Hydrogen Evolution Reaction Activity in Mo2TiC2Tx MXene Derived from Mo2TiAlC2 MAX Phase: Insights from Compositional Transformations

. 2024 Oct 18 ; 14 (20) : 15336-15347. [epub] 20241002

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39444530

MAX phases represent a crucial building block for the synthesis of MXenes, which constitute an intriguing class of materials with significant application potential. This study investigates the catalytic properties of the Mo2TiAlC2 MAX phase and the corresponding Mo2TiC2T x MXene for the hydrogen evolution reaction (HER). Characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) revealed that despite the presence of secondary phases, the HER catalytic activity is primarily influenced by the MAX phase and its derived MXene. Interestingly, the catalytic activity of the MXene improves over time, attributed to the formation of MoO2 as identified by XPS. This work enhances the understanding of MXene-based materials for electrochemical applications, highlighting crucial structural and chemical transformations that optimize their performance in energy conversion technologies.

Zobrazit více v PubMed

Liu L.; Cheng S.; Li J.; Huang Y. Mitigating environmental pollution and impacts from fossil fuels: The role of alternative fuels. Energy Sources, Part A 2007, 29 (12), 1069–1080. 10.1080/15567030601003627. DOI

Abe J. O.; Popoola A.; Ajenifuja E.; Popoola O. M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44 (29), 15072–15086. 10.1016/j.ijhydene.2019.04.068. DOI

Tashie-Lewis B. C.; Nnabuife S. G. Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review. Chem. Eng. J. Adv. 2021, 8, 10017210.1016/j.ceja.2021.100172. DOI

Megía P. J.; Vizcaíno A. J.; Calles J. A.; Carrero A. Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review. Energy Fuels 2021, 35 (20), 16403–16415. 10.1021/acs.energyfuels.1c02501. DOI

Lasia A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44 (36), 19484–19518. 10.1016/j.ijhydene.2019.05.183. DOI

Dubouis N.; Grimaud A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 2019, 10 (40), 9165–9181. 10.1039/C9SC03831K. PubMed DOI PMC

Voiry D.; Yang J.; Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28 (29), 6197–6206. 10.1002/adma.201505597. PubMed DOI

Lin L.; Sherrell P.; Liu Y.; Lei W.; Zhang S.; Zhang H.; Wallace G. G.; Chen J. Engineered 2D transition metal dichalcogenides—a vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10 (16), 190387010.1002/aenm.201903870. DOI

Zhang Y.; Zhou Q.; Zhu J.; Yan Q.; Dou S. X.; Sun W. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 2017, 27 (35), 170231710.1002/adfm.201702317. DOI

Yin J.; Jin J.; Lin H.; Yin Z.; Li J.; Lu M.; Guo L.; Xi P.; Tang Y.; Yan C. H. Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 2020, 7 (10), 190307010.1002/advs.201903070. PubMed DOI PMC

Du H.; Kong R.-M.; Guo X.; Qu F.; Li J. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 2018, 10 (46), 21617–21624. 10.1039/C8NR07891B. PubMed DOI

Callejas J. F.; Read C. G.; Roske C. W.; Lewis N. S.; Schaak R. E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 2016, 28 (17), 6017–6044. 10.1021/acs.chemmater.6b02148. DOI

Yu L.; Song S.; McElhenny B.; Ding F.; Luo D.; Yu Y.; Chen S.; Ren Z. A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2019, 7 (34), 19728–19732. 10.1039/C9TA05455C. DOI

Xie J.; Xie Y. Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges. Chem. - Eur. J. 2016, 22 (11), 3588–3598. 10.1002/chem.201501120. PubMed DOI

Gao Q.; Zhang W.; Shi Z.; Yang L.; Tang Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31 (2), 180288010.1002/adma.201802880. PubMed DOI

Zhou W.; Jia J.; Lu J.; Yang L.; Hou D.; Li G.; Chen S. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43. 10.1016/j.nanoen.2016.08.027. DOI

Gusmão R.; Sofer Z.; Bouša D.; Pumera M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem. 2017, 129 (46), 14609–14614. 10.1002/ange.201706389. PubMed DOI

Bai S.; Yang M.; Jiang J.; He X.; Zou J.; Xiong Z.; Liao G.; Liu S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5 (1), 7810.1038/s41699-021-00259-4. DOI

Zubair M.; Hassan M. M. U.; Mehran M. T.; Baig M. M.; Hussain S.; Shahzad F. 2D MXenes and their heterostructures for HER, OER and overall water splitting: a review. Int. J. Hydrogen Energy 2022, 47 (5), 2794–2818. 10.1016/j.ijhydene.2021.10.248. DOI

Naguib M.; Mochalin V. N.; Barsoum M. W.; Gogotsi Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26 (7), 992–1005. 10.1002/adma.201304138. PubMed DOI

Barsoum M. W.; Radovic M. Elastic and Mechanical Properties of the MAX Phases. Annu. Rev. Mater. Res. 2011, 41 (1), 195–227. 10.1146/annurev-matsci-062910-100448. DOI

Srivastava P.; Mishra A.; Mizuseki H.; Lee K.-R.; Singh A. K. Mechanistic Insight into the Chemical Exfoliation and Functionalization of Ti3C2MXene. ACS Appl. Mater. Interfaces 2016, 8 (36), 24256–24264. 10.1021/acsami.6b08413. PubMed DOI

Sun W.; Shah S. A.; Chen Y.; Tan Z.; Gao H.; Habib T.; Radovic M.; Green M. J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5 (41), 21663–21668. 10.1039/C7TA05574A. DOI

Li T.; Yao L.; Liu Q.; Gu J.; Luo R.; Li J.; Yan X.; Wang W.; Liu P.; Chen B.; et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T = OH, O) via Alkali Treatment. Angew. Chem., Int. Ed. 2018, 57 (21), 6115–6119. 10.1002/anie.201800887. PubMed DOI

Li M.; Lu J.; Luo K.; Li Y.; Chang K.; Chen K.; Zhou J.; Rosen J.; Hultman L.; Eklund P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141 (11), 4730–4737. 10.1021/jacs.9b00574. PubMed DOI

Kumar K. P. A.; Alduhaish O.; Pumera M. Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochem. Commun. 2021, 125, 10697710.1016/j.elecom.2021.106977. DOI

Ran J.; Gao G.; Li F.-T.; Ma T.-Y.; Du A.; Qiao S.-Z. Ti3C2MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8 (1), 1390710.1038/ncomms13907. PubMed DOI PMC

Zhao D.; Chen Z.; Yang W.; Liu S.; Zhang X.; Yu Y.; Cheong W.-C.; Zheng L.; Ren F.; Ying G.; et al. MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2. J. Am. Chem. Soc. 2019, 141 (9), 4086–4093. 10.1021/jacs.8b13579. PubMed DOI

Yuan W.; Cheng L.; An Y.; Wu H.; Yao N.; Fan X.; Guo X. MXene Nanofibers as Highly Active Catalysts for Hydrogen Evolution Reaction. ACS Sustainable Chem. Eng. 2018, 6 (7), 8976–8982. 10.1021/acssuschemeng.8b01348. DOI

Anasori B.; Halim J.; Lu J.; Voigt C. A.; Hultman L.; Barsoum M. W. Mo2TiAlC2: A new ordered layered ternary carbide. Scr. Mater. 2015, 101, 5–7. 10.1016/j.scriptamat.2014.12.024. DOI

Seredych M.; Shuck C. E.; Pinto D.; Alhabeb M.; Precetti E.; Deysher G.; Anasori B.; Kurra N.; Gogotsi Y. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chem. Mater. 2019, 31 (9), 3324–3332. 10.1021/acs.chemmater.9b00397. DOI

Halim J.; Kota S.; Lukatskaya M. R.; Naguib M.; Zhao M.-Q.; Moon E. J.; Pitock J.; Nanda J.; May S. J.; Gogotsi Y.; Barsoum M. W. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv. Funct. Mater. 2016, 26 (18), 3118–3127. 10.1002/adfm.201505328. DOI

Anasori B.; Dahlqvist M.; Halim J.; Moon E. J.; Lu J.; Hosler B. C.; Caspi E. N.; May S. J.; Hultman L.; Eklund P.; et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 2015, 118 (9), 09430410.1063/1.4929640. DOI

Luthin J.; Linsmeier C. Characterization of electron beam evaporated carbon films and compound formation on titanium and silicon. Phys. Scr. 2001, 2001, 13410.1238/Physica.Topical.091a00134. DOI

Dupin J.-C.; Gonbeau D.; Vinatier P.; Levasseur A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2 (6), 1319–1324. 10.1039/a908800h. DOI

Biesinger M. C.; Lau L. W. M.; Gerson A. R.; Smart R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257 (3), 887–898. 10.1016/j.apsusc.2010.07.086. DOI

Laszczyńska A.; Szczygieł I. Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings. Int. J. Hydrogen Energy 2020, 45 (1), 508–520. 10.1016/j.ijhydene.2019.10.181. DOI

Sampath A. H. J.; Wickramasinghe N. D.; de Silva K. M. N.; de Silva R. M. Methods of Extracting TiO2 and Other Related Compounds from Ilmenite. Minerals 2023, 13 (5), 66210.3390/min13050662. DOI

Scanlon D. O.; Watson G. W.; Payne D. J.; Atkinson G. R.; Egdell R. G.; Law D. S. L. Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114 (10), 4636–4645. 10.1021/jp9093172. DOI

Baltrusaitis J.; Mendoza-Sanchez B.; Fernandez V.; Veenstra R.; Dukstiene N.; Roberts A.; Fairley N. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 2015, 326, 151–161. 10.1016/j.apsusc.2014.11.077. DOI

Alex C.; Jana R.; Ramakrishnan V.; Kovilakath M. S. N.; Datta A.; John N. S.; Tayal A. Probing the Evolution of Active Sites in MoO2 for Hydrogen Generation in Acidic Medium. ACS Appl. Energy Mater. 2023, 6 (10), 5342–5351. 10.1021/acsaem.3c00320. DOI

Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 1795310.1103/PhysRevB.50.17953. PubMed DOI

Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59 (3), 175810.1103/PhysRevB.59.1758. DOI

Lazar P.; Karlicky F.; Jurecka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 2013, 135 (16), 6372–6377. 10.1021/ja403162r. PubMed DOI

Klimeš J.; Bowler D. R.; Michaelides A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83 (19), 19513110.1103/physrevb.83.195131. DOI

Lazar P.; Martincová J.; Otyepka M. Structure, dynamical stability, and electronic properties of phases in TaS 2 from a high-level quantum mechanical calculation. Phys. Rev. B 2015, 92 (22), 22410410.1103/PhysRevB.92.224104. DOI

Hinnemann B.; Moses P. G.; Bonde J.; Jørgensen K. P.; Nielsen J. H.; Horch S.; Chorkendorff I.; Nørskov J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127 (15), 5308–5309. 10.1021/ja0504690. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...