Effects of Zinc Phthalocyanine Photodynamic Therapy on Vital Structures and Processes in Hela Cells
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU21J-03-00062
The Ministry of Health Czech Republic
PubMed
39408981
PubMed Central
PMC11476877
DOI
10.3390/ijms251910650
PII: ijms251910650
Knihovny.cz E-resources
- Keywords
- DNA, liposome, mitochondria, oxidative stress, photodynamic therapy, proteins, reactive oxygen species,
- MeSH
- Photochemotherapy * methods MeSH
- Photosensitizing Agents * pharmacology chemistry MeSH
- HeLa Cells MeSH
- Indoles * pharmacology chemistry MeSH
- Isoindoles * MeSH
- Humans MeSH
- Membrane Potential, Mitochondrial * drug effects MeSH
- Organometallic Compounds * pharmacology chemistry MeSH
- Oxidative Stress drug effects MeSH
- DNA Damage drug effects MeSH
- Reactive Oxygen Species * metabolism MeSH
- Zinc Compounds * pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosensitizing Agents * MeSH
- Indoles * MeSH
- Isoindoles * MeSH
- Organometallic Compounds * MeSH
- Reactive Oxygen Species * MeSH
- Zinc Compounds * MeSH
- Zn(II)-phthalocyanine MeSH Browser
This work presents results on the efficiency of newly designed zinc phthalocyanine-mediated photodynamic therapy of both tumoral and nontumoral cell models using the MTT assay. Further detailed examinations of mechanistic and cell biological effects were focused on the HELA cervical cancer cell model. Here, ROS production, changes in the mitochondrial membrane potential, the determination of genotoxicity, and protein changes determined by capillary chromatography and tandem mass spectrometry with ESI were analyzed. The results showed that, in vitro, 5 Jcm-2 ZnPc PDT caused a significant increase in reactive oxygen species. Still, except for superoxide dismutase, the levels of proteins involved in cell response to oxidative stress did not increase significantly. Furthermore, this therapy damaged mitochondrial membranes, which was proven by a more than 70% voltage-dependent channel protein 1 level decrease and by a 65% mitochondrial membrane potential change 24 h post-therapy. DNA impairment was assessed by an increased level of DNA fragmentation, which might be related to the decreased level of DDB1 (decrease in levels of more than 20% 24 h post-therapy), a protein responsible for maintaining genomic integrity and triggering the DNA repair pathways. Considering these results and the low effective concentration (LC50 = 30 nM), the therapy used is a potentially very promising antitumoral treatment.
See more in PubMed
Correia J.H., Rodrigues J.A., Pimenta S., Dong T. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics. 2021;13:1332. doi: 10.3390/pharmaceutics13091332. PubMed DOI PMC
Kwiatkowaski S., Knap B., Przystupski D., Saczko J., Kedzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049. PubMed DOI
Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy. Biomechem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC
Mroz P., Bhaumik J., Dogutan D.K., Aly Z., Kamal Z., Khalid L., Kee H.L., Bocian D.F., Holten D., Lindsey J.S., et al. Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge, central metal and hydroxyl radical production. Cancer Lett. 2009;282:63–76. doi: 10.1016/j.canlet.2009.02.054. PubMed DOI PMC
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B Biol. 1997;39:1–18. doi: 10.1016/S1011-1344(96)07428-3. PubMed DOI
Alvarez N., Sevilla A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int. J. Mol. Sci. 2024;25:1023. doi: 10.3390/ijms25021023. PubMed DOI PMC
Petrat F., Pindiur S., Kirsch M., de Groot H. NAD(P)H, a Primary Target of 1O2 in Mitochondria of Intact Cells. J. Biol. Chem. 2003;278:3298–3307. doi: 10.1074/jbc.M204230200. PubMed DOI
Petrat F., Pindiur S., Kirsch M., de Groot H. “Mitochondrial” photochemical drugs do not release toxic amounts of 1O2 within the mitochondrial matrix space. Arch. Biochem. Biophys. 2003;412:207–215. doi: 10.1016/S0003-9861(03)00063-8. PubMed DOI
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part one—Photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther. 2004;1:279–293. doi: 10.1016/S1572-1000(05)00007-4. PubMed DOI PMC
Ma J., Jiang L. Photogeneration of singlet oxygen (1O2) and free radicals (Sen−, O−2) bytetra-brominated hypocrellin B derivative. Free. Radic. Res. 2001;35:767–777. doi: 10.1080/10715760100301271. PubMed DOI
Nowis D., Golab J. Photodynamic Therapy and Oxidative Stress. In: Hamblin M.R., Mróz P., editors. Advances in Photodynamic Therapy—Basic, Translational, and Clinical. Artech House; New York City, NY, USA: 2008. p. 559.
Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. PubMed DOI
Diwanji N., Bergmann A. An unexpected friend—ROS in apoptosis-induced compensatory proliferation: Implications for regeneration and cancer. Semin. Cell Dev. Biol. 2018;80:74–82. doi: 10.1016/j.semcdb.2017.07.004. PubMed DOI PMC
Cai H., Meng Z., Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit. Rev. Oncol. 2024;197:104361. doi: 10.1016/j.critrevonc.2024.104361. PubMed DOI
Xing L., Tang Y., Li L., Tao X. ROS in hepatocellular carcinoma: What we know. Arch. Biochem. Biophys. 2023;744:109699. doi: 10.1016/j.abb.2023.109699. PubMed DOI
Gao Y., Huang D., Huang S., Li H., Xia B. Rational design of ROS generation nanosystems to regulate innate immunity of macrophages, dendrtical and natural killing cells for immunotherapy. Int. Immunopharmacol. 2024;139:112695. doi: 10.1016/j.intimp.2024.112695. PubMed DOI
Shah R., Ibis B., Kashyap M., Boussiotis V.A. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism. 2024;151:155747. doi: 10.1016/j.metabol.2023.155747. PubMed DOI PMC
Bilski P., Motten A.G., Bilska M., Chignell C.F. The photooxidation of diethylhydroxylamine by rose bengal in micellar and nonmicellar aqueous solutions. Photochem. Photobiol. 1993;58:11–18. doi: 10.1111/j.1751-1097.1993.tb04896.x. PubMed DOI
Xu D.D., Leong M.M.L., Wong F.-L., Lam H.M., Hoeven R., Yang Y., Lv Q. Photodynamic therapy on prostate cancer cells involve mitochondria membrane proteins. Photodiagnosis Photodyn. Ther. 2020;31:101933. doi: 10.1016/j.pdpdt.2020.101933. PubMed DOI
Xue L.-Y., Chiu S.-M., Oleinick N.L. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene. 2001;20:3420–3427. doi: 10.1038/sj.onc.1204441. PubMed DOI
Jori G. Far-red-absorbing photosensitizers: Their use in the photodynamic therapy of tumours. J. Photochem. Photobiol. A Chem. 1992;62:371–378. doi: 10.1016/1010-6030(92)85065-3. DOI
Wilson B.C. Photodynamic therapy: Light delivery and dosage for second-generation photosensitizers. Ciba Found Symp. 1989;146:60–73; discussion 73–77. doi: 10.1002/9780470513842.ch5. PubMed DOI
Liu J.-Y., Li J., Yuan X., Wang W.-M., Xue J.-P. In vitro photodynamic activities of zinc(II) phthalocyanines substituted with pyridine moieties. Photodiagnosis Photodyn. Ther. 2016;13:341–343. doi: 10.1016/j.pdpdt.2015.07.003. PubMed DOI
Hsi R.A., Rosenthal D.I., Glatstein E. Photodynamic therapy in the treatment of cancer. Drugs. 1999;54:725–734. doi: 10.2165/00003495-199957050-00005. PubMed DOI
Wyss P., Schwarz V., Dobler-Girdziunaite D., Hornung R., Walt H., Degen A., Fehr M. Photodynamic therapy of locoregional breast cancer recurrences using a chlorin-type photosensitizer. Int. J. Cancer. 2001;93:720–724. doi: 10.1002/ijc.1400. PubMed DOI
Shanazarov N.A., Zare A., Mussin N.M., Albayev R.K., Kaliyev A.A., Iztleuov Y.M., Smailova S.B., Tamadon A. Photodynamic therapy of cervical cancer: A scoping review on the efficacy of various molecules. Ther. Adv. Chronic Dis. 2024;15:20406223241233206. doi: 10.1177/20406223241233206. PubMed DOI PMC
Fisher A.B., Vasquez-Medina J.P., Dodia C., Sorokina E.M., Tao J.-Q., Feinstein S.I. Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol. 2018;14:41–46. doi: 10.1016/j.redox.2017.08.008. PubMed DOI PMC
Li H., Benipal B., Zhou S., Dodia C., Chatterjee S., Tao J.-Q., Sorokina E.M., Raabe T., Feinstein S.I., Fisher A.B. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free. Radic. Biol. Med. 2015;87:356–365. doi: 10.1016/j.freeradbiomed.2015.06.009. PubMed DOI PMC
Lien Y.-C., Feinstein S.I., Dodia C., Fisher A.B. The Roles of Peroxidase and Phospholipase A2Activities of Peroxiredoxin 6 in Protecting Pulmonary Microvascular Endothelial Cells Against Peroxidative Stress. Antioxid. Redox Signal. 2012;16:440–451. doi: 10.1089/ars.2011.3950. PubMed DOI PMC
Hanschmann E.-M., Godoy J.R., Berndt C., Hudemann C., Lillig C.H. Thioredoxins, Glutaredoxins, and Peroxiredoxins—Molecular Mechanisms and Health Significance: From Cofactors to Antioxidants to Redox Signaling. Antioxid. Redox Signal. 2013;19:1539–1605. doi: 10.1089/ars.2012.4599. PubMed DOI PMC
Greetham D., Vickerstaff J., Shenton D., Perrone G.G., Dawes I.W., Grant C.M. Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae. BMC Biochem. 2010;11:3. doi: 10.1186/1471-2091-11-3. PubMed DOI PMC
Pillay S.C., Hofmeyr J.H., Rohwer J.M. The logic of kinetic regulation in the thioredoxin system. BMC Syst. Biol. 2011;5:15. doi: 10.1186/1752-0509-5-15. PubMed DOI PMC
Porta C., Moroni M., Guallini P., Torri C., Marzatico F. Antioxidant enzymatic system and free radicals pathway in two different human cancer cell lines. Anticancer Res. 1996;16:2741–2747. PubMed
Gille J.J., Wortelboer H.M., Joenje H. Effect of normobaric hyperoxia on antioxidant defenses of HeLa and CHO cells. Free. Radic. Biol. Med. 1988;4:85–91. doi: 10.1016/0891-5849(88)90068-8. PubMed DOI
Ehlers R.A., Hernandez A., Bloemendal L., Ethridge R.T., Farrow B., Evers B. Mitochondrial DNA damage and altered membrane potential (ΔΨ) in pancreatic acinar cells induced by reactive oxygen species. Surgery. 1999;126:148–155. doi: 10.1016/S0039-6060(99)70148-0. PubMed DOI
Postiglione I., Chiaviello A., Barra F., Roscetto E., Soriano A.A., Catania M.R., Palumbo G., Pierantoni G.M. Mitochondrial Malfunctioning, Proteasome Arrest and Apoptosis in Cancer Cells by Focused Intracellular Generation of Oxygen Radicals. Int. J. Mol. Sci. 2015;16:20375–20391. doi: 10.3390/ijms160920375. PubMed DOI PMC
Jeong S.-Y., Seol D.-W. The role of mitochondria in apoptosis. BMB Rep. 2008;41:11–22. doi: 10.5483/BMBRep.2008.41.1.011. PubMed DOI
Hsieh Y., Wu C., Chang C., Yu J. Subcellular localization of Photofrin® determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: When plasma membranes are the main targets. J. Cell. Physiol. 2003;194:363–375. doi: 10.1002/jcp.10273. PubMed DOI
Liu W., Vives-Bauza C., Acín-Peréz R., Yamamoto A., Tan Y., Li Y., Magrané J., Stavarache M.A., Shaffer S., Chang S., et al. PINK1 Defect Causes Mitochondrial Dysfunction, Proteasomal Deficit and α-Synuclein Aggregation in Cell Culture Models of Parkinson’s Disease. PLoS ONE. 2009;4:e4597. doi: 10.1371/journal.pone.0004597. PubMed DOI PMC
Lovejoy C.A., Lock K., Yenamandra A., Cortez D. DDB1 Maintains Genome Integrity through Regulation of Cdt1. Mol. Cell. Biol. 2006;26:7977–7990. doi: 10.1128/MCB.00819-06. PubMed DOI PMC
Hu J., McCall C.M., Ohta T., Xiong Y. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nat. Cell Biol. 2004;6:1003–1009. doi: 10.1038/ncb1172. PubMed DOI
Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic Therapy. JNCI J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC
Wood S.R., Holroyd J.A., Brown S.B. The Subcellular Localization of Zn(ll) Phthalocyanines and Their Redistribution on Exposure to Light. Photochem. Photobiol. 1997;65:397–402. doi: 10.1111/j.1751-1097.1997.tb08577.x. PubMed DOI
Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Huang D.W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi: 10.1093/nar/gkn923. PubMed DOI PMC
Saraste A. Morphologic criteria and detection of apoptosis. Henz. 1999;24:189–195. doi: 10.1007/BF03044961. PubMed DOI
Alberts B., Bray D., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Základy Buněčné Biologie. 2nd ed. Espero Publishing, s.r.o.; Prague, Czech Republic: 1998. p. 740.
Heider T., Kanwan I.L., Pandey V., Jain P., Soni V. Targeted Nanomedicine for Breast Cancer Therapy. Elsevier; Amsterdam, The Netherlands: 2022. Tumor microenvironment-mediated targeted drug delivery to breast cancer cells; pp. 305–334.
Bi H., Xue J., Jiang H., Gao S., Yang D., Fang Y., Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J. Pharm. Sci. 2018;14:365–379. doi: 10.1016/j.ajps.2018.07.006. PubMed DOI PMC
Akram N., Afzaal M., Saeed F., Shah Y.A., Faisal Z., Asghar A., Ateeq H., Nayik G.A., Wani S.H., Hussain M., et al. Liposomes: A promising delivery system for active ingredients in food and nutrition. Int. J. Food Prop. 2023;26:2476–2492. doi: 10.1080/10942912.2023.2247578. DOI
de Matos M.B.C., Deckers R., van Elburg B., Lajoinie G., de Miranda B.S., Versluis M., Schiffelers R., Kok R.J. Ultrasound-Sensitive Liposomes for Triggered Macromolecular Drug Delivery: Formulation and In Vitro Characterization. Front. Pharmacol. 2019;10:1463. doi: 10.3389/fphar.2019.01463. PubMed DOI PMC
Cidlina A. Diploma Thesis. Faculty of Pharmacy in Hradec Kralove; Charles University in Prague, Hradec Kralove, Czech Republic: 2011. Syntéza Kationických Ftalocyaninů.72p
Petřík I. Bachelor’s Thesis. Faculty of Science; Palacky University in Olomouc, Olomouc, Czech Republic: 2013. Analýza Proteinových Fosforylací Proteomickými Metodami.62p
Boersema P.J., Raijmakers R., Lemeer S., Mohammed S., Heck A.J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009;4:484–494. doi: 10.1038/nprot.2009.21. PubMed DOI