Chemical and Acoustical Mixed-Mapping of Geological Materials from Laser-Induced Plasmas: A Comprehensive Approach to Differentiate Mineral Phases

. 2024 Oct 29 ; 96 (43) : 17444-17452. [epub] 20241017

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39417619

The acoustic wave produced alongside laser-induced plasmas can be used in conjunction with the recorded atomic spectra of plasma emission to expand the physicochemical information acquired from a single inspection event. Among the most interesting uses of acoustic information is the differentiation of mineral phases with similar optical responses coexisting in geological targets. In addition, laser-induced plasma acoustics (LIPAc) can provide data related to the inspected material's hardness, density, and compactness. In this paper, we present a dual acoustic-optic laser-based strategy for the generation of high-resolution surface images of mineral samples. By combining simultaneous multimodal LIBS (laser-induced breakdown spectroscopy) and LIPAc spectral data from laser-induced plasmas, we explore the mineralogical composition of rocks embedded in resin matrixes to distinguish their chemical composition as well as their crystal phases based on physical changes caused by the different spatial arrangements of the constituent atoms. The multispectral polyhedron created by merging singular optical maps, one per detected elements, and the coincidental acoustic map enhance the distinction between regions present within the matrix of a host rock as compared to the differentiation yielded by each technique when used separately. The chemical information guides the composition of the mineral phases in the host rock. Then, the physical information obtained from acoustics may reinforce the identification of the detected mineral phase, draw the geological history of the inspected section, and showcase possible transformations, mainly of polymorphic nature. To test the combination proposed herein, we also inspected a septarian nodule featuring an ensemble of mineral phases with different origins. Mixed optical and acoustic responses from laser-produced plasmas of this complex sample allowed us to obtain more specific information. This approach constitutes a reliable and high-throughput tool for studying the surface of geological samples, which can substantially supplement well-established techniques for mineralogical analysis such as Raman spectroscopy and X-ray diffraction.

Zobrazit více v PubMed

Gardette V.; Motto-Ros V.; Alvarez-Llamas C.; Sancey L.; Duponchel L.; Busser B. Laser-induced breakdown spectroscopy imaging for material and biomedical applications: Recent advances and future perspectives. Anal. Chem. 2023, 95 (1), 49–69. 10.1021/acs.analchem.2c04910. PubMed DOI

Singh V. K.; Tripathi D. K.; Deguchi Y.; Wang Z.. Laser Induced Breakdown Spectroscopy (LIBS): Concepts, Instrumentation, Data Analysis and Applications. John Wiley & Sons Ltd.: Hoboken, NJ 07030, USA, 2023.

Lin Q.; Niu G.; Wang Q.; Yu Q.; Duan Y. Combined laser-induced breakdown with Raman spectroscopy: Historical technology development and recent applications. Appl. Spectrosc. Rev. 2013, 48, 487–508. 10.1080/05704928.2012.751028. DOI

Dhanada V. S.; Sajan D. G.; Kartha V. B.; Chidangil S.; Unnikrishnan V. K. Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: A topical review. Appl. Spectrosc. Rev. 2021, 56 (6), 463–491. 10.1080/05704928.2020.1800486. DOI

Azov V. A.; Mueller L.; Makarov A. A. Laser ionization mass spectrometry at 55: Quo Vadis?. Mass Spec. Rev. 2022, 41, 100–151. 10.1002/mas.21669. PubMed DOI

Telle H. H.; Ureña Á. G.. Laser Spectroscopy and Laser Imaging. CRC Press: Boca Raton, 2017.

Limbeck A.; Brunnbauer L.; Lohninger H.; Pořízka P.; Modlitbová P.; Kaiser J.; Janovszky P.; Kéri A.; Galbács G. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal. Chim. Acta 2021, 1147, 72–98. 10.1016/j.aca.2020.12.054. PubMed DOI

Campanella B.; Legnaioli S.; Pagnotta S.; Poggialini F.; Palleschi V. Shock waves in laser-induced plasmas. Atoms 2019, 7, 57.10.3390/atoms7020057. DOI

Purohit P.; Alvarez-Llamas C.; Moros J.; Laserna J. J.. Chapter 11. Materials characterization by laser-induced plasma acoustics and spectroscopy. In Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences. Gálbacs G. (Ed.); Springer International Publishing: Cham, 2023; pp 283–313.

Qiao S.; Ding Y.; Tian D.; Yao L.; Yang G. A review of laser-induced breakdown spectroscopy for analysis of geological materials. Appl. Spectrosc. Rev. 2015, 50, 1–26. 10.1080/05704928.2014.911746. DOI

Harmon R. S.; Lawley C. J. M.; Watts J.; Harraden C. L.; Somers A. M.; Hark R. R. Laser-induced breakdown spectroscopy – An emerging analytical tool for mineral exploration. Minerals 2019, 9 (12), 718.10.3390/min9120718. DOI

Fabre C. Advances in laser-induced breakdown spectroscopy analysis for geology: A critical review. Spectrochim. Acta, Part B 2020, 166, 10579910.1016/j.sab.2020.105799. DOI

Harmon R. S.; Senesi G. S. Laser-induced breakdown spectroscopy – A geochemical tool for the 21st Century. Appl. Geochem. 2021, 128, 10492910.1016/j.apgeochem.2021.104929. DOI

Corenblit D.; Baas A. C. W.; Bornette G.; Darrozes J.; Delmotte S.; Francis R. A.; Gurnell A. M.; Julien F.; Naiman R. J.; Steiger J. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth-Sci. Rev. 2011, 106 (3–4), 307–331. 10.1016/j.earscirev.2011.03.002. DOI

Maurice S.; Wiens R. C.; Bernardi P.; et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 2021, 217, 47.10.1007/s11214-021-00807-w. PubMed DOI PMC

Wiens R. C.; Maurice S.; Robinson S. H.; et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 2021, 217, 4.10.1007/s11214-020-00777-5. PubMed DOI PMC

Bhartia R.; Beegle L. W.; DeFlores L.; et al. Perseverance’s scanning habitable environments with Raman and luminescence for organics and chemicals (SHERLOC) investigation. Space Sci. Rev. 2021, 217, 58.10.1007/s11214-021-00812-z. DOI

Fouchet T.; Reess J.-M.; Montmessin F.; et al. The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission. Icarus 2022, 373, 11477310.1016/j.icarus.2021.114773. DOI

Hounslow M. W.Septarian concretions. In Encyclopedia of Sediments and Sedimentary Rocks. Encyclopedia of Earth Sciences Series. Middleton G. V.; Church M. J.; Coniglio M.; Hardie L. A.; Longstaffe F. J. (Eds.); Springer: Dordrecht, 1978; pp 657–659.

Benzerara K.; Skouri-Panet F.; Li J.; et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (30), 10933–10938. 10.1073/pnas.1403510111. PubMed DOI PMC

Solanky V.; Katiyar S. K. Pixel-level image fusion techniques in remote sensing: A review. Spat. Inf. Res. 2016, 24, 475–483. 10.1007/s41324-016-0046-6. DOI

https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

https://www.mindat.org/.

Chide B.; Maurice S.; Murdoch N.; Lasue J.; Bousquet B.; Jacob X.; Cousin A.; Forni O.; Gasnault O.; Meslin P.-Y.; Fronton J.-F.; Bassas-Portús M.; Cadu A.; Sournac A.; Mimoun D.; Wiens R. C. Listening to laser sparks: A link between laser-induced breakdown spectroscopy, acoustic measurements and crater morphology. Spectrochim. Acta, Part B 2019, 153, 50–60. 10.1016/j.sab.2019.01.008. DOI

Mondillo N.; Herrington R.; Boni M.. Bauxites. In Encyclopedia of Geology. Alderton D.; Elias S. A. (Eds.). Academic Press: San Diego, CA, 2021; pp 694–707.

Rengasamy P. Substitution of iron and titanium in kaolinites. Clay. Clay Miner. 1976, 24 (5), 265–26. 10.1346/CCMN.1976.0240509. DOI

Yuste A.; Bauluz B.; Mayayo M. J. Origin and geochemical evolution from ferrallitized clays to karst bauxite: An example from the Lower Cretaceous of NE Spain. Ore Geol. Rev. 2017, 84, 67–79. 10.1016/j.oregeorev.2016.12.025. DOI

Ma C.; Eggleton R. A. Cation exchange capacity of kaolinite. Clay. Clay Miner. 1999, 47 (2), 174–180. 10.1346/CCMN.1999.0470207. DOI

Kim Y.; Caumon M.-C.; Barres O.; Sall A.; Cauzid J. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices. Spectrochim. Acta, Part A 2021, 261, 11998010.1016/j.saa.2021.119980. PubMed DOI

Aramendia J.; Tuite M.; Castro K.; Madariaga J. M. A new methodology for kerogen maturity estimation based on Raman spectroscopy and chemometric analysis. Sci. Total Environ. 2023, 887, 16405610.1016/j.scitotenv.2023.164056. PubMed DOI

Alvarez-Llamas C.; Pisonero J.; Bordel N. A novel approach for quantitative LIBS fluorine analysis using CaF emission in calcium-free samples. J. Anal. At. Spectrom. 2017, 32, 162–166. 10.1039/C6JA00386A. DOI

Trivedi P.; Axe L.; Dyer J. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Coll. Surf. A: Physicochem. Eng. Aspects 2001, 191, 107–121. 10.1016/S0927-7757(01)00768-3. DOI

Chi J.; Zhang W.; Wang L.; Putnis C. V. Direct observations of the occlusion of soil organic matter within calcite. Environ. Sci. Technol. 2019, 53 (14), 8097–8104. 10.1021/acs.est.8b06807. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...