. doi: 10.1371/journal.pone.0266130 PubMed DOI PMC
Cohen J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates.
Conlon E., Lovegrove W., Barker S., Chekaluk E. (2001). Visual discomfort: the influence of spatial frequency. Perception 30, 571–581. doi: 10.1068/p2954 PubMed DOI
Costa P. T. (1989). NEO PI/FFI manual supplement for use with the NEO personality inventory and the NEO five-factor inventory. Lutz, FL: Psychological Assessment Resources.
Costa P. T., McCrae R. R. (1985). The NEO personality inventory: Manual form S and form R. Lutz, FL: Psychological Assessment Resources.
Costa P. T., McCrae R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEP five-factor inventory (NEO-FFI): professional manual. Lutz, FL: Psychological Assessment Resources.
Craig A. D. B. (2009). How do you feel--now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70. doi: 10.1038/nrn2555 PubMed DOI
Cueva A. S., Galhardoni R., Cury R. G., Parravano D. C., Correa G., Araujo H., et al. . (2016). Normative data of cortical excitability measurements obtained by transcranial magnetic stimulation in healthy subjects. Neurophysiol. Clin. 46, 43–51. doi: 10.1016/j.neucli.2015.12.003, PMID: PubMed DOI
Dance C. J., Ward J., Simner J. (2021). What is the link between mental imagery and sensory sensitivity? Insights from Aphantasia. Perception 50, 757–782. doi: 10.1177/03010066211042186, PMID: PubMed DOI PMC
De Valois R. L., Morgan H., Snodderly D. M. (1974). Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. Vis. Res. 14, 75–81. doi: 10.1016/0042-6989(74)90118-7 PubMed DOI
Dhamala E., Abdelkefi I., Nguyen M., Hennessy T. J., Nadeau H., Near J. (2019). Validation of in vivo MRS measures of metabolite concentrations in the human brain. NMR Biomed. 32:e4058. doi: 10.1002/nbm.4058 PubMed DOI
Dickinson A., Jones M., Milne E. (2016). Measuring neural excitation and inhibition in autism: different approaches, different findings and different interpretations. Brain Res. 1648, 277–289. doi: 10.1016/j.brainres.2016.07.011, PMID: PubMed DOI
Douglas R. J., Martin K. A. C. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451. doi: 10.1146/annurev.neuro.27.070203.144152 PubMed DOI
Downar J., Crawley A. P., Mikulis D. J., Davis K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nat. Neurosci. 3, 277–283. doi: 10.1038/72991 PubMed DOI
Duncan N. W., Wiebking C., Muñoz-Torres Z., Northoff G. (2014). How to investigate neuro-biochemical relationships on a regional level in humans? Methodological considerations for combining functional with biochemical imaging. J. Neurosci. Methods 221, 183–188. doi: 10.1016/j.jneumeth.2013.10.011 PubMed DOI
Edden R. A. E., Puts N. A. J., Harris A. D., Barker P. B., Evans C. J. (2014). Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J. Magn. Reson. Imaging 40, 1445–1452. doi: 10.1002/jmri.24478 PubMed DOI PMC
Evans B. J. W., Stevenson S. J. (2008). The pattern glare test: a review and determination of normative values. Ophthalmic. Physiol. Opt. 28, 295–309. doi: 10.1111/j.1475-1313.2008.00578.x PubMed DOI
Faul F., Erdfelder E., Buchner A., Lang A.-E. (2009). Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160. doi: 10.3758/BRM.41.4.1149 PubMed DOI
Fermin A. S. R., Friston K., Yamawaki S. (2021). Insula interoception, active inference and feeling representation. arXiv. doi: 10.48550/arXiv.2112.12290 DOI
Fider N. A., Komarova N. L. (2019). Differences in color categorization manifested by males and females: a quantitative world color survey study. Palgrave Commun. 5, 1–10. doi: 10.1057/s41599-019-0341-7 DOI
Fong C. Y., Law W. H. C., Braithwaite J. J., Mazaheri A. (2020). Differences in early and late pattern-onset visual-evoked potentials between self-reported migraineurs and controls. NeuroImage. Clin. 25:102122. doi: 10.1016/j.nicl.2019.102122 PubMed DOI PMC
Fong C. Y., Takahashi C., Braithwaite J. J. (2019). Evidence for distinct clusters of diverse anomalous experiences and their selective association with signs of elevated cortical hyperexcitability. Conscious. Cogn. 71, 1–17. doi: 10.1016/j.concog.2019.03.003, PMID: PubMed DOI
Foutch B. K., Peck C. K. (2013). Gender differences in contrast thresholds to biased stimuli. JSM Ophthalmol. 1:1007.
Geisler W. S. (2008). Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59, 167–192. doi: 10.1146/annurev.psych.58.110405.085632, PMID: PubMed DOI
Gogolla N. (2017). The insular cortex. Curr. Biol. 27, R580–R586. doi: 10.1016/j.cub.2017.05.010 PubMed DOI
Green S. A., Wood E. T. (2019). The role of regulation and attention in atypical sensory processing. Cogn. Neurosci. 10, 160–162. doi: 10.1080/17588928.2019.1592141 PubMed DOI PMC
Gröhn H., Gillick B. T., Tkáč I., Bednařík P., Mascali D., Deelchand D. K., et al. . (2019). Influence of repetitive transcranial magnetic stimulation on human neurochemistry and functional connectivity: a pilot MRI/MRS study at 7 T. Front. Neurosci. 13:1260. doi: 10.3389/fnins.2019.01260, PMID: PubMed DOI PMC
Haigh S. M., Barningham L., Berntsen M., Coutts L. V., Hobbs E. S. T., Irabor J., et al. . (2013). Discomfort and the cortical haemodynamic response to coloured gratings. Vis. Res. 89, 47–53. doi: 10.1016/j.visres.2013.07.003 PubMed DOI
Haigh S. M., Cooper N. R., Wilkins A. J. (2015). Cortical excitability and the shape of the haemodynamic response. NeuroImage 111, 379–384. doi: 10.1016/j.neuroimage.2015.02.034 PubMed DOI
Harris A. D., Puts N. A. J., Edden R. A. E. (2015). Tissue correction for GABA-edited MRS: considerations of voxel composition, tissue segmentation, and tissue relaxations. J. Magn. Reson. Imaging 42, 1431–1440. doi: 10.1002/jmri.24903 PubMed DOI PMC
Hattemer K., Knake S., Reis J., Rochon J., Oertel W. H., Rosenow F., et al. . (2007). Excitability of the motor cortex during ovulatory and anovulatory cycles: a transcranial magnetic stimulation study. Clin. Endocrinol. 66, 387–393. doi: 10.1111/j.1365-2265.2007.02744.x, PMID: PubMed DOI
Hibbard P. B., O’Hare L. (2015). Uncomfortable images produce non-sparse responses in a model of primary visual cortex. R. Soc. Open Sci. 2:140535. doi: 10.1098/rsos.140535, PMID: PubMed DOI PMC
Huang J., Cooper T. G., Satana B., Kaufman D. I., Cao Y. (2003). Visual distortion provoked by a stimulus in migraine associated with hyperneuronal activity. Headache 43, 664–671. doi: 10.1046/j.1526-4610.2003.03110.x PubMed DOI
Huang J., Zong X., Wilkins A., Jenkins B., Bozoki A., Cao Y. (2011). fMRI evidence that precision ophthalmic tints reduce cortical hyperactivation in migraine. Cephalalgia 31, 925–936. doi: 10.1177/0333102411409076, PMID: PubMed DOI PMC
Hui C. L.-M., Wong S. M.-Y., Yu T. Y.-T., Lau T. T.-Y., Choi O., Tsang S., et al. . (2023). Visual-stress-related cortical excitability as a prospective marker for symptoms of depression and anxiety in young people. Eur. Arch. Psychiatry Clin. Neurosci. 273, 1051–1060. doi: 10.1007/s00406-022-01469-7 PubMed DOI
Inghilleri M., Conte A., Currà A., Frasca V., Lorenzano C., Berardelli A. (2004). Ovarian hormones and cortical excitability. An rTMS study in humans. Clin. Neurophysiol. 115, 1063–1068. doi: 10.1016/j.clinph.2003.12.003, PMID: PubMed DOI
Johansson L. H., Skoog I., Zetterberg M. (2018). Gender differences in objective and subjective visual function. Investig. Ophthalmol. Vis. Sci. 59:1090.
Kreis R. (2016). The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn. Reson. Med. 75, 15–18. doi: 10.1002/mrm.25568 PubMed DOI
Kurcyus K., Annac E., Hanning N. M., Harris A. D., Oeltzschner G., Edden R., et al. . (2018). Opposite dynamics of GABA and glutamate levels in the occipital cortex during visual processing. J. Neurosci. Off. J. Soc. Neurosci. 38, 9967–9976. doi: 10.1523/JNEUROSCI.1214-18.2018 PubMed DOI PMC
Le A. T. D., Payne J., Clarke C., Kelly M. A., Prudenziati F., Armsby E., et al. . (2017). Discomfort from urban scenes: metabolic consequences. Landsc. Urban Plan. 160, 61–68. doi: 10.1016/j.landurbplan.2016.12.003 DOI
Lin A., Andronesi O., Bogner W., Choi I. Y., Coello E., Cudalbu C., et al. . (2021). Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR Biomed. 34:e4484. doi: 10.1002/nbm.4484 PubMed DOI PMC
Mehling W. E., Price C., Daubenmier J. J., Acree M., Bartmess E., Stewart A. (2012). The multidimensional assessment of interoceptive awareness (MAIA). PLoS One 7:e48230. doi: 10.1371/journal.pone.0048230 PubMed DOI PMC
Meisel C., Schulze-Bonhage A., Freestone D., Cook M. J., Achermann P., Plenz D. (2015). Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. USA 112, 14694–14699. doi: 10.1073/pnas.1513716112, PMID: PubMed DOI PMC
Mekle R., Mlynárik V., Gambarota G., Hergt M., Krueger G., Gruetter R. (2009). MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn. Reson. Med. 61, 1279–1285. doi: 10.1002/mrm.21961 PubMed DOI
Near J., Andersson J., Maron E., Mekle R., Gruetter R., Cowen P., et al. . (2013). Unedited in vivo detection and quantification of γ-aminobutyric acid in the occipital cortex using short-TE MRS at 3 T. NMR Biomed. 26, 1353–1362. doi: 10.1002/nbm.2960 PubMed DOI
Near J., Simpson R., Cowen P., Jezzard P. (2011). Efficient γ-aminobutyric acid editing at 3T without macromolecule contamination: MEGA-SPECIAL. NMR Biomed. 24, 1277–1285. doi: 10.1002/nbm.1688, PMID: PubMed DOI
Nguyen B. N., McKendrick A. M., Vingrys A. J. (2016). Abnormal inhibition-excitation imbalance in migraine. Cephalalgia 36, 5–14. doi: 10.1177/0333102415576725, PMID: PubMed DOI
O’Hare L. (2017). Steady-state VEP responses to uncomfortable stimuli. Eur. J. Neurosci. 45, 410–422. doi: 10.1111/ejn.13479 PubMed DOI
O’Hare L., Clarke A. D. F., Pollux P. M. J. (2015). VEP responses to Op-art stimuli. PLoS One 10:e0139400. doi: 10.1371/journal.pone.0139400, PMID: PubMed DOI PMC
Orekhova E. V., Stroganova T. A., Schneiderman J. F., Lundström S., Riaz B., Sarovic D., et al. . (2019). Neural gain control measured through cortical gamma oscillations is associated with sensory sensitivity. Hum. Brain Mapp. 40, 1583–1593. doi: 10.1002/hbm.24469 PubMed DOI PMC
Öz G., Deelchand D. K., Wijnen J. P., Mlynárik V., Xin L., Mekle R., et al. . (2020). Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: experts’ consensus recommendations. NMR Biomed.:e4236. doi: 10.1002/nbm.4236, PMID: PubMed DOI PMC
Park Y. W., Deelchand D. K., Joers J. M., Soher B. J., Barker P. B., Park H., et al. . (2016). Fast automatic voxel positioning with non-rigid registrations for improved between-subject consistency in MRS. In: Proceedings of the International Society for Magnetic Resonance in Medicine.
Pewsey A., Neuhäuser M., Ruxton G. D. (2013). Circular statistics in R. Oxford: OUP Oxford.
Pfeuffer J., Tkác I., Provencher S. W., Gruetter R. (1999). Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J. Magn. Reson. 141, 104–120. doi: 10.1006/jmre.1999.1895 PubMed DOI
Provencher S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679. doi: 10.1002/mrm.1910300604, PMID: PubMed DOI
Provencher S. W. (2001). Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14, 260–264. doi: 10.1002/nbm.698 PubMed DOI
Qi X., Fan H., Yang X., Chen Y., Deng W., Guo W., et al. . (2019). High level of pattern glare in major depressive disorder. BMC Psychiatry 19:415. doi: 10.1186/s12888-019-2399-6 PubMed DOI PMC
Radhakrishnan K., St Louis E. K., Johnson J. A., McClelland R. L., Westmoreland B. F., Klass D. W. (2005). Pattern-sensitive epilepsy: electroclinical characteristics, natural history, and delineation of the epileptic syndrome. Epilepsia 46, 48–58. doi: 10.1111/j.0013-9580.2005.26604.x PubMed DOI
Rahmani M., Rahmani F. (2019). “Cortex, insula, and Interoception” in Biophysics and neurophysiology of the sixth sense. eds. Rezaei N., Saghazadeh A. (Cham: Springer International Publishing; ), 59–68.
Robertson A. E., Simmons D. R. (2013). The relationship between sensory sensitivity and autistic traits in the general population. J. Autism Dev. Disord. 43, 775–784. doi: 10.1007/s10803-012-1608-7 PubMed DOI
Ruggeri P., Nguyen N., Pegna A. J., Brandner C. (2020). Interindividual differences in brain dynamics of early visual processes: impact on score accuracy in the mental rotation task. Psychophysiology 57:e13658. doi: 10.1111/psyp.13658 PubMed DOI
Saffin J. M., Tohid H. (2016). Walk like me, talk like me. The connection between mirror neurons and autism spectrum disorder. Neurosciences 21, 108–119. doi: 10.17712/nsj.2016.2.20150472 PubMed DOI PMC
Schwarz G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464. doi: 10.1214/aos/1176344136 DOI
Selya A. S., Rose J. S., Dierker L. C., Hedeker D., Mermelstein R. J. (2012). A practical guide to calculating Cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3:111. doi: 10.3389/fpsyg.2012.00111 PubMed DOI PMC
Shaqiri A., Roinishvili M., Grzeczkowski L., Chkonia E., Pilz K., Mohr C., et al. . (2018). Sex-related differences in vision are heterogeneous. Sci. Rep. 8:7521. doi: 10.1038/s41598-018-25298-8 PubMed DOI PMC
Silvestro M., Tessitore A., Di Nardo F., Scotto di Clemente F., Trojsi F., Cirillo M., et al. . (2022). Functional connectivity changes in complex migraine aura: beyond the visual network. Eur. J. Neurol. 29, 295–304. doi: 10.1111/ene.15061, PMID: PubMed DOI PMC
Simpson R., Devenyi G. A., Jezzard P., Hennessy T. J., Near J. (2017). Advanced processing and simulation of MRS data using the FID appliance (FID-A)-an open source, MATLAB-based toolkit. Magn. Reson. Med. 77, 23–33. doi: 10.1002/mrm.26091 PubMed DOI
Smith M. J., Adams L. F., Schmidt P. J., Rubinow D. R., Wassermann E. M. (2002). Effects of ovarian hormones on human cortical excitability. Ann. Neurol. 51, 599–603. doi: 10.1002/ana.10180, PMID: PubMed DOI
Smith M. J., Keel J. C., Greenberg B. D., Adams L. F., Schmidt P. J., Rubinow D. A., et al. . (1999). Menstrual cycle effects on cortical excitability. Neurology 53, 2069–2072. doi: 10.1212/wnl.53.9.2069 PubMed DOI
Song C., Sandberg K., Andersen L. M., Blicher J. U., Rees G. (2017). Human occipital and parietal GABA selectively influence visual perception of orientation and size. J. Neurosci. Off. J. Soc. Neurosci. 37, 8929–8937. doi: 10.1523/JNEUROSCI.3945-16.2017 PubMed DOI PMC
Stagg C. J., Bachtiar V., Johansen-Berg H. (2011a). What are we measuring with GABA magnetic resonance spectroscopy? Commun. Integr. Biol. 4, 573–575. doi: 10.4161/cib.4.5.16213 PubMed DOI PMC
Stagg C. J., Bestmann S., Constantinescu A. O., Moreno L. M., Allman C., Mekle R., et al. . (2011b). Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol. 589, 5845–5855. doi: 10.1113/jphysiol.2011.216978 PubMed DOI PMC
Stahl S. M. (2008). Depression and bipolar disorder: Stahl’s essential psychopharmacology. 3rd Edn. Cambridge: Cambridge University Press.
Szmajda B. A., Devries S. H. (2011). Glutamate spillover between mammalian cone photoreceptors. J. Neurosci. Off. J. Soc. Neurosci. 31, 13431–13441. doi: 10.1523/JNEUROSCI.2105-11.2011 PubMed DOI PMC
Tkác I., Oz G., Adriany G., Uğurbil K., Gruetter R. (2009). In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn. Reson. Med. 62, 868–879. doi: 10.1002/mrm.22086 PubMed DOI PMC
Tkác I., Starcuk Z., Choi I. Y., Gruetter R. (1999). In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656. doi: 10.1002/(sici)1522-2594(199904)41:4<649::aid-mrm2>3.0.co;2-g PubMed DOI
Tso A. R., Trujillo A., Guo C. C., Goadsby P. J., Seeley W. W. (2015). The anterior insula shows heightened interictal intrinsic connectivity in migraine without aura. Neurology 84, 1043–1050. doi: 10.1212/WNL.0000000000001330 PubMed DOI PMC
Uddin L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61. doi: 10.1038/nrn3857 PubMed DOI
Wang M., Qi X., Yang X., Fan H., Dou Y., Guo W., et al. . (2022). The pattern glare and visual memory are disrupted in patients with major depressive disorder. BMC Psychiatry 22:518. doi: 10.1186/s12888-022-04167-9 PubMed DOI PMC
Ward J. (2019). Individual differences in sensory sensitivity: a synthesizing framework and evidence from normal variation and developmental conditions. Cogn. Neurosci. 10, 139–157. doi: 10.1080/17588928.2018.1557131, PMID: PubMed DOI
Wilkins A. J., Evans B. J. W. (2010). Visual stress, its treatment with spectral filters, and its relationship to visually induced motion sickness. Appl. Ergon. 41, 509–515. doi: 10.1016/J.APERGO.2009.01.011 PubMed DOI
Wilkins A., Huang J., Cao Y. (2004). Visual stress theory and its application to reading and reading tests. J. Res. Read. 27, 152–162. doi: 10.1111/j.1467-9817.2004.00223.x DOI
Wilkins A., Nimmo-Smith I., Tait A., McManus C., Della Sala S., Tilley A., et al. . (1984). A neurological basis for visual discomfort. Brain J. Neurol. 107, 989–1017. doi: 10.1093/brain/107.4.989 PubMed DOI
Wolde E. T. (2014). Effects of caffeine on health and nutrition: A Review. Food Sci. Qual. Manag. (2014). 30, 59–65.
Wood E. T., Cummings K. K., Jung J., Patterson G., Okada N., Guo J., et al. . (2021). Sensory over-responsivity is related to GABAergic inhibition in thalamocortical circuits. Transl. Psychiatry. 11, 39. doi: 10.1038/s41398-020-01154-0 PubMed DOI PMC