LAMP-based electrochemical platform for monitoring HPV genome integration at the mRNA level associated with higher risk of cervical cancer progression
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Ministerstvo Zdravotnictví Ceské Republiky
Ministerstvo Školství, Mládeže a Telovýchovy
Agentura Pro Zdravotnický Výzkum Ceské Republiky
NU21-08-00057
the Czech Health Research Council
LX22NPO5102
National Institute for Cancer Research
LM2023033
the European Union-Next Generation EU
LM2023033
Large research infrastructure BBMRI.cz
00209805
MH CZ-DRO
PubMed
39420658
DOI
10.1002/jmv.70008
Knihovny.cz E-zdroje
- Klíčová slova
- HPV integration, RT‐LAMP, cervical cancer, electrochemistry, human papillomavirus,
- MeSH
- biosenzitivní techniky metody MeSH
- DNA vazebné proteiny genetika MeSH
- DNA virů genetika MeSH
- elektrochemické techniky * metody MeSH
- genom virový MeSH
- infekce papilomavirem * virologie MeSH
- integrace viru * genetika MeSH
- lidé MeSH
- lidský papilomavirus 16 * genetika MeSH
- messenger RNA * genetika MeSH
- nádory děložního čípku * virologie MeSH
- onkogenní proteiny virové * genetika MeSH
- Papillomavirus E7 - proteiny * genetika MeSH
- progrese nemoci MeSH
- RNA virová genetika MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA virů MeSH
- E2 protein, Human papillomavirus type 16 MeSH Prohlížeč
- messenger RNA * MeSH
- oncogene protein E7, Human papillomavirus type 16 MeSH Prohlížeč
- onkogenní proteiny virové * MeSH
- Papillomavirus E7 - proteiny * MeSH
- RNA virová MeSH
Human papillomaviruses (HPVs) represent a diverse group of double-stranded DNA viruses associated with various types of cancers, notably cervical cancer. High-risk types of HPVs exhibit their oncogenic potential through the integration of their DNA into the host genome. This integration event contributes significantly to genomic instability and the progression of malignancy. However, traditional detection methods, such as immunohistochemistry or PCR-based assays, face inherent challenges, and thus alternative tools are being developed to fasten and simplify the analysis. Our study introduces an innovative biosensing platform that combines loop-mediated amplification with electrochemical (EC) analysis for the specific detection of HPV16 integration. By targeting key elements like the E7 mRNA, a central player in HPV integration, and the E2 viral gene transcript lost upon integration, we show clear distinction between episomal and integrated forms of HPV16. Our EC data confirmed higher E7 expression in HPV16-positive cell lines having integrated forms of viral genome, while E2 expression was diminished in cells with fully integrated genomes. Moreover, we revealed distinct expression patterns in cervical tissue of patients, correlating well with digital droplet PCR, qRT-PCR, or immunohistochemical staining. Our platform thus offers insights into HPV integration in clinical samples and facilitates further advancements in cervical cancer research and diagnostics.
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Darragh TM. The LAST project and the diagnostic bottom line. Cytopathology. 2015;26(6):343‐345. doi:10.1111/cyt.12299
Senapati R, Senapati NN, Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer. 2016;11(1):59. doi:10.1186/s13027-016-0107-4
Shukla S, Mahata S, Shishodia G, et al. Physical state & copy number of high risk human papillomavirus type 16 DNA in progression of cervical cancer. Indian J Med Res. 2014;139(4):531‐543.
Oyervides‐Muñoz MA, Pérez‐Maya AA, Rodríguez‐Gutiérrez HF, et al. Understanding the HPV integration and its progression to cervical cancer. Infect Genet Evol. 2018;61:134‐144. doi:10.1016/j.meegid.2018.03.003
Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550‐560. doi:10.1038/nrc2886
Stubenrauch F, Lim HB, Laimins LA. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J Virol. 1998;72(2):1071‐1077. doi:10.1128/JVI.72.2.1071-1077.1998
Wu L, Goodwin EC, Naeger LK, et al. E2F‐Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression. Mol Cell Biol. 2000;20(19):7059‐7067. doi:10.1128/MCB.20.19.7059-7067.2000
Gammoh N, Grm HS, Massimi P, Banks L. Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator. J Virol. 2006;80(4):1787‐1797. doi:10.1128/JVI.80.4.1787-1797.2006
Schwarz E, Freese UK, Gissmann L, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314(6006):111‐114. doi:10.1038/314111a0
Akagi K, Li J, Broutian TR, et al. Genome‐wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014;24(2):185‐199. doi:10.1101/gr.164806.113
Ren S, Gaykalova DA, Guo T, et al. HPV E2, E4, E5 drive alternative carcinogenic pathways in HPV positive cancers. Oncogene. 2020;39(40):6327‐6339. doi:10.1038/s41388-020-01431-8
Jeon S, Allen‐Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol. 1995;69(5):2989‐2997. doi:10.1128/jvi.69.5.2989-2997.1995
zur Hausen H. Host cell regulation of HPV transforming gene expression. Princess Takamatsu Symp. 1989;20:207‐219.
Kelesidis T, Aish L, Steller MA, et al. Human papillomavirus (HPV) detection using in situ hybridization in histologic samples: correlations with cytologic changes and polymerase chain reaction HPV detection. Am J Clin Path. 2011;136(1):119‐127. doi:10.1309/AJCP03HUQYZMWATP
Galgano MT, Castle PE, Atkins KA, Brix WK, Nassau SR, Stoler MH. Using biomarkers as objective standards in the diagnosis of cervical biopsies. Am J Surg Pathol. 2010;34(8):1077‐1087. doi:10.1097/PAS.0b013e3181e8b2c4
Luft F, Klaes R, Nees M, et al. Detection of integrated papillomavirus sequences by ligation‐mediated PCR (DIPS‐PCR) and molecular characterization in cervical cancer cells. Int J Cancer. 2001;92(1):9‐17.
Raybould R, Fiander A, Wilkinson GWG, Hibbitts S. HPV integration detection in CaSki and SiHa using detection of integrated papillomavirus sequences and restriction‐site PCR. J Virol Methods. 2014;206:51‐54. doi:10.1016/j.jviromet.2014.05.017
Weber JL, Kwitek AE, May PE. Dinucleotide repeat polymorphisms at the D5S107, D5S108, D5S111, D5S117 and D5S118 loci. Nucleic Acids Res. 1990;18(13):4035. doi:10.1093/nar/18.13.4035
Carmody MW, Jones M, Tarraza H, Vary CPH. Use of the polymerase chain reaction to specifically amplify integrated HPV‐16 DNA by virtue of its linkage to interspersed repetitive DNA. Mol Cell Probes. 1996;10(2):107‐116. doi:10.1006/mcpr.1996.0015
Chen CM, Shyu MP, Au LC, Chu HW, Cheng WTK, Choo KB. Analysis of deletion of the integrated human papillomavirus 16 sequence in cervical cancer: a rapid multiplex polymerase chain reaction approach. J Med Virol. 1994;44(2):206‐211. doi:10.1002/jmv.1890440216
Das BC, Sharma JK, Gopalakrishna V, Luthra UK. Analysis by polymerase chain reaction of the physical state of human papillomavirus type 16 DNA in cervical preneoplastic and neoplastic lesions. J Gen Virol. 1992;73(9):2327‐2336. doi:10.1099/0022-1317-73-9-2327
Kahla S, Kochbati L, Badis Chanoufi M, Maalej M, Oueslati R. HPV‐16 E2 physical status and molecular evolution in vivo in cervical carcinomas. Int J Biol Markers. 2014;29(1):e78‐e85. doi:10.5301/jbm.5000051
Cricca M, Venturoli S, Leo E, Costa S, Musiani M, Zerbini M. Disruption of HPV 16 E1 and E2 genes in precancerous cervical lesions. J Virol Methods. 2009;158(1‐2):180‐183. doi:10.1016/j.jviromet.2009.01.005
Tornesello ML, Buonaguro L, Giorgi‐Rossi P, Buonaguro FM. Viral and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and cancer. BioMed Res Int. 2013;2013:1‐10. doi:10.1155/2013/519619
Groves IJ, Coleman N. Human papillomavirus genome integration in squamous carcinogenesis: what have next‐generation sequencing studies taught us? J Pathol. 2018;245(1):9‐18. doi:10.1002/path.5058
Liang WS, Aldrich J, Nasser S, et al. Simultaneous characterization of somatic events and HPV‐18 integration in a metastatic cervical carcinoma patient using DNA and RNA sequencing. Int J Gynecol Can. 2014;24(2):329‐338. doi:10.1097/IGC.0000000000000049
Chung TKH, Van Hummelen P, Chan PKS, et al. Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women: cervical adenocarcinoma genomics. Int J Cancer. 2015;137(4):776‐783. doi:10.1002/ijc.29456
Bartosik M, Moranova L, Izadi N, et al. Advanced technologies towards improved HPV diagnostics. J Med Virol. 2024;96(2):e29409. doi:10.1002/jmv.29409
Notomi T. Loop‐mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):63e‐663e. doi:10.1093/nar/28.12.e63
Izadi N, Sebuyoya R, Moranova L, Hrstka R, Anton M, Bartosik M. Electrochemical bioassay coupled to LAMP reaction for determination of high‐risk HPV infection in crude lysates. Anal Chim Acta. 2021;1187:339145. doi:10.1016/j.aca.2021.339145
Sebuyoya R, Moranova L, Izadi N, et al Electrochemical DNA biosensor coupled to LAMP reaction for early diagnostics of cervical precancerous lesions. Biosens Bioelectron X. 2022;12:100224. doi:10.1016/j.biosx.2022.100224
Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron. 2017;91:15‐23. doi:10.1016/j.bios.2016.12.014
Holcakova J, Bartosik M, Anton M, et al. New trends in the detection of gynecological precancerous lesions and early‐stage cancers. Cancers. 2021;13(24):6339. doi:10.3390/cancers13246339
Anton M, Moranova L, Hrstka R, Bartosik M. Application of an electrochemical LAMP‐based assay for screening of HPV16/HPV18 infection in cervical samples. Anal Methods. 2020;12(6):822‐829. doi:10.1039/C9AY02383F
Bartosik M, Jirakova L. Electrochemical analysis of nucleic acids as potential cancer biomarkers. Curr Opin Electrochem. 2019;14:96‐103. doi:10.1016/j.coelec.2019.01.002
Bartosik M, Jirakova L, Anton M, Vojtesek B, Hrstka R. Genomagnetic LAMP‐based electrochemical test for determination of high‐risk HPV16 and HPV18 in clinical samples. Anal Chim Acta. 2018;1042:37‐43. doi:10.1016/j.aca.2018.08.020
Chen J, Xue Y, Poidinger M, et al. Mapping of HPV transcripts in four human cervical lesions using RNAseq suggests quantitative rearrangements during carcinogenic progression. Virology. 2014;462‐463:14‐24. doi:10.1016/j.virol.2014.05.026
Gaete S, Auguste A, Bhakkan B, et al. Frequent high‐risk HPV co‐infections excluding types 16 or 18 in cervical neoplasia in Guadeloupe. BMC Cancer. 2021;21(1):281. doi:10.1186/s12885-021-07940-3
Zhou L, Qiu Q, Zhou Q, et al. Long‐read sequencing unveils high‐resolution HPV integration and its oncogenic progression in cervical cancer. Nat Commun. 2022;13(1):2563. doi:10.1038/s41467-022-30190-1
Park IS, Chang X, Loyo M, et al. Characterization of the methylation patterns in human papillomavirus type 16 viral DNA in head and neck cancers. Cancer Prev Res. 2011;4(2):207‐217. doi:10.1158/1940-6207.CAPR-10-0147
Myers JE, Guidry JT, Scott ML, et al. Detecting episomal or integrated human papillomavirus 16 DNA using an exonuclease V‐qPCR‐based assay. Virology. 2019;537:149‐156. doi:10.1016/j.virol.2019.08.021
Izadi‐Mood N, Asadi K, Shojaei H, et al. Potential diagnostic value of P16 expression in premalignant and malignant cervical lesions. J Res Med Sci. 2012;17(5):428‐433.