Socioeconomic Status, Smoking, and Lung Cancer: Mediation and Bias Analysis in the SYNERGY Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
001
World Health Organization - International
PubMed
39435907
DOI
10.1097/ede.0000000000001807
PII: 00001648-990000000-00308
Knihovny.cz E-zdroje
- MeSH
- analýza mediace MeSH
- dospělí MeSH
- kouření * epidemiologie škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- logistické modely MeSH
- nádory plic * epidemiologie etiologie MeSH
- rizikové faktory MeSH
- senioři MeSH
- společenská třída * MeSH
- studie případů a kontrol MeSH
- výběrový bias MeSH
- zkreslení výsledků (epidemiologie) MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Increased lung cancer risks for low socioeconomic status (SES) groups are only partially attributable to smoking habits. Little effort has been made to investigate the persistent risks related to low SES by quantification of potential biases. METHODS: Based on 12 case-control studies, including 18 centers of the international SYNERGY project (16,550 cases, 20,147 controls), we estimated controlled direct effects (CDE) of SES on lung cancer via multiple logistic regression, adjusted for age, study center, and smoking habits and stratified by sex. We conducted mediation analysis by inverse odds ratio weighting to estimate natural direct effects and natural indirect effects via smoking habits. We considered misclassification of smoking status, selection bias, and unmeasured mediator-outcome confounding by genetic risk, both separately and by multiple quantitative bias analyses, using bootstrap to create 95% simulation intervals (SI). RESULTS: Mediation analysis of lung cancer risks for SES estimated mean proportions of 43% in men and 33% in women attributable to smoking. Bias analyses decreased the direct effects of SES on lung cancer, with selection bias showing the strongest reduction in lung cancer risk in the multiple bias analysis. Lung cancer risks remained increased for lower SES groups, with higher risks in men (fourth vs. first [highest] SES quartile: CDE, 1.50 [SI, 1.32, 1.69]) than women (CDE: 1.20 [SI: 1.01, 1.45]). Natural direct effects were similar to CDE, particularly in men. CONCLUSIONS: Bias adjustment lowered direct lung cancer risk estimates of lower SES groups. However, risks for low SES remained elevated, likely attributable to occupational hazards or other environmental exposures.
Boston College Chestnut Hill MA
Cancer Epidemiology Unit Department of Medical Sciences University of Turin Turin Italy
Dalla Lana School of Public Health University of Toronto Toronto Canada
Department of Cardiovascular Sciences and Public Health University of Padova Padova Italy
Department of Medical and Surgical Sciences University of Bologna Bologna Italy
Environmental Research Group School of Public Health Imperial College London United Kingdom
Epidemiology Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
Faculty of Medicine Palacky University Olomouc Czech Republic
Health Research Institute of Asturias University of Oviedo ISPA and CIBERESP Spain
Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
Institute of Hygiene and Epidemiology 1 Faculty of Medicine Charles University Prague Czech Republic
International Agency for Research on Cancer Lyon France
Leibniz Institute for Prevention Research and Epidemiology BIPS Bremen Germany
Masaryk Memorial Cancer Institute Brno Czech Republic
National Cancer Institute Bethesda MD
National Institute of Public Health Bucharest Romania
National Public Health Center Budapest Hungary
National Research Council Palermo Italy
Occupational Cancer Research Centre Ontario Health Toronto Canada
Regional Authority of Public Health Banska Bystrica Slovakia
Stony Brook Cancer Center Stony Brook University Stony Brook NY
The Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
The Nofer Institute of Occupational Medicine Lodz Poland
Université Rennes Inserm EHESP Irset UMR_S 1085 Pointe à Pitre France
University of Montreal Hospital Research Center Montreal Canada
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249.
GBD 2016 Occupational Carcinogens Collaborators. Global and regional burden of cancer in 2016 arising from occupational exposure to selected carcinogens: a systematic analysis for the Global Burden of Disease Study 2016. Occup Environ Med. 2020;77:151–159.
Hovanec J, Siemiatycki J, Conway DI, et al. Lung cancer and socioeconomic status in a pooled analysis of case–control studies. PLoS One. 2018;13:e0192999.
Menvielle G, Franck J, Radoï L, et al. Quantifying the mediating effects of smoking and occupational exposures in the relation between education and lung cancer: the ICARE study. Eur J Epidemiol. 2016;31:1213–1221.
Blakely T, Barendregt JJ, Foster RH, et al. The association of active smoking with multiple cancers: national census-cancer registry cohorts with quantitative bias analysis. Cancer Causes Control. 2013;24:1243–1255.
Fox MP, MacLehose RF, Lash TL. Applying Quantitative Bias Analysis to Epidemiologic Data. Springer; 2021.
Greenland S, Lash TL. Bias analysis. In: Rothman KJ, Greenland S, Lash TL, eds. Modern Epidemiology. 3rd ed. Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008:345–380.
Jiang Z, VanderWeele TJ. When is the difference method conservative for assessing mediation? Am J Epidemiol. 2015;182:105–108.
Kaufman JS, MacLehose RF, Kaufman S. A further critique of the analytic strategy of adjusting for covariates to identify biologic mediation. Epidemiol Perspect Innov. 2004;1:4.
Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: methods, interpretation and bias. Int J Epidemiol. 2013;42:1511–1519.
Pearl J. Direct and indirect effects. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc; 2001:411–420.
Naimi AI, Kaufman JS, MacLehose RF. Mediation misgivings: ambiguous clinical and public health interpretations of natural direct and indirect effects. Int J Epidemiol. 2014;43:1656–1661.
Olsson AC, Vermeulen R, Schüz J, et al. Exposure-response analyses of asbestos and lung cancer subtypes in a pooled analysis of case–control studies. Epidemiology. 2017;28:288–299.
Ganzeboom HB, Treiman DJ. International Stratification and Mobility File: Conversion Tools . 2019. Available at: http://www.harryganzeboom.nl/ismf/index.htm . Accessed 27 February 2023.
Leffondre K, Abrahamowicz M, Xiao Y, Siemiatycki J. Modelling smoking history using a comprehensive smoking index: application to lung cancer. Stat Med. 2006;25:4132–4146.
Ahrens W, Merletti F. A standard tool for the analysis of occupational lung cancer in epidemiologic studies. Int J Occup Environ Health. 1998;4:236–240.
Mirabelli D, Chiusolo M, Calisti R, et al. Database of occupations and industrial activities that involve the risk of pulmonary tumors. Epidemiol Prev. 2001;25:215–221.
Tchetgen Tchetgen EJ. Inverse odds ratio-weighted estimation for causal mediation analysis. Stat Med. 2013;32:4567–4580.
Nguyen QC, Osypuk TL, Schmidt NM, Glymour MM, Tchetgen Tchetgen EJ. Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting. Am J Epidemiol. 2015;181:349–356.
Steen J, Loeys T, Moerkerke B, Vansteelandt S. Flexible mediation analysis with multiple mediators. Am J Epidemiol. 2017;186:184–193.
VanderWeele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol. 2010;172:1339–1348.
Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects. Epidemiology. 2006;17:276–284.
Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18:137–150.
Vartiainen E, Seppälä T, Lillsunde P, Puska P. Validation of self reported smoking by serum cotinine measurement in a community-based study. J Epidemiol Community Health. 2002;56:167–170.
Wong SL, Shields M, Leatherdale S, Malaison E, Hammond D. Assessment of validity of self-reported smoking status. Health Rep. 2012;23:47–53.
Hovanec J, Weiß T, Koch H, et al. Smoking and urinary cotinine by socioeconomic status in the Heinz Nixdorf Recall Study. J Epidemiol Community Health. 2019;73:489–495.
Richiardi L, Boffetta P, Merletti F. Analysis of nonresponse bias in a population-based case–control study on lung cancer. J Clin Epidemiol. 2002;55:1033–1040.
Minematsu N, Nakamura H, Furuuchi M, et al. Limitation of cigarette consumption by CYP2A6*4, *7 and *9 polymorphisms. Eur Respir J. 2006;27:289–292.
Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103:1342–1346.
Thorgeirsson TE, Gudbjartsson DF, Surakka I, et al.; ENGAGE Consortium. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42:448–453.
VanderWeele TJ. Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology. 2010;21:540–551.
Smith LH, VanderWeele TJ. Mediational E-values: approximate sensitivity analysis for unmeasured mediator–outcome confounding. Epidemiology. 2019;30:835–837.
Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31:285–293.
Power C, Graham H, Due P, et al. The contribution of childhood and adult socioeconomic position to adult obesity and smoking behaviour: an international comparison. Int J Epidemiol. 2005;34:335–344.
Alberg AJ, Worley ML, Tooze JA, et al. The validity of self-reported recent smoking in head and neck cancer surgical patients. Otolaryngol Head Neck Surg. 2015;153:990–995.
Blakely T, McKenzie S, Carter K. Misclassification of the mediator matters when estimating indirect effects. J Epidemiol Community Health. 2013;67:458–466.
Corbin M, Haslett S, Pearce N, Maule M, Greenland S. A comparison of sensitivity-specificity imputation, direct imputation and fully Bayesian analysis to adjust for exposure misclassification when validation data are unavailable. Int J Epidemiol. 2017;46:1063–1072.
Martikainen P, Valkonen T. Bias related to the exclusion of the economically inactive in studies on social class differences in mortality. Int J Epidemiol. 1999;28:899–904.
VanderWeele TJ, Asomaning K, Tchetgen Tchetgen EJ, et al. Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am J Epidemiol. 2012;175:1013–1020.
Zhang P, Chen P-L, Li Z-H, et al. Association of smoking and polygenic risk with the incidence of lung cancer: a prospective cohort study. Br J Cancer. 2022;126:1637–1646.
Qin X, Yang F. Simulation-based sensitivity analysis for causal mediation studies. Psychol Methods. 2022;27:1000–1013.
Behrens T, Ge C, Vermeulen R, et al. Occupational exposure to nickel and hexavalent chromium and the risk of lung cancer in a pooled analysis of case–control studies (SYNERGY). Int J Cancer. 2023;152:645–660.
Olsson A, Guha N, Bouaoun L, et al. Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: results from a pooled analysis of case–control studies (SYNERGY). Cancer Epidemiol Biomarkers Prev. 2022;31:1433–1441.
Taylor R, Najafi F, Dobson A. Meta-analysis of studies of passive smoking and lung cancer: effects of study type and continent. Int J Epidemiol. 2007;36:1048–1059.
Raaschou-Nielsen O, Andersen ZJ, Beelen R, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013;14:813–822.
Chen T-Y, Fang Y-H, Chen H-L, et al. Impact of cooking oil fume exposure and fume extractor use on lung cancer risk in non-smoking Han Chinese women. Sci Rep. 2020;10:6774.
Petrovic D, Mestral C de, Bochud M, et al. The contribution of health behaviors to socioeconomic inequalities in health: a systematic review. Prev Med. 2018;113:15–31.
Louwman WJ, van Lenthe FJ, Coebergh JWW, Mackenbach JP. Behaviour partly explains educational differences in cancer incidence in the south-eastern Netherlands: the longitudinal GLOBE study. Eur J Cancer Prev. 2004;13:119–125.
Menvielle G, Boshuizen H, Kunst AE, et al. The role of smoking and diet in explaining educational inequalities in lung cancer incidence. J Natl Cancer Inst. 2009;101:321–330.
Lash TL, Ahern TP, Collin LJ, Fox MP, MacLehose RF. Bias analysis gone bad. Am J Epidemiol. 2021;190:1604–1612.