A Whole-Brain Model of the Aging Brain During Slow Wave Sleep
Language English Country United States Media electronic-print
Document type Journal Article
PubMed
39406483
PubMed Central
PMC11540593
DOI
10.1523/eneuro.0180-24.2024
PII: ENEURO.0180-24.2024
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Electroencephalography * MeSH
- Connectome * MeSH
- Middle Aged MeSH
- Humans MeSH
- Models, Neurological * MeSH
- Brain * physiology MeSH
- Computer Simulation MeSH
- Aged MeSH
- Sleep, Slow-Wave * physiology MeSH
- Aging * physiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.
Central European Institute of Technology Masaryk University Brno 62500 Czech Republic
Computational Neurology Group Ruhr University Bochum Bochum 44801 Germany
Department of Brain and Behavioral Sciences University of Pavia Pavia 27100 Italy
Department of Engineering Università Campus Bio Medico di Roma Rome 00128 Italy
Deutsches Zentrum für Neurodegenerative Erkrankungen Bonn 53127 Germany
Faculty of Medicine University of Bonn Bonn 53115 Germany
Institute of Neuroscience Saclay 91400 France
Research Center Enrico Fermi Rome 00184 Italy
Roma Tre University of Rome Rome 00146 Italy
See more in PubMed
Abbott LF, van Vreeswijk C (1993) Asynchronous states in networks of pulse-coupled oscillators. Phys Rev E 48:1483–1490. 10.1103/PhysRevE.48.1483 PubMed DOI
Alexandersen CG, de Haan W, Bick C, Goriely A (2023) A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer’s disease. J R Soc Interface 20:20220607. 10.1098/rsif.2022.0607 PubMed DOI PMC
Antonenko D, Flöel A (2014) Healthy aging by staying selectively connected: a mini-review. Gerontology 60:3–9. 10.1159/000354376 PubMed DOI
Arnal PJ, et al. (2020) The dreem headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging. Sleep 43:zsaa097. 10.1093/sleep/zsaa097 PubMed DOI PMC
Avvenuti G, et al. (2020) Integrity of corpus callosum is essential for the cross-hemispheric propagation of sleep slow waves: a high-density EEG study in split-brain patients. J Neurosci 40:5589–5603. 10.1523/JNEUROSCI.2571-19.2020 PubMed DOI PMC
Bethlehem RAI, et al. (2022) Brain charts for the human lifespan. Nature 604:525–533. 10.1038/s41586-022-04554-y PubMed DOI PMC
Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637–3642. 10.1152/jn.00686.2005 PubMed DOI
Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621–71. 10.1162/089976699300016179 PubMed DOI
Buchmann A, Kurth S, Ringli M, Geiger A, Jenni OG, Huber R (2011) Anatomical markers of sleep slow wave activity derived from structural magnetic resonance images. J Sleep Res 20:506–513. 10.1111/j.1365-2869.2011.00916.x PubMed DOI
Cabrera-Àlvarez J, Stefanovski L, Martin L, Susi G, Maestú F, Ritter P (2024) A multiscale closed-loop neurotoxicity model of Alzheimer’s disease progression explains functional connectivity alterations. eNeuro 11:ENEURO.0345–23.2023. 10.1523/ENEURO.0345-23.2023 PubMed DOI PMC
Carrier J, Viens I, Poirier G, Robillard R, Lafortune M, Vandewalle G, Martin N, Barakat M, Paquet J, Filipini D (2011) Sleep slow wave changes during the middle years of life. Eur J Neurosci 33:758–766. 10.1111/j.1460-9568.2010.07543.x PubMed DOI
Caspers S, et al. (2014) Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000brains. Front Aging Neurosci 6:00149. 10.3389/fnagi.2014.00149 PubMed DOI PMC
Caspers S, Schreiber J (2021) 1000brains study, connectivity data (v1.1).
Castano-Prat P, Perez-Zabalza M, Perez-Mendez L, Escorihuela RM, Sanchez-Vives MV (2017) Slow and fast neocortical oscillations in the senescence-accelerated mouse model SAMP8. Front Aging Neurosci 9:141. 10.3389/fnagi.2017.00141 PubMed DOI PMC
Coelho A, et al. (2021) Signatures of white-matter microstructure degradation during aging and its association with cognitive status. Sci Rep 11:4517. 10.1038/s41598-021-83983-7 PubMed DOI PMC
Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-d model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–208. 10.1002/hbm.460030304 DOI
Damoiseaux JS (2017) Effects of aging on functional and structural brain connectivity. NeuroImage 160:32–40. 10.1016/j.neuroimage.2017.01.077 PubMed DOI
Debellemaniere E, Chambon S, Pinaud C, Thorey V, Dehaene D, Léger D, Chennaoui M, Arnal PJ, Galtier MN (2018) Performance of an ambulatory dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment. Front Hum Neurosci 12:88. 10.3389/fnhum.2018.00088 PubMed DOI PMC
Deco G, Corbetta M (2011) The dynamical balance of the brain at rest. Neurosci: Rev J Bringing Neurobiol Neurol Psychiatry 17:107–123. 10.1177/1073858409354384 PubMed DOI PMC
Di Volo M, Romagnoni A, Capone C, Destexhe A (2019) Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation. Neural Comput 31:653–680. 10.1162/neco_a_01173 PubMed DOI
Dubé J, Lafortune M, Bedetti C, Bouchard M, Gagnon JF, Doyon J, Evans AC, Lina J-M, Carrier J (2015) Cortical thinning explains changes in sleep slow waves during adulthood. J Neurosci 35:7795–7807. 10.1523/JNEUROSCI.3956-14.2015 PubMed DOI PMC
El Kanbi K, Tort-Colet N, Benchenane K, Destexhe A (2023) “Eeg and computational aspects of how aging affects sleep slow waves.” bioRxiv.
Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLOS Comput Biol 4:e1000196. 10.1371/journal.pcbi.1000196 PubMed DOI PMC
Ghuman AS, McDaniel JR, Martin A (2011) A wavelet-based method for measuring the oscillatory dynamics of resting-state functional connectivity in meg. Neuroimage 56:69–77. 10.1016/j.neuroimage.2011.01.046 PubMed DOI PMC
Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, Johansen-Berg H (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51:943–951. 10.1016/j.neuroimage.2010.03.004 PubMed DOI PMC
Goldman JS, Kusch L, Aquilue D, Yalçınkaya BH, Depannemaecker D, Ancourt K, Nghiem T -AE, Jirsa V, Destexhe A (2022) A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics. Front Comput Neurosci 16:1058957. 10.3389/fncom.2022.1058957 PubMed DOI PMC
Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP (2018) Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 97:221–230.e4. 10.1016/j.neuron.2017.11.020 PubMed DOI PMC
Knight BW (2000) Dynamics of encoding in neuron populations: some general mathematical features. Neural Comput 12:473–518. 10.1162/089976600300015673 PubMed DOI
Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208. 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C PubMed DOI PMC
Landolt HP, Borbély AA (2001) Age-dependent changes in sleep EEG topography. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol 112:369–377. 10.1016/S1388-2457(00)00542-3 PubMed DOI
Lavanga M, et al. (2023a) The virtual aging brain: causal inference supports interhemispheric dedifferentiation in healthy aging. NeuroImage 283:120403. 10.1016/j.neuroimage.2023.120403 PubMed DOI
Lavanga M, et al. (2023b) The virtual aging brain (v1.0.0).
Mander BA, Winer JR, Walker MP (2017) Sleep and human aging. Neuron 94:19–36. 10.1016/j.neuron.2017.02.004 PubMed DOI PMC
Massimini M, Huber RR, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24:6862. 10.1523/JNEUROSCI.1318-04.2004 PubMed DOI PMC
Mattia M, Del Giudice P (2002) Population dynamics of interacting spiking neurons. Phys Rev E 66:051917. 10.1103/PhysRevE.66.051917 PubMed DOI
Melozzi F, Woodman MM, Jirsa VK, Bernard C (2017) The virtual mouse brain: a computational neuroinformatics platform to study whole mouse brain dynamics. eNeuro 4:ENEURO.0111-17.2017. 10.1523/ENEURO.0111-17.2017 PubMed DOI PMC
Muir JL (1997) Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 56:687–696. 10.1016/S0091-3057(96)00431-5 PubMed DOI
Petkoski S, Ritter P, Jirsa VK (2023) White-matter degradation and dynamical compensation support age-related functional alterations in human brain. Cereb Cortex 33:6241–6256. 10.1093/cercor/bhac500 PubMed DOI PMC
Piantoni G, Poil S-S, Linkenkaer-Hansen K, Verweij IM, Ramautar JR, Van Someren EJW, Van Der Werf YD (2013) Individual differences in white matter diffusion affect sleep oscillations. J Neurosci: Off J Soc Neurosci 33:227–233. 10.1523/JNEUROSCI.2030-12.2013 PubMed DOI PMC
Puxeddu MG, Faskowitz J, Betzel RF, Petti M, Astolfi L, Sporns O (2020) The modular organization of brain cortical connectivity across the human lifespan. NeuroImage 218:116974. 10.1016/j.neuroimage.2020.116974 PubMed DOI
Romanella SM, Roe D, Tatti E, Cappon D, Paciorek R, Testani E, Rossi A, Rossi S, Santarnecchi E (2021) The sleep side of aging and Alzheimer’s disease. Sleep Med 77:209–225. 10.1016/j.sleep.2020.05.029 PubMed DOI PMC
Sacha M, Goldman JS, Kusch L, Destexhe A (2024) Asynchronous and slow-wave oscillatory states in connectome-based models of mouse, monkey and human cerebral cortex. Appl Sci (Basel) 14:1063. 10.3390/app14031063 DOI
Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK (2015) Mathematical framework for large-scale brain network modeling in the virtual brain. NeuroImage 111:385–430. 10.1016/j.neuroimage.2015.01.002 PubMed DOI
Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11. 10.1088/0031-9155/32/1/004 PubMed DOI
Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, Eickhoff SB, Yeo BTT (2018) Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex 28:3095–3114. 10.1093/cercor/bhx179 PubMed DOI PMC
Schilling KG, et al. (2022) Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants. Brain Struct Funct 227:2111–2125. 10.1007/s00429-022-02503-z PubMed DOI PMC
Schirner M, et al. (2022) Brain simulation as a cloud service: the virtual brain on EBRAINS. NeuroImage 251:118973. 10.1016/j.neuroimage.2022.118973 PubMed DOI
Spiegler A, Abadchi JK, Mohajerani M, Jirsa VK (2020) In silico exploration of mouse brain dynamics by focal stimulation reflects the organization of functional networks and sensory processing. Netw Neurosci 4:807–851. 10.1162/netn_a_00152 PubMed DOI PMC
Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193. 10.1002/hbm.20346 PubMed DOI PMC
Staresina BP, Niediek J, Borger V, Surges R, Mormann F (2023) How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 26:1429–1437. 10.1038/s41593-023-01381-w PubMed DOI PMC
Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci: Off J Soc Neurosci 13:3252–3265. 10.1523/JNEUROSCI.13-08-03252.1993 PubMed DOI PMC
Tatulian SA (2022) Challenges and hopes for Alzheimer’s disease. Drug Discov Today 27:1027–1043. 10.1016/j.drudis.2022.01.016 PubMed DOI
Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4:259–84. 10.1088/0954-898X_4_3_002 DOI
Van Cauter E, Leproult R, Plat L (2000) Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 284:861–868. 10.1001/jama.284.7.861 PubMed DOI
Zamani Esfahlani F, Faskowitz J, Slack J, Mišić B, Betzel RF (2022) Local structure-function relationships in human brain networks across the lifespan. Nat Commun 13:2053. 10.1038/s41467-022-29770-y PubMed DOI PMC
Zerlaut Y, Chemla S, Chavane F, Destexhe A (2018) Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. J Comput Neurosci 44:45–61. 10.1007/s10827-017-0668-2 PubMed DOI