• This record comes from PubMed

Prevalence and virulence profiles of ESBL-producing Escherichia coli in urinary and blood infections in South Korea

. 2025 Jun ; 70 (3) : 589-600. [epub] 20241022

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
2016-ER4701 Ministry of Health and Welfare
2022ER250300 Ministry of Health and Welfare

Links

PubMed 39433645
DOI 10.1007/s12223-024-01205-9
PII: 10.1007/s12223-024-01205-9
Knihovny.cz E-resources

Escherichia coli is a significant pathogen in extraintestinal infections, and ESBL-producing E. coli poses a major clinical challenge due to its antibiotic resistance. This study comprehensively analyzed E. coli isolates from urine and blood samples of patients with urinary tract and bloodstream infections at three major tertiary hospitals in South Korea. The goal was to provide insights into the distribution, antibiotic resistance, and virulence factors of these strains. Our analysis identified CTX-M and TEM as the dominant ESBL types, found in 71.7% and 61.7% of isolates, respectively, with 46.7% showing co-occurrence. Multilocus sequence typing (MLST) revealed the predominance of high-risk clones such as ST131, ST69, ST73, and ST95, with rare sequence types like ST410 and ST405 also identified. The high prevalence of virulence factors, including iutA (80.8%) and kpsMII (74.2%), further highlights the complexity of these strains. In addition, 38.3% of clinical isolates contained a combination of siderophore, adhesin, protectin, and toxin-related genes. There was no significant difference between urinary tract and bloodstream infections or regional differentiation in Korea. This study highlights the importance of controlling ESBL-producing E. coli infections, especially given the increasing incidence among patients with underlying medical conditions and older adults who are more susceptible to urinary tract infections. These findings serve as valuable indicators for pathogen analysis, especially those harboring antibiotic resistance and toxin genes. The insights gained are expected to contribute significantly to the development of infectious disease prevention and control strategies.

See more in PubMed

Ahmed I, Sajed M, Sultan A, Murtaza I, Yousaf S, Maqsood B, Vanhara P, Anees M (2015) The erratic antibiotic susceptibility patterns of bacterial pathogens causing urinary tract infections. EXCLI J 14:916–925. https://doi.org/10.17179/excli2015-207

Carter C, Hutchison A, Rudder S, Trotter E, Waters EV, Elumogo N, Langridge GC (2023) Uropathogenic Escherichia coli population structure and antimicrobial susceptibility in Norfolk, UK. J Antimicrob Chemother 78:2028–2036. https://doi.org/10.1093/jac/dkad201 PubMed DOI PMC

Chowdhury PR, Hastak P, DeMaere M, Wyrsch E, Li D, Elankumaran P, Dolejska M, Browning GF, Marenda MS, Gottlieb T, Cheong E, Merlino J, Myers GSA, Djordjevic SP (2023) Phylogenomic analysis of a global collection of Escherichia coli ST38: evidence of interspecies and environmental transmission? mSystems 8(5):e0123622. https://doi.org/10.1128/msystems.01236-22

Daoud Z, Sokhn ES, Masri K, Cheaito K, Haidar-Ahmad N, Matar GM, Doron S (2015) Escherichia coli isolated from urinary tract infections of Lebanese patients between 2005 and 2012: epidemiology and profiles of resistance. Front Med 2:26. https://doi.org/10.3389/fmed.2015.00026 DOI

Derakhshandeh A, Firouzi R, Motamedifar M, Arabshahi S, Novinrooz A, Boroojeni AM, Bahadori M, Heidari S (2015) Virulence characteristics and antibiotic resistance patterns among various phylogenetic groups of uropathogenic Escherichia coli isolates. Jpn J Infect Dis 68:428–431. https://doi.org/10.7883/yoken.JJID.2014.327 PubMed DOI

Ewers C, Li G, Wilking H, Kie βling S, Alt K, Antao EM, Laturnus C, Diehl I, Glodde S, Homeier T, Bohnke U, Steinruck H, Philipp HC, Wieler LH, (2007) Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297:163–176. https://doi.org/10.1016/j.ijmm.2007.01.003 PubMed DOI

Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, Alimehr S (2014) Prevalence of bla DOI

Foxman B (2002) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 8:113. https://doi.org/10.1016/s0002-9343(02)01054-9 DOI

Goldstone RJ, Popat R, Schuberth HJ, Sandra O, Sheldon IM, Smith DGE (2014) Genomic characterisation of an endometrial pathogenic Escherichia coli strain reveals the acquisition of genetic elements associated with extra-intestinal pathogenicity. BMC Genomics 15:1075. https://doi.org/10.1186/1471-2164-15-1075 PubMed DOI PMC

Gomi R, Matsuda T, Fujimori Y, Harada H, Matsui Y, Yoneda M (2015) Characterization of pathogenic Escherichia coli in river water by simultaneous detection and sequencing of 14 virulence genes. Environ Sci Technol 49:6800–6807. https://doi.org/10.1021/acs.est.5b00953 PubMed DOI

Guion CE, Ochoa TJ, Walker CM, Barletta F, Cleary TG (2008) Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR. J Clin Microbiol 46:1752–1757. https://doi.org/10.1128/JCM.02341-07 PubMed DOI PMC

Hung WT, Cheng MF, Tseng FC, Chen YS, Lee SSJ, Chang TH, Lin HH, Hung CH, Wang JL (2019) Bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli: the role of virulence genes. J Microbiol Immunol Infect 52:947–955. https://doi.org/10.1016/j.jmii.2019.03.005 PubMed DOI

Jakobsen L, Spangholm DJ, Pedersen K, Jensen LB, Emborg HD, Agersø Y, Aarestrup FM, Hammerum AM, Frimodt-Møller N (2010) Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. Int J Food Microbiol 142:264–272. https://doi.org/10.1016/j.ijfoodmicro.2010.06.025 PubMed DOI

Jean SS, Harnod D, Hsueh PR (2022) Global threat of carbapenem-resistant gram-negative bacteria. Front Cell Infect Microbiol 12:823684. https://doi.org/10.3389/fcimb.2022.823684 PubMed DOI PMC

Khah AN, Hakemi-Vala M, Samavat S, Nasiri MJ (2020) Prevalence, serotyping and drug susceptibility patterns of Escherichia coli isolates from kidney transplanted patients with urinary tract infections. World J Biol Chem 11:112–118. https://doi.org/10.4331/wjbc.v11.i3.112 PubMed DOI

Kim MH, Lee HJ, Park KS, Suh JT (2010) Molecular characteristics of extended spectrum β-Lactamases in Escherichia coli and Klebsiella pneumoniae and the prevalence of qnr in extended spectrum β-Lactamase isolates in a Tertiary Care Hospital in Korea. Yonsei Med J 51:768–774. https://doi.org/10.3349/ymj.2010.51.5.768 PubMed DOI PMC

Kishi R, Nakano R, Nakano A, Harimoto T, Taniguchi R, Ando S, Suzuki Y, Yamaguchi K, Kitagawa D, Horiuchi S, Tsubaki K, Morita R, Kawabe T, Yano H (2024) Prevalence of carbapenem-resistant Enterobacterales with bla

Leistner R, Sakellariou C, Gürntke S, Kola A, Steinmetz I, Kohler C, Pfeifer Y, Eller C, Gastmeier P, Schwab F (2014) Mortality and molecular epidemiology associated with extended-spectrum β-lactamase production in Escherichia coli from bloodstream infection. Infect Drug Res 7:57–62. https://doi.org/10.2147/IDR.S56984 DOI

Li D, Elankumaran P, Kudinha T, Kidsley AK, Trott DJ, Jarocki VM, Djordjevic SP (2023) Dominance of Escherichia coli sequence types ST73, ST95, ST127 and ST131 in Australian urine isolates: a genomic analysis of antimicrobial resistance and virulence linked to F plasmids. Microbial Genomics 9:001068. https://doi.org/10.1099/mgen.0.001068 DOI

Maldonado N, López-Hernández I, García-Montaner A, López-Cortés LE, Pérez-Crespo PMM, Retamar-Gentil P, Sousa-Domínguez A, Goikoetxea J, Pulido-Navazo A, Labayru-Echeverría C, Natera-Kindelán C, Jover-Sáenz A, Arco-Jiménez A, Armiñanzas-Castillo C, Aller AI, Fernández-Suárez J, Marrodán-Ciordia T, Boix-Palop L, Smithson-Amat A, Reguera-Iglesias JM, Galán-Sánchez F, Bahamonde A, Calvo JMS, Gea-Lázaro I, Pérez-Camacho I, Reyes-Beros A, Becerril-Carral B, Rodríguez-Baño J, Pascual Á, on behalf of the Grupo PROBAC REIPI/GEIH-SEIMC/SAEI (2024) Whole-genome characterisation of Escherichia coli isolates from patients with bacteraemia presenting with sepsis or septic shock in Spain: a multicentre cross-sectional study. Lancet Microbe 5:e390–e399. https://doi.org/10.1016/S2666-5247(23)00369-5 DOI

Maluta RP, Logue CM, Casas MRT, Meng T, Guastalli EAL, Rojas TCG, Montelli AC, Sandatsune T, Ramos MC, Nolan LK, Silveira WD (2014) Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli Isolated in Brazil. Plos One 9:8. https://doi.org/10.1371/journal.pone.0105016 DOI

Marrs CF, Zhang L, Foxman B (2005) Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol Letters 252:183–190. https://doi.org/10.1016/j.femsle.2005.08.028 DOI

Matsumura Y, Yamamoto M, Matsushima A, Nagao M, Ito Y, Takakura S, Ichiyama S (2012) Cefotaxime for the detection of extended-spectrum β-lactamase or plasmid-mediated AmpC β-lactamase and clinical characteristics of cefotaxime-non-susceptible Escherichia coli and Klebsiella pneumoniae bacteraemia. Eur J Clin Microbiol Infect Dis 31:1931–1939. https://doi.org/10.1007/s10096-011-1523-4 PubMed DOI

Muller A, Gbaguidi-Haore H, Cholley P, Hocquet D, Sauget M, Bertrand X (2021) Hospital-diagnosed infections with Escherichia coli clonal group ST131 are mostly acquired in the community. Nature Scientific Reports 11:5702. https://doi.org/10.1038/s41598-021-85116-6 DOI

Navidinia M, Peerayeh SN, Fallah F, Bakhshi B, Sajadinia RS (2014) Phylogenetic grouping and pathotypic comparison of urine and fecal Escherichia coli isolates from children with urinary tract infection. Braz J Microbiol 45:509–514. https://doi.org/10.1590/S1517-83822014000200019 PubMed DOI PMC

Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V (2012) Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 18:432–438. https://doi.org/10.1111/j.1469-0691.2012.03815.x PubMed DOI

Olesen B, Hansen DS, Nilsson F, Frimodt-Møller J, Leihof RF, Struve C, Scheutz F, Johnston B, Krogfelt KA, Johnson JR (2013) Prevalence and characteristics of the epidemic multiresistant Escherichia coli ST131 clonal group among extended-spectrum beta-lactamase-producing E. coli isolates in Copenhagen. Denmark. J Clin Microbiol 51:1779–1785. https://doi.org/10.1128/jcm.00346-13 PubMed DOI

Oliver A, Weigel LM, Rasheed JK, McGowan JE Jr, Raney P, Tenover FC (2002) Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli. Antimicrob Agents Chemother 46:3829–3836. https://doi.org/10.1128/aac.46.12.3829-3836.2002 PubMed DOI PMC

Paterson DL, Bonomo RA (2005) Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18:657–686. https://doi.org/10.1128/cmr.18.4.657-686.2005 PubMed DOI PMC

Paterson DL, Ko WC, Gottberg AV, Casellas JM, Mulazimoglu L, Klugman KP, Bonomo RA, Rice LB, McCormack JG, Yu VL (2001) Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 39:2206–2212. https://doi.org/10.1128/JCM.39.6.2206-2212.2001 PubMed DOI PMC

Paton AW, Paton JC (1998) Detection and characterization of shiga toxigenic Escherichia coli by using multiplex PCR assays for stx

Riley LW (2014) Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 20:380–390. https://doi.org/10.1111/1469-0691.12646 PubMed DOI

Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK (2005) Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 151:2097–2110. https://doi.org/10.1099/mic.0.27499-0 PubMed DOI

Sanz MB, Belder DD, Mendieta JM, Faccone D, Poklepovich T, Lucero C, Rapoport M, Campos J, Tuduri E, Saavedra MO, Ploeg CV, Roge A, Carbapenemases-ExPEC Group, Pasteran F, Corso A, Rosato AE, Gomez SA (2022) Carbapenemase-producing extraintestinal pathogenic Escherichia coli from Argentina: clonal diversity and predominance of hyperepidemic clones CC10 and CC131. Front Microbiol 13:830209. https://doi.org/10.3389/fmicb.2022.830209 DOI

Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, Choroszy-Krol I (2019) Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from diferent sources: recent reports. Gut Pathog 11:10. https://doi.org/10.1186/s13099-019-0290-0 PubMed DOI PMC

Sheila AS, Diep BA, Perdreau-Remington F, Riley LW (2013) Clonal composition and community clustering of drug-susceptible and-resistant Escherichia coli isolates from bloodstream infections. Antimicrob Agent Chemother 57:490–497. https://doi.org/10.1128/aac.01025-12 DOI

Simpson IN, Harper PB, O’Callaghan CH (1980) Principal β-Lactamases responsible for resistance to β-Lactam antibiotics in urinary tract infections. Antimicrob Agents Chemother 17:929–936. https://doi.org/10.1128/aac.17.6.929 PubMed DOI PMC

Smet A, Rasschaert G, Martel A, Persoons D, Dewulf J, Butaye P, Catry B, Haesebrouck F, Herman L, Heyndrickx M (2011) In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J Appl Microbiol 110:541–549. https://doi.org/10.1111/j.1365-2672.2010.04907.x PubMed DOI

Stuart JC, Dierikx C, Naiemi NA, Karczmarek A, Van Hoek AHAM, Vos P, Fluit AC, Scharringa J, Duim B, Mevius D, Leverstein-Van Hall MA (2010) Rapid detection of TEM, SHV and CTX-M extended-spectrum β-lactamases in Enterobacteriaceae using ligation-mediated amplification with microarray analysis. J Antimicrob Chemother 65:1377–1381. https://doi.org/10.1093/jac/dkq146 DOI

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197 PubMed DOI PMC

Tourret J, Denamur E (2016) Population phylogenomics of extraintestinal pathogenic Escherichia coli. Microbiol Spectrum 4:UTI-0010-2012. https://doi.org/10.1128/microbiolspec.UTI-0010-2012

Vachvanichsanong P, McNeil EB, Dissaneewate P (2020) Extended-spectrum beta-lactamase Escherichia coli and Klebsiella pneumoniae urinary tract infections. Epi Infect 149:e12. https://doi.org/10.1017/S0950268820003015 DOI

Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, Tang J, Guo XK, Ni YX, Han LZ (2016) Antimicrobial resistance and molecular epidemiology of Escherichia coli causing bloodstream infections in three Hospitals in Shanghai. China. PLoS ONE 11(1):e0147740. https://doi.org/10.1371/journal.pone.0147740 PubMed DOI

Yun CS, Moon BY, Hwang MH, Lee SK, Ku BK, Lee K (2023) Characterization of the pathogenicity of extraintestinal pathogenic Escherichia coli isolates from pneumonia-infected lung samples of dogs and cats in South Korea. Nature Scientific Reports 13:5575. https://doi.org/10.1038/s41598-023-32287-z DOI

Zavala-Cerna MG, Segura-Cobos M, Gonzalez R, Zavala-Trujillo IG, Navarro-Perez SF, Rueda-Cruz JA, Satoscoy-Tovar FA (2020) The clinical significance of high antimicrobial resistance in community-acquired urinary tract infections. Can J Infectious Dis Med Microbiol 2020:2967260. https://doi.org/10.1155/2020/2967260 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...