Cardiac Conduction System as an OAR in Radiation Therapy: Doses to SA/AV Nodes and Their Reduction
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39399817
PubMed Central
PMC11471227
DOI
10.1016/j.ijpt.2024.100631
PII: S2331-5180(24)00697-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiac substructure, Cardiotoxicity, Conduction nodes, Non–small cell lung cancer, Proton therapy,
- Publikační typ
- časopisecké články MeSH
PURPOSE: Despite advancements in radiation techniques, concerns persist regarding the adverse effects of radiation therapy, particularly cardiotoxicity or radiation-induced heart disease. Recently, arrhythmogenic toxicity has come to the forefront-the impact of radiation therapy on the cardiac conduction system. Our objective was to conduct a dosimetric study and subsequently investigate the feasibility of optimizing the sinoatrial (SA) and atrioventricular (AV) nodes as organs at risk (OARs) in proton radiation therapy for non-small cell lung cancer with N3 disease. PATIENTS AND METHODS: Thirty-two non-small cell lung cancer patients with N3 disease undergoing proton radiation therapy were included. Sinoatrial and AV nodes, along with standard OARs, were delineated. Dosimetric analysis and optimization were performed using intensity-modulated proton therapy. RESULTS: Patients surpassing a predefined SA node dose threshold underwent dose optimization. Proton radiation therapy with pencil beam scanning demonstrated a significant reduction in SA and AV node doses without compromising target volume coverage or significant shift in the dose to other monitored OARs. CONCLUSION: Dose reduction to the SA and AV nodes for pencil beam scanning is a relatively simple task, and the reduction can be very substantial. Larger cohort studies and diverse radiotherapeutic modalities are needed for further validation and refinement of dose constraints.
Zobrazit více v PubMed
Ellahham S., Khalouf A., Elkhazendar M., Dababo N., Manla Y. An overview of radiation-induced heart disease. Radiat Oncol J. 2022;40(2):89–102. doi: 10.3857/roj.2021.00766. PubMed DOI PMC
Lyon A.R., López-Fernández T., Couch L.S., et al. ESC Scientific Document Group 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS) Eur Heart J. 2022;43(41):4229–4361. doi: 10.1093/eurheartj/ehac244. PubMed DOI
Taunk N.K., Haffty B.G., Kostis J.B., Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39. doi: 10.3389/fonc.2015.00039. PubMed DOI PMC
Yusuf S.W., Sami S., Daher I.N. Radiation-induced heart disease: a clinical update. Cardiol Res Pract. 2011;2011 doi: 10.4061/2011/317659. PubMed DOI PMC
Yegya-Raman N., Wang K., Kim S., et al. Dosimetric predictors of symptomatic cardiac events after conventional-dose chemoradiation therapy for inoperable NSCLC. J Thorac Oncol. 2018;13(10):1508–1518. doi: 10.1016/j.jtho.2018.05.028. PubMed DOI PMC
Jang B.S., Cha M.J., Kim H.J., et al. Heart substructural dosimetric parameters and risk of cardiac events after definitive chemoradiotherapy for stage III non-small cell lung cancer. Radiother Oncol. 2020;152:126–132. doi: 10.1016/j.radonc.2020.09.050. PubMed DOI
Atkins K.M., Rawal B., Chaunzwa T.L., et al. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol. 2019;73(23):2976–2987. doi: 10.1016/j.jacc.2019.03.500. PubMed DOI
Jaworski C., Mariani J.A., Wheeler G., Kaye D.M. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013;61(23):2319–2328. doi: 10.1016/j.jacc.2013.01.090. PubMed DOI
Adams M.J., Lipshultz S.E., Schwartz C., Fajardo L.F., Coen V., Constine L.S. Radiation-associated cardiovascular disease: manifestations and management. Semin Radiat Oncol. 2003;13(3):346–356. doi: 10.1016/S1053-4296(03)00026-2. PubMed DOI
Kim K.H., Oh J., Yang G., et al. Association of sinoatrial node radiation dose with atrial fibrillation and mortality in patients with lung cancer. JAMA Oncol. 2022;8(11):1624–1634. doi: 10.1001/jamaoncol.2022.4202. PubMed DOI PMC
Qian Y., Zhu H., Pollom E.L., et al. Sinoatrial node toxicity after stereotactic ablative radiation therapy to lung tumors. Pract Radiat Oncol. 2017;7(6):e525–e529. doi: 10.1016/j.prro.2017.04.005. PubMed DOI
Nakao T., Kanaya H., Namura M., et al. Complete atrioventricular block following radiation therapy for malignant thymoma. Jpn J Med. 1990;29(1):104–110. doi: 10.2169/internalmedicine1962.29.104. PubMed DOI
Loap P., Mirandola A., De Marzi L., et al. Cardiac conduction system exposure with modern radiotherapy techniques for mediastinal Hodgkin lymphoma irradiation. Acta Oncol. 2022;61(4):496–499. doi: 10.1080/0284186X.2021.2025265. PubMed DOI
McWilliam A., Khalifa J., Vasquez Osorio E., et al. Novel methodology to investigate the effect of radiation dose to heart substructures on overall survival. Int J Radiat Oncol Biol Phys. 2020;108(4):1073–1081. doi: 10.1016/j.ijrobp.2020.06.031. PubMed DOI
McWilliam A., Abravan A., Banfill K., Faivre-Finn C., van Herk M. Demystifying the results of RTOG 0617: identification of dose sensitive cardiac subregions associated with overall survival. J Thorac Oncol. 2023;18(5):599–607. doi: 10.1016/j.jtho.2023.01.085. PubMed DOI
Salim N., Popodko A., Tumanova K., Stolbovoy A., Lagkueva I., Ragimov V. Cardiac dose in the treatment of synchronous bilateral breast cancer patients between three different radiotherapy techniques (VMAT, IMRT, and 3D CRT) Discov Oncol. 2023;14(1):29. doi: 10.1007/s12672-023-00636-z. PubMed DOI PMC
Loap P., Servois V., Dhonneur G., Kirov K., Fourquet A., Kirova Y. A radiation therapy contouring atlas for cardiac conduction node delineation. Pract Radiat Oncol. 2021;11(4):e434–e437. doi: 10.1016/j.prro.2021.02.002. PubMed DOI
Hattu D., Emans D., van der Stoep J., Canters R., van Loon J., De Ruysscher D. Comparison of photon intensity modulated, hybrid and volumetric modulated arc radiation treatment techniques in locally advanced non-small cell lung cancer. Phys Imaging Radiat Oncol. 2023;28 doi: 10.1016/j.phro.2023.100519. PubMed DOI PMC
Loap P., Goudjil F., Servois V., Kirov K., Fourquet A., Kirova Y. Radiation exposure of cardiac conduction nodes during breast proton therapy. Int J Part Ther. 2023;10(1):59–64. doi: 10.14338/IJPT-22-00038.1. PubMed DOI PMC
McWilliam A., Vasquez Osorio E., Faivre-Finn C., et al. Influence of tumour laterality on patient survival in nonsmall cell lung cancer after radiotherapy. Radiother Oncol. 2019;137:71–76. doi: 10.1016/j.radonc.2019.04.022. PubMed DOI
Miller E.D., Wu T., McKinley G., et al. Incident atrial fibrillation and survival outcomes in esophageal cancer following radiotherapy. Int J Radiat Oncol Biol Phys. 2024;118(1):124–136. doi: 10.1016/j.ijrobp.2023.08.011. PubMed DOI
McWilliam A., Kennedy J., Hodgson C., Vasquez Osorio E., Faivre-Finn C., van Herk M. Radiation dose to heart base linked with poorer survival in lung cancer patients. Eur J Cancer. 2017;85:106–113. doi: 10.1016/j.ejca.2017.07.053. PubMed DOI
McWilliam A., Dootson C., Graham L., Banfill K., Abravan A., van Herk M. Dose surface maps of the heart can identify regions associated with worse survival for lung cancer patients treated with radiotherapy. Phys Imaging Radiat Oncol. 2020;15:46–51. doi: 10.1016/j.phro.2020.07.002. PubMed DOI PMC
Csepe T.A., Zhao J., Hansen B.J. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog Biophys Mol Biol. 2016;120(1-3):164–178. doi: 10.1016/j.pbiomolbio.2015.12.011. PubMed DOI PMC
Chen V., Song A., Werner-Wasik M., et al. Effect of radiation dose to cardiac substructures on the acute development of new arrhythmias following conventionally fractionated radiation treatment to the lung. Int J Radiat Oncol Biol Phys. 2019;105(1) doi: 10.1016/j.ijrobp.2019.06.1415. DOI