Enhancing network security with hybrid feedback systems in chaotic optical communication
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39438577
PubMed Central
PMC11496550
DOI
10.1038/s41598-024-76391-0
PII: 10.1038/s41598-024-76391-0
Knihovny.cz E-zdroje
- Klíčová slova
- Chaotic optical communication, Hybrid optical feedback system, Network security, Protocols,
- Publikační typ
- časopisecké články MeSH
This paper presents a pioneering approach to bolstering network security and privacy by implementing chaotic optical communication with a hybrid optical feedback system (HOFS). The current baseline methods in network security are often less feasible for hybrid feedback systems, including limited robustness, compromised security, and synchronization challenges. Therefore, this paper proposes a hybrid approach to address these shortcomings by integrating the HOFS into chaotic optical communication systems (HOFS-COCS) to overcome the baseline challenges. This paper aims to improve network security while significantly maintaining efficient communication channels. Moreover, We designed two algorithms, one for chaotic maps generation and another for text encryption and decryption, to improve security in the hybrid feedback system. Our findings demonstrate through rigorous experimentation and analysis that the proposed (HOFS-COCS) method significantly improves network security by enabling reliable chaos generation, synchronization, and secure message transmission in chaotic optical communication systems. This research represents a significant advancement towards enhanced secrecy and synchronization in chaotic optical communication systems, promising a paradigm shift in network security protocols.
College of Engineering University of Business and Technology 21448 Jeddah Saudi Arabia
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Koneru Lakshmaiah Education Foundation (Deemed to be University Guntur AP India
School of Mathematics and Computer Science Hanjiang Normal University Shiyan 442000 Hubei China
School of Technologies Cardiff Metropolitan University Cardiff CF5 2YB UK
Zobrazit více v PubMed
Lu, Y., Wang, H., Ji, Y. & Zhang, Y. Security-enhanced electro-optic chaotic communication system based on the logistic map feedback and dynamic key. JOSA B. 40, 1131–1140 (2023).
Zhu, J., Zhuang, G., Chen, G. & Xie, X. Static output feedback quantized dissipative security control of singular hybrid systems subject to multiple cyber attacks: a dynamic-memory event-triggered strategy. Commun. Nonlinear Sci. Numer. Simul. 128, 107652. 10.1016/J.CNSNS.2023.107652 (2024).
Qamar, F., Islam, M. K., Farhan, R. & Ali, M. Ali Shah, S. Z. secure optical qam transmission using chaos message masking. J. Opt. Commun. 43, 421–428 (2022).
Li, M. et al. Chaotic radio frequency fingerprint masking against identity attacks. IEEE Wirel. Commun. Lett. 1–1. 10.1109/LWC.2024.3434453 (2024).
El-Meadawy, S. A. et al. Efficient and secure bit-level chaos security algorithm for orbital angular momentum modulation in free-space optical communications. IEEE Access. 9, 74817–74835 (2021).
Zhong, Q. et al. Analog–digital combined high-secure optical communication system based on chaotic circuit driving. Photonics. 9, 669 (2022).
Gao, Z. et al. 32 gb/s physical-layer secure optical communication over 200 km based on temporal dispersion and self-feedback phase encryption. Opt. Lett. 47, 913–916 (2022). PubMed
Hasan, M., Kashinath, A., Chen, C., Mohan, S. & Sok Security in real-time systems. ACM Comput. Surv. 56 (1–218:31). 10.1145/3649499 (2024).
Wang, D., Li, F., Liu, K. & Zhang, X. Real-time cyber-physical security solution leveraging an integrated learning-based approach. ACM Trans. Sens. Networks. 20(1–27:22), 3582009. 10.1145/ (2024).
Wang, L. et al. Scheme of coherent optical chaos communication. Opt. Lett.45, 4762–4765 (2020). PubMed
Lin, L., Li, Q. & Xi, X. Asynchronous secure communication scheme using a new modulation of message on optical chaos. Opt. Quantum Electron. 55, 15 (2023).
Chen, F., Wei, Y., Ji, H. & Xu, G. A multiplex network based analytical framework for safety management standardization in construction engineering. Adv. Eng. Inf. 59, 102278. 10.1016/J.AEI.2023.102278 (2024).
Narang, G., Aggarwal, M., Kaushal, H. & Ahuja, S. Enhancing the security of free space optical communication system by employing chaos-based modulation scheme. J. Opt. Commun. (2023).
Zhao, A. et al. Semiconductor laser-based multi-channel wideband chaos generation using optoelec- tronic hybrid feedback and parallel filtering. J. Light Technol. 40, 751–761 (2021).
Aljohani, M. Transforming data-intensive workflows: a cutting-edge multi-layer security and quality aware security framework. Concurr Comput. Pract. Exp. 36 10.1002/CPE.8068 (2024).
Chen, Q., Fan, Y., Cheng, M. & Gao, X. Secure spread spectrum communication using super- orthogonal optical chaos signals. IEEE Photonics J. 14, 1–6 (2022).
Jiang, L. et al. Chaotic optical communications at 56 gbit/s over 100-km fiber transmission based on a chaos generation model driven by long short-term memory networks. Opt. Lett. 47, 2382–2385 (2022). PubMed
Wen, H. et al. Secure dna-coding image optical communication using non-degenerate hyperchaos and dynamic secret-key. Mathematics. 10, 3180 (2022).
Wang, L. et al. Chaos synchronization of semiconductor lasers over 1040-km fiber relay transmission with hybrid amplification. Photonics Res. 11, 953–960 (2023).
Zhang, X. et al. The security in optical wireless communication: a survey. ACM Comput. Surv. 55, 1–36 (2023).
Singh, A., Sandha, K. S. & Rai, M. K. Design and analysis of active feedback rgc-based tran- simpedance receiver circuit for optical interconnects. J. Circuits Syst. Comput. 33 (2450125:24), 2450125:1. 10.1142/S0218126624501251 (2024).
Dabbicco, M., Columbo, L. L. & Perchoux, J. Laser optical feedback turns 60. Sensors. 23, 1176. 10.3390/S23031176 (2023). PubMed PMC
Raj, A. A. B. et al. A review–unguided optical communications: developments, technology evolution, and challenges. Electronics. 12, 1922 (2023).
Garg, D. & Nain, A. Next generation optical wireless communication: a comprehensive review. J. Opt. Commun. 44, s1535–s1550 (2023).
Song, Z. et al. High capacity turbulence-resilient free-space chaotic optical communication based on vector optical field manipulation. J. Light Technol. 1–8. 10.1109/JLT.2024.3435076 (2024).
Hao, N. et al. Numerical investigations of m-qam chaotic optical communication with amplitude and phase encryption. J. Light Technol. 42, 5141–5147. 10.1109/JLT.2024.3389036 (2024).
Abdulwahhab, A. W., Abass, A. K., Saleh, M. A. & Rashid, F. F. Enhancing performance of optical chaotic-based secure fiber-optic communication system. Opt. Quantum Electron. 55, 468 (2023).
Optical system design. Software | Optisystem | Optiwave (https://OpticalSystemDesignSoftware| OptiSystem|Optiwave, 2023).
Shao, W., Fu, Y., Cheng, M., Deng, L. & Liu, D. Chaos synchronization based on hybrid entropy sources and applications to secure communication. IEEE Photonics Technol. Lett. 33, 1038–1041 (2021).
Fu, Y. et al. Analog-digital hybrid chaos-based long-haul coherent optical secure communication. Opt. Lett. 46, 1506–1509 (2021). PubMed
Xie, Y. et al. 100 gb/s coherent chaotic optical communication over 800 km fiber transmission via advanced digital signal processing. Adv. Photonics Nexus. 3, 016003–016003 (2024).
Guo, H. et al. Accelerated key distribution method for endogenously secure optical communication by synchronized chaotic system based on fiber channel feature. Opt. Fiber Technol. 75, 103162 (2023).
Ali, A. et al. International Conference on Cyber and Design and Analysis of Secure RoF Based Communication in 5G Fronthaul, (ICCWS), Islamabad, Pakistan, 2020, pp. 1–6, (2020). 10.1109/ICCWS48432.2020.9292380
Nazakat, Z., Kaleem, M., Qamar, F. & Shahzadi, R. Secure RoF based 5G backhaul communication using semiconductor laser generated optical chaos. J. Opt. Commun. 10.1515/joc-2023-0296 (2023).
Qamar, F., Islam, M., Shahzadi, R., Ali, S. & Ali, M. 128-QAM dual-polarization chaotic long-haul system performance evaluation. J. Opt. Commun. 44(s1), s1873–s1881. 10.1515/joc-2020-0092 (2023).
Yang, D. et al. A robust light field semantic segmentation network combining contextual and geometric features. Front. Environ. Sci. 1443. 10.3389/fenvs.2022.996513
Dai, M., Luo, L., Ren, J., Yu, H. & Sun, G. PSACCF: prioritized online slice admission control considering fairness in 5G/B5G networks. IEEE Trans. Netw. Sci. Eng.9 (6), 4101–4114. 10.1109/TNSE.2022.3195862 (2022).
Sun, G., Sheng, L., Luo, L. & Yu, H. Game theoretic approach for multipriority data transmission in 5G vehicular networks. IEEE Trans. Intell. Transp. Syst. 23(12), 24672–24685. 10.1109/TITS.2022.3198046 (2022).
Sun, G. et al. Profit maximization of independent task offloading in MEC-enabled 5G internet of vehicles. IEEE Trans. Intell. Transp. Syst. 1–13. 10.1109/TITS.2024.3416300 (2024).
Zhao, Y., Wang, X. & Huang, Z. Multi-function radar modeling: a review. IEEE Sens. J.10.1109/JSEN.2024.3436877 (2024).
Tian, H. et al. Dynamic analysis and sliding mode synchronization control of chaotic systems with conditional symmetric fractional-order memristors. Fract. Fract. 8 (6), 307. 10.3390/fractalfract8060307 (2024).
Ni, H. et al. Path loss and shadowing for UAV-to-ground UWB channels incorporating the effects of built-up areas and airframe. IEEE Trans. Intell. Transp. Syst. 1–12. 10.1109/TITS.2024.3418952 (2024).
Fang, H. et al. Multimodal in-sensor computing implemented by easily-fabricated oxide-heterojunction optoelectronic synapses. Adv. Funct. Mater. 2409045. 10.1002/adfm.202409045 (2024).
Yue, S., Zeng, S., Liu, L., Eldar, Y. C. & Di, B. Hybrid near-far field channel estimation for holographic MIMO communications. IEEE Trans. Wirel. Commun. 10.1109/TWC.2024.3433491 (2024).
Gong, Y. et al. Computation offloading and quantization schemes for federated satellite-ground graph networks. IEEE Trans. Wirel. Commun. 10.1109/TWC.2024.3409691 (2024).
Li, T., Xiao, Z., Georges, H., Luo, Z. & Wang, D. Performance analysis of co- and cross-tier device-to-device communication underlaying macro-small cell wireless networks. KSII Trans. Internet Inf. Syst. 10(4), 1481–1500. 10.3837/tiis.2016.04.001 (2016).
Chen, B., Hu, J., Zhao, Y. & Ghosh, B. K. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans. Syst. Man. Cybern : Syst. 52(10), 6618–6629. 10.1109/TSMC.2022.3148295 (2022).
Xu, B. & Guo, Y. A novel DVL calibration method based on robust invariant extended Kalman filter. IEEE Trans. Veh. Technol. 71(9), 9422–9434. 10.1109/TVT.2022.3182017 (2022).
Gao, N. et al. Energy model for UAV communications: experimental validation and model generalization. China Commun. 18(7), 253–264. 10.23919/JCC.2021.07.020 (2021).
Zhang, H., Xu, Y., Luo, R. & Mao, Y. Fast GNSS acquisition algorithm based on SFFT with high noise immunity. China Commun. 20(5), 70–83. 10.23919/JCC.2023.00.006 (2023).
Jiang, F., Li, T., Lv, X., Rui, H. & Jin, D. Physics-informed neural networks for path loss estimation by solving electromagnetic integral equations. IEEE Trans. Wirel. Commun. 10.1109/TWC.2024.3429196 (2024).
Sheng, H. et al. Discriminative feature learning with co-occurrence attention network for vehicle ReID. IEEE Trans. Circuits Syst. Video Technol. 34(5), 3510–3522. 10.1109/TCSVT.2023.3326375 (2024).
Wang, Q., Sihvola, A. & Qi, J. A novel procedure to hybridize the folded transmitarray and fabry–Perot cavity with low antenna profile and flexible design frequency. IEEE Antennas Wirel. Propag. Lett. 23(8), 2501–2505. 10.1109/LAWP.2024.3398076 (2024).
Zha, S., Qu, Z., Zhang, J., Zheng, D. & Liu, P. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention. IEEE Trans. Antennas Propag. 72 (9), 7252–7260. 10.1109/TAP.2024.3434371 (2024).
Yang, Y., Zhang, Z., Zhou, Y., Wang, C. & Zhu, H. Design of a simultaneous information and power transfer system based on a modulating feature of magnetron. IEEE Trans. Microw. Theory Tech. 71 (2), 907–915. 10.1109/TMTT.2022.3205612 (2023).
Opnet modeler. (2023). https://support.riverbed.com/content/support/software/opnet-model/modeler.html
Inancigdem. Optical interconnection network dataset. (2023). https://www.kaggle.com/datasets/inancigdem/optical-interconnection-network