Chemical and Acoustical Mixed-Mapping of Geological Materials from Laser-Induced Plasmas: A Comprehensive Approach to Differentiate Mineral Phases
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39417619
PubMed Central
PMC11525928
DOI
10.1021/acs.analchem.4c05214
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The acoustic wave produced alongside laser-induced plasmas can be used in conjunction with the recorded atomic spectra of plasma emission to expand the physicochemical information acquired from a single inspection event. Among the most interesting uses of acoustic information is the differentiation of mineral phases with similar optical responses coexisting in geological targets. In addition, laser-induced plasma acoustics (LIPAc) can provide data related to the inspected material's hardness, density, and compactness. In this paper, we present a dual acoustic-optic laser-based strategy for the generation of high-resolution surface images of mineral samples. By combining simultaneous multimodal LIBS (laser-induced breakdown spectroscopy) and LIPAc spectral data from laser-induced plasmas, we explore the mineralogical composition of rocks embedded in resin matrixes to distinguish their chemical composition as well as their crystal phases based on physical changes caused by the different spatial arrangements of the constituent atoms. The multispectral polyhedron created by merging singular optical maps, one per detected elements, and the coincidental acoustic map enhance the distinction between regions present within the matrix of a host rock as compared to the differentiation yielded by each technique when used separately. The chemical information guides the composition of the mineral phases in the host rock. Then, the physical information obtained from acoustics may reinforce the identification of the detected mineral phase, draw the geological history of the inspected section, and showcase possible transformations, mainly of polymorphic nature. To test the combination proposed herein, we also inspected a septarian nodule featuring an ensemble of mineral phases with different origins. Mixed optical and acoustic responses from laser-produced plasmas of this complex sample allowed us to obtain more specific information. This approach constitutes a reliable and high-throughput tool for studying the surface of geological samples, which can substantially supplement well-established techniques for mineralogical analysis such as Raman spectroscopy and X-ray diffraction.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Institut Lumière Matière UCBL CNRS 10 Ada Byron Villeurbanne 69622 France
Zobrazit více v PubMed
Gardette V.; Motto-Ros V.; Alvarez-Llamas C.; Sancey L.; Duponchel L.; Busser B. Laser-induced breakdown spectroscopy imaging for material and biomedical applications: Recent advances and future perspectives. Anal. Chem. 2023, 95 (1), 49–69. 10.1021/acs.analchem.2c04910. PubMed DOI
Singh V. K.; Tripathi D. K.; Deguchi Y.; Wang Z.. Laser Induced Breakdown Spectroscopy (LIBS): Concepts, Instrumentation, Data Analysis and Applications. John Wiley & Sons Ltd.: Hoboken, NJ 07030, USA, 2023.
Lin Q.; Niu G.; Wang Q.; Yu Q.; Duan Y. Combined laser-induced breakdown with Raman spectroscopy: Historical technology development and recent applications. Appl. Spectrosc. Rev. 2013, 48, 487–508. 10.1080/05704928.2012.751028. DOI
Dhanada V. S.; Sajan D. G.; Kartha V. B.; Chidangil S.; Unnikrishnan V. K. Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: A topical review. Appl. Spectrosc. Rev. 2021, 56 (6), 463–491. 10.1080/05704928.2020.1800486. DOI
Azov V. A.; Mueller L.; Makarov A. A. Laser ionization mass spectrometry at 55: Quo Vadis?. Mass Spec. Rev. 2022, 41, 100–151. 10.1002/mas.21669. PubMed DOI
Telle H. H.; Ureña Á. G.. Laser Spectroscopy and Laser Imaging. CRC Press: Boca Raton, 2017.
Limbeck A.; Brunnbauer L.; Lohninger H.; Pořízka P.; Modlitbová P.; Kaiser J.; Janovszky P.; Kéri A.; Galbács G. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal. Chim. Acta 2021, 1147, 72–98. 10.1016/j.aca.2020.12.054. PubMed DOI
Campanella B.; Legnaioli S.; Pagnotta S.; Poggialini F.; Palleschi V. Shock waves in laser-induced plasmas. Atoms 2019, 7, 57.10.3390/atoms7020057. DOI
Purohit P.; Alvarez-Llamas C.; Moros J.; Laserna J. J.. Chapter 11. Materials characterization by laser-induced plasma acoustics and spectroscopy. In Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences. Gálbacs G. (Ed.); Springer International Publishing: Cham, 2023; pp 283–313.
Qiao S.; Ding Y.; Tian D.; Yao L.; Yang G. A review of laser-induced breakdown spectroscopy for analysis of geological materials. Appl. Spectrosc. Rev. 2015, 50, 1–26. 10.1080/05704928.2014.911746. DOI
Harmon R. S.; Lawley C. J. M.; Watts J.; Harraden C. L.; Somers A. M.; Hark R. R. Laser-induced breakdown spectroscopy – An emerging analytical tool for mineral exploration. Minerals 2019, 9 (12), 718.10.3390/min9120718. DOI
Fabre C. Advances in laser-induced breakdown spectroscopy analysis for geology: A critical review. Spectrochim. Acta, Part B 2020, 166, 10579910.1016/j.sab.2020.105799. DOI
Harmon R. S.; Senesi G. S. Laser-induced breakdown spectroscopy – A geochemical tool for the 21st Century. Appl. Geochem. 2021, 128, 10492910.1016/j.apgeochem.2021.104929. DOI
Corenblit D.; Baas A. C. W.; Bornette G.; Darrozes J.; Delmotte S.; Francis R. A.; Gurnell A. M.; Julien F.; Naiman R. J.; Steiger J. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth-Sci. Rev. 2011, 106 (3–4), 307–331. 10.1016/j.earscirev.2011.03.002. DOI
Maurice S.; Wiens R. C.; Bernardi P.; et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 2021, 217, 47.10.1007/s11214-021-00807-w. PubMed DOI PMC
Wiens R. C.; Maurice S.; Robinson S. H.; et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 2021, 217, 4.10.1007/s11214-020-00777-5. PubMed DOI PMC
Bhartia R.; Beegle L. W.; DeFlores L.; et al. Perseverance’s scanning habitable environments with Raman and luminescence for organics and chemicals (SHERLOC) investigation. Space Sci. Rev. 2021, 217, 58.10.1007/s11214-021-00812-z. DOI
Fouchet T.; Reess J.-M.; Montmessin F.; et al. The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission. Icarus 2022, 373, 11477310.1016/j.icarus.2021.114773. DOI
Hounslow M. W.Septarian concretions. In Encyclopedia of Sediments and Sedimentary Rocks. Encyclopedia of Earth Sciences Series. Middleton G. V.; Church M. J.; Coniglio M.; Hardie L. A.; Longstaffe F. J. (Eds.); Springer: Dordrecht, 1978; pp 657–659.
Benzerara K.; Skouri-Panet F.; Li J.; et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (30), 10933–10938. 10.1073/pnas.1403510111. PubMed DOI PMC
Solanky V.; Katiyar S. K. Pixel-level image fusion techniques in remote sensing: A review. Spat. Inf. Res. 2016, 24, 475–483. 10.1007/s41324-016-0046-6. DOI
https://physics.nist.gov/PhysRefData/ASD/lines_form.html.
https://www.mindat.org/.
Chide B.; Maurice S.; Murdoch N.; Lasue J.; Bousquet B.; Jacob X.; Cousin A.; Forni O.; Gasnault O.; Meslin P.-Y.; Fronton J.-F.; Bassas-Portús M.; Cadu A.; Sournac A.; Mimoun D.; Wiens R. C. Listening to laser sparks: A link between laser-induced breakdown spectroscopy, acoustic measurements and crater morphology. Spectrochim. Acta, Part B 2019, 153, 50–60. 10.1016/j.sab.2019.01.008. DOI
Mondillo N.; Herrington R.; Boni M.. Bauxites. In Encyclopedia of Geology. Alderton D.; Elias S. A. (Eds.). Academic Press: San Diego, CA, 2021; pp 694–707.
Rengasamy P. Substitution of iron and titanium in kaolinites. Clay. Clay Miner. 1976, 24 (5), 265–26. 10.1346/CCMN.1976.0240509. DOI
Yuste A.; Bauluz B.; Mayayo M. J. Origin and geochemical evolution from ferrallitized clays to karst bauxite: An example from the Lower Cretaceous of NE Spain. Ore Geol. Rev. 2017, 84, 67–79. 10.1016/j.oregeorev.2016.12.025. DOI
Ma C.; Eggleton R. A. Cation exchange capacity of kaolinite. Clay. Clay Miner. 1999, 47 (2), 174–180. 10.1346/CCMN.1999.0470207. DOI
Kim Y.; Caumon M.-C.; Barres O.; Sall A.; Cauzid J. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices. Spectrochim. Acta, Part A 2021, 261, 11998010.1016/j.saa.2021.119980. PubMed DOI
Aramendia J.; Tuite M.; Castro K.; Madariaga J. M. A new methodology for kerogen maturity estimation based on Raman spectroscopy and chemometric analysis. Sci. Total Environ. 2023, 887, 16405610.1016/j.scitotenv.2023.164056. PubMed DOI
Alvarez-Llamas C.; Pisonero J.; Bordel N. A novel approach for quantitative LIBS fluorine analysis using CaF emission in calcium-free samples. J. Anal. At. Spectrom. 2017, 32, 162–166. 10.1039/C6JA00386A. DOI
Trivedi P.; Axe L.; Dyer J. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Coll. Surf. A: Physicochem. Eng. Aspects 2001, 191, 107–121. 10.1016/S0927-7757(01)00768-3. DOI
Chi J.; Zhang W.; Wang L.; Putnis C. V. Direct observations of the occlusion of soil organic matter within calcite. Environ. Sci. Technol. 2019, 53 (14), 8097–8104. 10.1021/acs.est.8b06807. PubMed DOI