LAMP-based electrochemical platform for monitoring HPV genome integration at the mRNA level associated with higher risk of cervical cancer progression

. 2024 Oct ; 96 (10) : e70008.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39420658

Grantová podpora
Ministerstvo Zdravotnictví Ceské Republiky
Ministerstvo Školství, Mládeže a Telovýchovy
Agentura Pro Zdravotnický Výzkum Ceské Republiky
NU21-08-00057 the Czech Health Research Council
LX22NPO5102 National Institute for Cancer Research
LM2023033 the European Union-Next Generation EU
LM2023033 Large research infrastructure BBMRI.cz
00209805 MH CZ-DRO

Human papillomaviruses (HPVs) represent a diverse group of double-stranded DNA viruses associated with various types of cancers, notably cervical cancer. High-risk types of HPVs exhibit their oncogenic potential through the integration of their DNA into the host genome. This integration event contributes significantly to genomic instability and the progression of malignancy. However, traditional detection methods, such as immunohistochemistry or PCR-based assays, face inherent challenges, and thus alternative tools are being developed to fasten and simplify the analysis. Our study introduces an innovative biosensing platform that combines loop-mediated amplification with electrochemical (EC) analysis for the specific detection of HPV16 integration. By targeting key elements like the E7 mRNA, a central player in HPV integration, and the E2 viral gene transcript lost upon integration, we show clear distinction between episomal and integrated forms of HPV16. Our EC data confirmed higher E7 expression in HPV16-positive cell lines having integrated forms of viral genome, while E2 expression was diminished in cells with fully integrated genomes. Moreover, we revealed distinct expression patterns in cervical tissue of patients, correlating well with digital droplet PCR, qRT-PCR, or immunohistochemical staining. Our platform thus offers insights into HPV integration in clinical samples and facilitates further advancements in cervical cancer research and diagnostics.

Zobrazit více v PubMed

Darragh TM. The LAST project and the diagnostic bottom line. Cytopathology. 2015;26(6):343‐345. doi:10.1111/cyt.12299

Senapati R, Senapati NN, Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer. 2016;11(1):59. doi:10.1186/s13027-016-0107-4

Shukla S, Mahata S, Shishodia G, et al. Physical state & copy number of high risk human papillomavirus type 16 DNA in progression of cervical cancer. Indian J Med Res. 2014;139(4):531‐543.

Oyervides‐Muñoz MA, Pérez‐Maya AA, Rodríguez‐Gutiérrez HF, et al. Understanding the HPV integration and its progression to cervical cancer. Infect Genet Evol. 2018;61:134‐144. doi:10.1016/j.meegid.2018.03.003

Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550‐560. doi:10.1038/nrc2886

Stubenrauch F, Lim HB, Laimins LA. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J Virol. 1998;72(2):1071‐1077. doi:10.1128/JVI.72.2.1071-1077.1998

Wu L, Goodwin EC, Naeger LK, et al. E2F‐Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression. Mol Cell Biol. 2000;20(19):7059‐7067. doi:10.1128/MCB.20.19.7059-7067.2000

Gammoh N, Grm HS, Massimi P, Banks L. Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator. J Virol. 2006;80(4):1787‐1797. doi:10.1128/JVI.80.4.1787-1797.2006

Schwarz E, Freese UK, Gissmann L, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314(6006):111‐114. doi:10.1038/314111a0

Akagi K, Li J, Broutian TR, et al. Genome‐wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014;24(2):185‐199. doi:10.1101/gr.164806.113

Ren S, Gaykalova DA, Guo T, et al. HPV E2, E4, E5 drive alternative carcinogenic pathways in HPV positive cancers. Oncogene. 2020;39(40):6327‐6339. doi:10.1038/s41388-020-01431-8

Jeon S, Allen‐Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol. 1995;69(5):2989‐2997. doi:10.1128/jvi.69.5.2989-2997.1995

zur Hausen H. Host cell regulation of HPV transforming gene expression. Princess Takamatsu Symp. 1989;20:207‐219.

Kelesidis T, Aish L, Steller MA, et al. Human papillomavirus (HPV) detection using in situ hybridization in histologic samples: correlations with cytologic changes and polymerase chain reaction HPV detection. Am J Clin Path. 2011;136(1):119‐127. doi:10.1309/AJCP03HUQYZMWATP

Galgano MT, Castle PE, Atkins KA, Brix WK, Nassau SR, Stoler MH. Using biomarkers as objective standards in the diagnosis of cervical biopsies. Am J Surg Pathol. 2010;34(8):1077‐1087. doi:10.1097/PAS.0b013e3181e8b2c4

Luft F, Klaes R, Nees M, et al. Detection of integrated papillomavirus sequences by ligation‐mediated PCR (DIPS‐PCR) and molecular characterization in cervical cancer cells. Int J Cancer. 2001;92(1):9‐17.

Raybould R, Fiander A, Wilkinson GWG, Hibbitts S. HPV integration detection in CaSki and SiHa using detection of integrated papillomavirus sequences and restriction‐site PCR. J Virol Methods. 2014;206:51‐54. doi:10.1016/j.jviromet.2014.05.017

Weber JL, Kwitek AE, May PE. Dinucleotide repeat polymorphisms at the D5S107, D5S108, D5S111, D5S117 and D5S118 loci. Nucleic Acids Res. 1990;18(13):4035. doi:10.1093/nar/18.13.4035

Carmody MW, Jones M, Tarraza H, Vary CPH. Use of the polymerase chain reaction to specifically amplify integrated HPV‐16 DNA by virtue of its linkage to interspersed repetitive DNA. Mol Cell Probes. 1996;10(2):107‐116. doi:10.1006/mcpr.1996.0015

Chen CM, Shyu MP, Au LC, Chu HW, Cheng WTK, Choo KB. Analysis of deletion of the integrated human papillomavirus 16 sequence in cervical cancer: a rapid multiplex polymerase chain reaction approach. J Med Virol. 1994;44(2):206‐211. doi:10.1002/jmv.1890440216

Das BC, Sharma JK, Gopalakrishna V, Luthra UK. Analysis by polymerase chain reaction of the physical state of human papillomavirus type 16 DNA in cervical preneoplastic and neoplastic lesions. J Gen Virol. 1992;73(9):2327‐2336. doi:10.1099/0022-1317-73-9-2327

Kahla S, Kochbati L, Badis Chanoufi M, Maalej M, Oueslati R. HPV‐16 E2 physical status and molecular evolution in vivo in cervical carcinomas. Int J Biol Markers. 2014;29(1):e78‐e85. doi:10.5301/jbm.5000051

Cricca M, Venturoli S, Leo E, Costa S, Musiani M, Zerbini M. Disruption of HPV 16 E1 and E2 genes in precancerous cervical lesions. J Virol Methods. 2009;158(1‐2):180‐183. doi:10.1016/j.jviromet.2009.01.005

Tornesello ML, Buonaguro L, Giorgi‐Rossi P, Buonaguro FM. Viral and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and cancer. BioMed Res Int. 2013;2013:1‐10. doi:10.1155/2013/519619

Groves IJ, Coleman N. Human papillomavirus genome integration in squamous carcinogenesis: what have next‐generation sequencing studies taught us? J Pathol. 2018;245(1):9‐18. doi:10.1002/path.5058

Liang WS, Aldrich J, Nasser S, et al. Simultaneous characterization of somatic events and HPV‐18 integration in a metastatic cervical carcinoma patient using DNA and RNA sequencing. Int J Gynecol Can. 2014;24(2):329‐338. doi:10.1097/IGC.0000000000000049

Chung TKH, Van Hummelen P, Chan PKS, et al. Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women: cervical adenocarcinoma genomics. Int J Cancer. 2015;137(4):776‐783. doi:10.1002/ijc.29456

Bartosik M, Moranova L, Izadi N, et al. Advanced technologies towards improved HPV diagnostics. J Med Virol. 2024;96(2):e29409. doi:10.1002/jmv.29409

Notomi T. Loop‐mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):63e‐663e. doi:10.1093/nar/28.12.e63

Izadi N, Sebuyoya R, Moranova L, Hrstka R, Anton M, Bartosik M. Electrochemical bioassay coupled to LAMP reaction for determination of high‐risk HPV infection in crude lysates. Anal Chim Acta. 2021;1187:339145. doi:10.1016/j.aca.2021.339145

Sebuyoya R, Moranova L, Izadi N, et al Electrochemical DNA biosensor coupled to LAMP reaction for early diagnostics of cervical precancerous lesions. Biosens Bioelectron X. 2022;12:100224. doi:10.1016/j.biosx.2022.100224

Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron. 2017;91:15‐23. doi:10.1016/j.bios.2016.12.014

Holcakova J, Bartosik M, Anton M, et al. New trends in the detection of gynecological precancerous lesions and early‐stage cancers. Cancers. 2021;13(24):6339. doi:10.3390/cancers13246339

Anton M, Moranova L, Hrstka R, Bartosik M. Application of an electrochemical LAMP‐based assay for screening of HPV16/HPV18 infection in cervical samples. Anal Methods. 2020;12(6):822‐829. doi:10.1039/C9AY02383F

Bartosik M, Jirakova L. Electrochemical analysis of nucleic acids as potential cancer biomarkers. Curr Opin Electrochem. 2019;14:96‐103. doi:10.1016/j.coelec.2019.01.002

Bartosik M, Jirakova L, Anton M, Vojtesek B, Hrstka R. Genomagnetic LAMP‐based electrochemical test for determination of high‐risk HPV16 and HPV18 in clinical samples. Anal Chim Acta. 2018;1042:37‐43. doi:10.1016/j.aca.2018.08.020

Chen J, Xue Y, Poidinger M, et al. Mapping of HPV transcripts in four human cervical lesions using RNAseq suggests quantitative rearrangements during carcinogenic progression. Virology. 2014;462‐463:14‐24. doi:10.1016/j.virol.2014.05.026

Gaete S, Auguste A, Bhakkan B, et al. Frequent high‐risk HPV co‐infections excluding types 16 or 18 in cervical neoplasia in Guadeloupe. BMC Cancer. 2021;21(1):281. doi:10.1186/s12885-021-07940-3

Zhou L, Qiu Q, Zhou Q, et al. Long‐read sequencing unveils high‐resolution HPV integration and its oncogenic progression in cervical cancer. Nat Commun. 2022;13(1):2563. doi:10.1038/s41467-022-30190-1

Park IS, Chang X, Loyo M, et al. Characterization of the methylation patterns in human papillomavirus type 16 viral DNA in head and neck cancers. Cancer Prev Res. 2011;4(2):207‐217. doi:10.1158/1940-6207.CAPR-10-0147

Myers JE, Guidry JT, Scott ML, et al. Detecting episomal or integrated human papillomavirus 16 DNA using an exonuclease V‐qPCR‐based assay. Virology. 2019;537:149‐156. doi:10.1016/j.virol.2019.08.021

Izadi‐Mood N, Asadi K, Shojaei H, et al. Potential diagnostic value of P16 expression in premalignant and malignant cervical lesions. J Res Med Sci. 2012;17(5):428‐433.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...