Atrazine dependence in cultivated fungal communities
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39414759
DOI
10.1007/s12223-024-01204-w
PII: 10.1007/s12223-024-01204-w
Knihovny.cz E-resources
- Keywords
- Ascomycota, Fungal diversity, Ligninolytic fungi, Microcosm, Soil health,
- MeSH
- Atrazine * metabolism pharmacology MeSH
- Biodegradation, Environmental MeSH
- Phylogeny MeSH
- Herbicides * metabolism MeSH
- Fungi * classification isolation & purification metabolism drug effects genetics growth & development MeSH
- Soil Pollutants metabolism MeSH
- Mycobiome * drug effects MeSH
- Soil Microbiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Atrazine * MeSH
- Herbicides * MeSH
- Soil Pollutants MeSH
The isolation and study of fungi within specific contexts yield valuable insights into the intricate relationships between fungi and ecosystems. Unlike culture-independent approaches, cultivation methods are advantageous in this context because they provide standardized replicates, specific species isolation, and easy sampling. This study aimed to understand the ecological process using a microcosm system with pesticide concentrations similar to those found in the soil, in contrast to high doses, from the isolation of the enriched community. The atrazine concentrations used were 0.02 mg/kg (control treatment), 300 ng/kg (treatment 1), and 3000 ng/kg (treatment 2), using a 28-day microcosm system. Ultimately, the isolation resulted in 561 fungi classified into 76 morphospecies. The Ascomycota phylum was prevalent, with Purpureocillium, Aspergillus, and Trichoderma being consistently isolated, denoting robust and persistent genera. Diversity analyses showed that the control microcosms displayed more distinct fungal morphospecies, suggesting the influence of atrazine on fungal communities. Treatment 2 (higher atrazine concentration) showed a structure comparable to that of the control, whereas treatment 1 (lower atrazine concentration) differed significantly, indicating that atrazine concentration impacted community variance. Higher atrazine addition subtly altered ligninolytic fungal community dynamics, implying its potential for pesticide degradation. Finally, variations in atrazine concentrations triggered diverse community responses over time, shedding light on fungal resilience and adaptive strategies against pesticides.
See more in PubMed
Abdel-Azeem AM, Salem FM, Abdel-Azeem MA, Nafady NA, Mohesien MT, Soliman EA (2016) Biodiversity of the genus Aspergillus in different habitats. in: gupta vk. new and future developments in microbial biotechnology and bioengineering: aspergillus system properties and applications, Amsterdam, Elsevier, 3–28
Abhijeet R, Aiswarya J, Raja RT, Annamalai A, Lakshmi PTV (2020) Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales. Mycology 11(1):56–70. https://doi.org/10.1080/21501203.2019.1706656 DOI
Alama IE, Yagoub SO, Abdelhalim M, Hadad MA (2023) Flora, density and efficiency of weed affected sugarcane controlled by chemical herbicides. Asian J Res Bot 9:37–45. https://doi.org/10.9734/AJRIB/2023/97413 DOI
Alori ET, Adekiya AO, Adegbite KA (2020) Impact of agricultural practices on soil health. In: Giri (Ed) In Soil health, Soil biology, edn. Springer Cham, Switzerland, pp 88–98. https://doi.org/10.1007/978-3-030-44364-1_5
Alvares AC, Stape JL, Sentelhas P, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507 DOI
Atiwesh G, Parrish CC, Banoub J, Le TAT (2022) Lignin degradation by microorganisms: a review. Biotechnol Prog 38(2):e3226. https://doi.org/10.1002/btpr.3226 PubMed DOI
Besse-Hoggan P, Alekseeva T, Sancelme M, Delort AM, Forano C (2009) Atrazine biodegradation modulated by clays and clay/humic acid complexes. Environ Pollut 157(10):2837–2844. https://doi.org/10.1016/j.envpol.2009.04.005 PubMed DOI
Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41(3):317–338. https://doi.org/10.1080/07388551.2020.1853032 PubMed DOI
Brazkova M, Koleva R, Angelova G, Yemendzhiev H (2022) Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. BIO Web Conf 45:02009. https://doi.org/10.1051/bioconf/2022450200 DOI
Brunner-Mendoza C, Reyes-Montes MdR, Moonjely S, Bidochka MJ, Toriello C (2018) A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Sci Technol 29(1):83–102. https://doi.org/10.1080/09583157.2018.1531111 DOI
Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121(3):233–244 DOI
Cabañas CM, Hernández A, MartínezA TP, Vázquez-Hernández M, Martín A, Ruiz-Moyano S (2020) Control of Penicillium glabrum by indigenous antagonistic yeast from vineyards. Foods 9(12):1864. https://doi.org/10.3390/foods9121864 PubMed DOI PMC
Carboneras B, Villaseñor J, Fernandez-Morales FJ (2017) Modelling aerobic biodegradation of atrazine and 2,4 – dichlorophenoxy acetic acid by mixed-cultures. Bioresour Technol 243:1044–1050. https://doi.org/10.1016/j.biortech.2017.07.089 PubMed DOI
Chen W, Xu R, Chen J, Yuan X, Zhou L, Tan T, Fan J, Zhang Y, Hu T (2018) Consistent responses of surface- and subsurface soil fungal diversity to N enrichment are mediated differently by acidification and plant community in a semi-arid grassland. Soil Biol Biochem 127:110–119. https://doi.org/10.1016/j.soilbio.2018.09.020 DOI
Dennis PG, Kukulies T, Forstner C, Plisson F, Eaglesham G, Pattison AB (2023) The effects of atrazine, diuron, fluazifop-p-butyl, haloxyfop-p-methyl, and pendimethalin on soil microbial activity and diversity. Appl Microbiol 3:79–89. https://doi.org/10.3390/applmicrobiol3010007 DOI
Douglass J, Radosevich M, Tuovinen O (2017) Microbial attenuation of atrazine in agricultural soils: biometer assays, bacterial taxonomic diversity, and catabolic genes. Chemosphere 176:352–360. https://doi.org/10.1016/j.chemosphere.2017.02.102 PubMed DOI
Egidi E, Delgado-Baquerizo M, Plett JM et al (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10(1):2369. https://doi.org/10.1038/s41467-019-10373-z PubMed DOI PMC
Esparza-Naranjo SB, da Silva GF, Duque-Castaño DC et al (2021) Potential for the biodegradation of atrazine using leaf litter fungi from a subtropical protection area. Curr Microbiol 78:358–368. https://doi.org/10.1007/s00284-020-02288-6 PubMed DOI
Exterkoetter R, Rozane DE, da Silva WC et al (2019) Potential of terracing to reduce glyphosate and AMPA surface runoff on latosol. J Soils Sediments 19:2240–2250. https://doi.org/10.1007/s11368-018-2210-1 DOI
Fernandes AFT, Wang P, Staley C, Moretto JAS, Altarugio LM, Campanharo SC, Stehling EG, Sadowsky MJ (2020) Impact of atrazine exposure on the microbial community structure in a Brazilian tropical latosol soil. Microbes Environ 35(2). https://doi.org/10.1264/jsme2.ME19143
Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707. https://doi.org/10.3389/fmicb.2018.00707 PubMed DOI PMC
Giraldo-Perez P, Raw V, Greven M, Goddard, MR (2021) A small effect of conservation agriculture on soil biodiversity that differs between biological kingdoms and geographic locations. iScience 24 (4). https://doi.org/10.1016/j.isci.2021.102280
Gomez E, Pioli R, Conti M (2007) Fungal abundance and distribution as influenced by clearing and land use in a vertic soil of Argentina. In: Biology and Fertility of Soils, Berlin, pp 373–377
Guo LD, Hyde KD, Liew ECY (2008) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147(3):617–630. https://doi.org/10.1046/j.1469-8137.2000.00716.x DOI
Henn C, Monteiro DA, Boscolo M et al (2020) Biodegradação da produção de atrazina e enzima ligninolítica por linhagens de basidiomicetos. BMC Microbiol 20:266. https://doi.org/10.1186/s12866-020-01950-0 PubMed DOI PMC
Illuri R, Kumar M, Eyini M, Veeramanikandan V, Almaary KS, Elbadawi YB, Biraqdar MA, Balaji P (2021) Production, partial purification and characterization of ligninolytic enzymes from selected basidiomycetes mushroom fungi. Saudi J Biol Sci 28:7207–7218. https://doi.org/10.1016/j.sjbs.2021.08.026 PubMed DOI PMC
Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opi Biotechnol 27:15–20. https://doi.org/10.1016/j.copbio.2013.09.003 DOI
Janowski D, Leski T (2023) Methods for identifying and measuring the diversity of ectomycorrhizal fungi. For Int J for Res 96(5):639–652. https://doi.org/10.1093/forestry/cpad017 DOI
Jofré-Fernández I, Matus-Baeza F, Merino-Guzmán C (2023) White-rot fungi scavenge reactive oxygen species, which drives pH-dependent exo-enzymatic mechanisms and promotes CO2 efflux. Front Microbiol 14:1148750. https://doi.org/10.3389/fmicb.2023.1148750 PubMed DOI PMC
Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205(4):1473–1484. https://doi.org/10.1111/nph.13172 PubMed DOI
Khan M, Tanaka K (2023) Purpureocillium lilacinum for plant growth promotion and biocontrol against root-knot nematodes infecting eggplant. PLoS ONE 18(3):e0283550. https://doi.org/10.1371/journal.pone.0283550 PubMed DOI PMC
Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase-producing microbes. J Appl Microbiol 97(3):640–646. https://doi.org/10.1111/j.1365-2672.2004.02348.x PubMed DOI
Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581 PubMed DOI
Kiriga AW, Haukeland S, Kariuki GM, Coyne DL, Beek NV (2018) Effect of trichoderma spp and purpureocillium lilacinum on meloidogyne javanica in commercial pineapple production in Kenya. Biol Control 119:27–32. https://doi.org/10.1016/j.biocontrol.2018.01.005 DOI
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054 PubMed DOI PMC
Kuria AW, Barrios E, Pagella T, Muthuri CW, Mukuralinda A, Sinclair FL (2018) Farmers’ knowledge of soil quality indicators along a land degradation on gradient in Rwanda. Geoderma Reg 16:e00199. https://doi.org/10.1016/j.geodrs.2018.e00199 DOI
Li Y, Li Z, Arafat Y, Wenxiong L (2020) Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Ann Microbiol 70:7. https://doi.org/10.1186/s13213-020-01555-y DOI
Moore JAM, Anthony MA, Pec GJ, Trocha LK, Trzebny A, Geyer KM et al (2020) Fungal community structure and function shifts with atmospheric nitrogen deposition. Glob Change Biol 27(7):1349–1364. https://doi.org/10.1111/gcb.15444 DOI
Morris SJ, Blackwood CB (2007) The ecology of soil organisms. In: Paul EA (ed) Soil microbiology, ecology and biochemistry (Third Edition). Academic Press, pp 195–229 DOI
Muneer MA, Huang X, Hou W, Zhang Y, Cai Y, Munir MZ, Wu L, Zheng C (2021) Response of fungal diversity, community composition, and functions to nutrients management in red soil. J Fungi 7(7):554. https://doi.org/10.3390/jof707055 DOI
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006 DOI
Niskanen T, Lücking R, Dahlberg A, Gaya E, Suz LM, Mikryukov V et al (2023) Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu Rev Environ Resour 48(1):149–176. https://doi.org/10.1146/annurev-environ-112621-090937 DOI
Niu X, Xie W, Zhang J, Hu Q (2019) Biodiversity of entomopathogenic fungi in the soils of South China. Microorganisms 7(9):311. https://doi.org/10.3390/microorganisms7090311 PubMed DOI PMC
Nji QN, Babalola OO, Mwanza M (2023) Soil Aspergillus species, pathogenicity and control perspectives. J Fungi 9(7):766. https://doi.org/10.3390/jof9070766 DOI
Pathak A, Jaswal R, Xu X, White JR, Edwards BI, Hunt J, Brooks S, Rathore RS, Agarwal M, Chauhan A (2020) Characterization of bacterial and fungal assemblages from historically contaminated metalliferous soils using metagenomics coupled with diffusion chambers and microbial traps. Front Microbiol 11:1024. https://doi.org/10.3389/fmicb.2020.01024 PubMed DOI PMC
Pérez-Izquierdo L, Rincón A, Lindahl B D, Buée M (2021) Fungal community of forest soil: diversity, functions, and services. In: Forest microbiology (pp 231–255). Academic Press. https://doi.org/10.1016/B978-0-12-822542-4.00022-X
Petrović K, Šućur Elez J, Crnković M, Krsmanović S, Rajković M, Kuzmanović B, Malenčić Đ (2023) The biochemical response of soybean cultivars infected by diaporthe species complex. Plants 12(16):2896. https://doi.org/10.3390/plants12162896 PubMed DOI PMC
Pinto AG, Kos T, Puškarić J, Vrandečić K, Benković-Lačić T, Brmež M (2024) Soil ecosystem functioning through interactions of nematodes and fungi trichoderma sp. Sustainability 16(7):2885. https://doi.org/10.3390/su16072885 DOI
Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x DOI
Rostami S, Jafari S, Moeini Z, Jaskulak M, Keshtgar L, Badeenezhad A, Azhdarpoor A, Rostami M, Zorena K, Dehghani M (2021) Current methods and technologies for degradation of atrazine in contaminated soil and water: a review. Environ Technol Innov 24:102019. https://doi.org/10.1016/j.eti.2021.102019 DOI
Singh S, Khan NA, Ramadan R, Dhanjal NDS, Sivaram N, Singh J, Ramamurthy PC (2024) Environmental fate, toxicological impact, and advanced treatment approaches: atrazine degradation and emphasises on circular economy strategy. Desalin Water Treat 317:100201. https://doi.org/10.1016/j.dwt.2024.100201 DOI
Smith D, Ryan M (2012) Implementing best practices and validation of cryopreservation techniques for microorganisms. Sci World J 2012:1–9. https://doi.org/10.1100/2012/805659 DOI
Struszczyk-Świta K, Drożdżyński P, Murawska K, Marchut-Mikołajczyk O (2022) PUF-immobilized Bjerkandera adusta DSM 3375 as a tool for bioremediation of creosote oil contaminated soil. Int J Mol Sci 23(20):12441. https://doi.org/10.3390/ijms232012441 PubMed DOI PMC
Taboada-Puig R, Moreira MT, Feijoo G, Lema JM, Lu-Chau TA (2011) A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World J Microbiol Biotechnol 27:115–122 DOI
Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11(12):3166–3178. https://doi.org/10.1111/j.1462-2920.2009.02020.x PubMed DOI
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal RL, Vasco-Palacios AM, Quang TP, Suija A et al (2014) Global diversity and geography of soil fungi. Science 346:1256688–1256691. https://doi.org/10.1126/science.1256688 PubMed DOI
Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79(2):243–262. https://doi.org/10.1128/MMBR.00001-15 PubMed DOI PMC
Tuovinen OH, Deshmukh V, Özkaya B, Radosevich M (2015) Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio. J Environ Health 50(10):718–726. https://doi.org/10.1080/03601234.2015.1048105 DOI
Waksman SA (1944) Three decades with soil fungi. Soil Sci 58(2):89–116. https://doi.org/10.1097/00010694-194408000-00001 DOI
White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, a guide to methods and applications, Academic Press, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Yang F, Gao M, Lu H, Wei Y, Chi H, Yang T, Yuan M, Fu H, Zeng W, Liu C (2021) Effects of atrazine on chernozem microbial communities evaluated by traditional detection and modern sequencing technology. Microorganisms 9:1832. https://doi.org/10.3390/microorganisms9091832 PubMed DOI PMC
Zhang Y, Tian L, Ma R, Wei Y, Yang J, Sun Y, Li L (2020) Effects of atrazine on the black community land function and role of microbial ecology. IOP Conf Ser: Earth Environ Sci 446:032093. https://doi.org/10.1088/1755-1315/446/3/032093 DOI