Hydrogen Evolution Reaction Activity in Mo2TiC2Tx MXene Derived from Mo2TiAlC2 MAX Phase: Insights from Compositional Transformations
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39444530
PubMed Central
PMC11494504
DOI
10.1021/acscatal.4c04099
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
MAX phases represent a crucial building block for the synthesis of MXenes, which constitute an intriguing class of materials with significant application potential. This study investigates the catalytic properties of the Mo2TiAlC2 MAX phase and the corresponding Mo2TiC2T x MXene for the hydrogen evolution reaction (HER). Characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) revealed that despite the presence of secondary phases, the HER catalytic activity is primarily influenced by the MAX phase and its derived MXene. Interestingly, the catalytic activity of the MXene improves over time, attributed to the formation of MoO2 as identified by XPS. This work enhances the understanding of MXene-based materials for electrochemical applications, highlighting crucial structural and chemical transformations that optimize their performance in energy conversion technologies.
See more in PubMed
Liu L.; Cheng S.; Li J.; Huang Y. Mitigating environmental pollution and impacts from fossil fuels: The role of alternative fuels. Energy Sources, Part A 2007, 29 (12), 1069–1080. 10.1080/15567030601003627. DOI
Abe J. O.; Popoola A.; Ajenifuja E.; Popoola O. M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44 (29), 15072–15086. 10.1016/j.ijhydene.2019.04.068. DOI
Tashie-Lewis B. C.; Nnabuife S. G. Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review. Chem. Eng. J. Adv. 2021, 8, 10017210.1016/j.ceja.2021.100172. DOI
Megía P. J.; Vizcaíno A. J.; Calles J. A.; Carrero A. Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review. Energy Fuels 2021, 35 (20), 16403–16415. 10.1021/acs.energyfuels.1c02501. DOI
Lasia A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44 (36), 19484–19518. 10.1016/j.ijhydene.2019.05.183. DOI
Dubouis N.; Grimaud A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 2019, 10 (40), 9165–9181. 10.1039/C9SC03831K. PubMed DOI PMC
Voiry D.; Yang J.; Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28 (29), 6197–6206. 10.1002/adma.201505597. PubMed DOI
Lin L.; Sherrell P.; Liu Y.; Lei W.; Zhang S.; Zhang H.; Wallace G. G.; Chen J. Engineered 2D transition metal dichalcogenides—a vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10 (16), 190387010.1002/aenm.201903870. DOI
Zhang Y.; Zhou Q.; Zhu J.; Yan Q.; Dou S. X.; Sun W. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 2017, 27 (35), 170231710.1002/adfm.201702317. DOI
Yin J.; Jin J.; Lin H.; Yin Z.; Li J.; Lu M.; Guo L.; Xi P.; Tang Y.; Yan C. H. Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 2020, 7 (10), 190307010.1002/advs.201903070. PubMed DOI PMC
Du H.; Kong R.-M.; Guo X.; Qu F.; Li J. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 2018, 10 (46), 21617–21624. 10.1039/C8NR07891B. PubMed DOI
Callejas J. F.; Read C. G.; Roske C. W.; Lewis N. S.; Schaak R. E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 2016, 28 (17), 6017–6044. 10.1021/acs.chemmater.6b02148. DOI
Yu L.; Song S.; McElhenny B.; Ding F.; Luo D.; Yu Y.; Chen S.; Ren Z. A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2019, 7 (34), 19728–19732. 10.1039/C9TA05455C. DOI
Xie J.; Xie Y. Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges. Chem. - Eur. J. 2016, 22 (11), 3588–3598. 10.1002/chem.201501120. PubMed DOI
Gao Q.; Zhang W.; Shi Z.; Yang L.; Tang Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31 (2), 180288010.1002/adma.201802880. PubMed DOI
Zhou W.; Jia J.; Lu J.; Yang L.; Hou D.; Li G.; Chen S. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43. 10.1016/j.nanoen.2016.08.027. DOI
Gusmão R.; Sofer Z.; Bouša D.; Pumera M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem. 2017, 129 (46), 14609–14614. 10.1002/ange.201706389. PubMed DOI
Bai S.; Yang M.; Jiang J.; He X.; Zou J.; Xiong Z.; Liao G.; Liu S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5 (1), 7810.1038/s41699-021-00259-4. DOI
Zubair M.; Hassan M. M. U.; Mehran M. T.; Baig M. M.; Hussain S.; Shahzad F. 2D MXenes and their heterostructures for HER, OER and overall water splitting: a review. Int. J. Hydrogen Energy 2022, 47 (5), 2794–2818. 10.1016/j.ijhydene.2021.10.248. DOI
Naguib M.; Mochalin V. N.; Barsoum M. W.; Gogotsi Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26 (7), 992–1005. 10.1002/adma.201304138. PubMed DOI
Barsoum M. W.; Radovic M. Elastic and Mechanical Properties of the MAX Phases. Annu. Rev. Mater. Res. 2011, 41 (1), 195–227. 10.1146/annurev-matsci-062910-100448. DOI
Srivastava P.; Mishra A.; Mizuseki H.; Lee K.-R.; Singh A. K. Mechanistic Insight into the Chemical Exfoliation and Functionalization of Ti3C2MXene. ACS Appl. Mater. Interfaces 2016, 8 (36), 24256–24264. 10.1021/acsami.6b08413. PubMed DOI
Sun W.; Shah S. A.; Chen Y.; Tan Z.; Gao H.; Habib T.; Radovic M.; Green M. J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5 (41), 21663–21668. 10.1039/C7TA05574A. DOI
Li T.; Yao L.; Liu Q.; Gu J.; Luo R.; Li J.; Yan X.; Wang W.; Liu P.; Chen B.; et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T = OH, O) via Alkali Treatment. Angew. Chem., Int. Ed. 2018, 57 (21), 6115–6119. 10.1002/anie.201800887. PubMed DOI
Li M.; Lu J.; Luo K.; Li Y.; Chang K.; Chen K.; Zhou J.; Rosen J.; Hultman L.; Eklund P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141 (11), 4730–4737. 10.1021/jacs.9b00574. PubMed DOI
Kumar K. P. A.; Alduhaish O.; Pumera M. Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochem. Commun. 2021, 125, 10697710.1016/j.elecom.2021.106977. DOI
Ran J.; Gao G.; Li F.-T.; Ma T.-Y.; Du A.; Qiao S.-Z. Ti3C2MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8 (1), 1390710.1038/ncomms13907. PubMed DOI PMC
Zhao D.; Chen Z.; Yang W.; Liu S.; Zhang X.; Yu Y.; Cheong W.-C.; Zheng L.; Ren F.; Ying G.; et al. MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2. J. Am. Chem. Soc. 2019, 141 (9), 4086–4093. 10.1021/jacs.8b13579. PubMed DOI
Yuan W.; Cheng L.; An Y.; Wu H.; Yao N.; Fan X.; Guo X. MXene Nanofibers as Highly Active Catalysts for Hydrogen Evolution Reaction. ACS Sustainable Chem. Eng. 2018, 6 (7), 8976–8982. 10.1021/acssuschemeng.8b01348. DOI
Anasori B.; Halim J.; Lu J.; Voigt C. A.; Hultman L.; Barsoum M. W. Mo2TiAlC2: A new ordered layered ternary carbide. Scr. Mater. 2015, 101, 5–7. 10.1016/j.scriptamat.2014.12.024. DOI
Seredych M.; Shuck C. E.; Pinto D.; Alhabeb M.; Precetti E.; Deysher G.; Anasori B.; Kurra N.; Gogotsi Y. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chem. Mater. 2019, 31 (9), 3324–3332. 10.1021/acs.chemmater.9b00397. DOI
Halim J.; Kota S.; Lukatskaya M. R.; Naguib M.; Zhao M.-Q.; Moon E. J.; Pitock J.; Nanda J.; May S. J.; Gogotsi Y.; Barsoum M. W. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv. Funct. Mater. 2016, 26 (18), 3118–3127. 10.1002/adfm.201505328. DOI
Anasori B.; Dahlqvist M.; Halim J.; Moon E. J.; Lu J.; Hosler B. C.; Caspi E. N.; May S. J.; Hultman L.; Eklund P.; et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 2015, 118 (9), 09430410.1063/1.4929640. DOI
Luthin J.; Linsmeier C. Characterization of electron beam evaporated carbon films and compound formation on titanium and silicon. Phys. Scr. 2001, 2001, 13410.1238/Physica.Topical.091a00134. DOI
Dupin J.-C.; Gonbeau D.; Vinatier P.; Levasseur A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2 (6), 1319–1324. 10.1039/a908800h. DOI
Biesinger M. C.; Lau L. W. M.; Gerson A. R.; Smart R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257 (3), 887–898. 10.1016/j.apsusc.2010.07.086. DOI
Laszczyńska A.; Szczygieł I. Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings. Int. J. Hydrogen Energy 2020, 45 (1), 508–520. 10.1016/j.ijhydene.2019.10.181. DOI
Sampath A. H. J.; Wickramasinghe N. D.; de Silva K. M. N.; de Silva R. M. Methods of Extracting TiO2 and Other Related Compounds from Ilmenite. Minerals 2023, 13 (5), 66210.3390/min13050662. DOI
Scanlon D. O.; Watson G. W.; Payne D. J.; Atkinson G. R.; Egdell R. G.; Law D. S. L. Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114 (10), 4636–4645. 10.1021/jp9093172. DOI
Baltrusaitis J.; Mendoza-Sanchez B.; Fernandez V.; Veenstra R.; Dukstiene N.; Roberts A.; Fairley N. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 2015, 326, 151–161. 10.1016/j.apsusc.2014.11.077. DOI
Alex C.; Jana R.; Ramakrishnan V.; Kovilakath M. S. N.; Datta A.; John N. S.; Tayal A. Probing the Evolution of Active Sites in MoO2 for Hydrogen Generation in Acidic Medium. ACS Appl. Energy Mater. 2023, 6 (10), 5342–5351. 10.1021/acsaem.3c00320. DOI
Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 1795310.1103/PhysRevB.50.17953. PubMed DOI
Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59 (3), 175810.1103/PhysRevB.59.1758. DOI
Lazar P.; Karlicky F.; Jurecka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 2013, 135 (16), 6372–6377. 10.1021/ja403162r. PubMed DOI
Klimeš J.; Bowler D. R.; Michaelides A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83 (19), 19513110.1103/physrevb.83.195131. DOI
Lazar P.; Martincová J.; Otyepka M. Structure, dynamical stability, and electronic properties of phases in TaS 2 from a high-level quantum mechanical calculation. Phys. Rev. B 2015, 92 (22), 22410410.1103/PhysRevB.92.224104. DOI
Hinnemann B.; Moses P. G.; Bonde J.; Jørgensen K. P.; Nielsen J. H.; Horch S.; Chorkendorff I.; Nørskov J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127 (15), 5308–5309. 10.1021/ja0504690. PubMed DOI